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LINEAR ISOMORPHIC EULER FRACTIONAL DIFFERENCE

SEQUENCE SPACES AND THEIR TOEPLITZ DUALS
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Abstract. In the present paper we introduce and study Euler sequence

spaces of fractional difference and backward difference operators. We make
an effort to prove that these spaces are BK−spaces and linearly isomor-

phic. Further, Schauder basis for Euler fractional difference sequence spaces

eς0,p(∆
(β̃),∇m) and eςc,p(∆

(β̃),∇m) are also elaborate. In addition to this,

we determine the α−, β− and γ− duals of these spaces.

AMS Mathematics Subject Classification : 46A35, 46B45.

Key words and phrases : Euler mean, fractional difference operator, matrix

transformation, α, β− and γ− duals.

1. Introduction

Let ω be the space of all real or complex sequences. By N, R and C we
denote the set of natural, real and complex numbers, respectively. Baliarsingh

and Dutta [2] introduced fractional difference operators ∆β̃ ,∆(β̃),∆−β̃ , ∆(−β̃)

and studied some topological results among these operators. The generalized

fractional difference operator ∆(β̃) for a positive proper fraction β̃ is defined as

∆(β̃)(xϑ) =

∞∑
µ=0

(−1)µ
Γ(β̃ + 1)

µ!Γ(β̃ − µ+ 1)
xϑ−µ.

For more details about the fractional difference operator (see [1, 3, 4, 9, 17]).

By Γ(β̃), we denote the Euler gamma function of a real number β̃ or generalized
factorial function. This series is convergent throughout the paper for x ∈ ω. For
β̃ ∈ I+, where I+ denote the set of strictly positive integers, we define Euler
gamma function as

Γ(β̃) =

∫ ∞

0

e−ttβ̃−1dt.
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As a triangle the fractional difference operator can be expressed as

(∆(β̃))nϑ =

{
(−1)n−ϑ Γ(β̃+1)

(n−ϑ)!Γ(β̃−n+ϑ+1)
, (0 ≤ ϑ ≤ n)

0, (ϑ > n).

The inverse of the difference matrix (∆(β̃))nϑ given by

(∆(−β̃))nϑ =

{
(−1)n−ϑ Γ(−β̃+1)

(n−ϑ)!Γ(−β̃−n+ϑ+1)
, (0 ≤ ϑ ≤ n)

0, (ϑ > n).

For more detail about difference sequence spaces one may refer to [7, 12, 19, 20,
21, 22, 23, 24]. The difference operator of order m was introduced by Polat and
Başar [18] to develop some new sequence spaces. For definition and results one
can refer to [11, 18].
The Euler mean matrix Eς = (eςnϑ) of order ς, (0 < ς < 1) is given by

(eςnϑ) =

{ (
n
ϑ

)
(1− ς)n−ϑςϑ, (0 ≤ ϑ ≤ n);

0, (ϑ > n).

The Euler matrix can also be written as

(eςnϑ) =


1 0 0 0 · · ·

1− ς ς 0 0 · · ·
(1− ς)2 2(1− ς)ς ς2 0 · · ·
(1− ς)3 3(1− ς)2ς 3(1− ς)ς2 ς3 · · ·

...
...

...
...

. . .

 .

The product matrix (Eς(∆(β̃)))nϑ can be represented by combining the Euler

mean matrix of order ς and the fractional difference matrix of order β̃ as

(Eς(∆(β̃)))nϑ =
n∑

µ=ϑ

(−1)µ−ϑ

(
n

n− µ

)
Γ(β̃ + 1)

(µ− ϑ)!Γ(β̃ − µ+ ϑ+ 1)
ςµ(1− ς)n−µ, (0 ≤ ϑ ≤ n)

0, (ϑ > n).

Moreover, (Eς(∆(β̃)))nϑ can also be written as

(Eς(∆(β̃)))nϑ =
1 0 0 0 . . .

(1− ς)− β̃ς ς 0 0 . . .

(1− ς)2 − 2β̃(1− ς)ς + β̃(β̃−1)
2! ς2 2(1− ς)ς − β̃ς2 ς2 0 . . .

...
...

...
...

. . .

 .

Consider U and V be two sequence spaces. Let A = (anϑ) be an infinite matrix
of real or complex numbers for n, ϑ ∈ N0, where N0 = N ∪ {0}. Then, A defines
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a matrix transformation from U into V and it is denoted by A : U → V, if for
every sequence x = (xϑ) ∈ U , the sequence Ax = {An(x)} is in V , where

An(x) =

∞∑
ϑ=0

anϑxϑ (n ∈ N0). (1)

By (U, V ), we denote the class of all infinite matrices A such that A : U → V .
For each n ∈ N0 and every x ∈ U, A ∈ (U, V ) iff the series on the right-hand
side of (1) converges. So, we have Ax ∈ V for all x ∈ U . For a sequence space
U, the matrix domain UA of an infinite matrix A is defined as

UA = {x = (xϑ) ∈ ω : Ax ∈ U}

which is a sequence space. Recently, many mathematicians have defined se-
quence spaces by using matrix domain for a triangle infinite matrix (see [5, 8,
10, 15, 16]) and many others.
The multiplier space of U and V is denoted by N(U, V ) and is defined by

N(U, V ) = {v = (vϑ) ∈ ω : uv = (uϑvϑ) ∈ V, ∀ u = (uϑ) ∈ U}.

The α−, β− and γ− duals of the sequence space U are defined by

Uα = {z = (zϑ) ∈ ω : zu = (zϑuϑ) ∈ ℓ1,∀ u = (uϑ) ∈ U},

Uβ = {z = (zϑ) ∈ ω : zu = (zvuϑ) ∈ cs for all u = (uϑ) ∈ U}
and

Uγ = {z = (zϑ) ∈ ω : zu = (zϑuϑ) ∈ bs for all u = (uϑ) ∈ U},
respectively. That is Uα = N(U, ℓ1), U

β = N(U, cs) and Uγ = N(U, bs).
A sequence space U with a linear topology is called a K-space, provided each
of the maps qn : U → R defined by qn(x) = xn is continuous ∀n ∈ N. A K-
space U is called an FK-space provided U is a complete linear metric space. An
FK-space whose topology is normable is called BK-space. By c, c0 and ℓ∞, we
denote the Banach spaces of convergent, null and bounded sequences x = (xϑ)
with the usual norm ∥x∥∞ = sup

ϑ
|xϑ|. The spaces of all bounded and convergent

series are denoted by bs and cs, respectively. Also, by ℓ1 and ℓp, we denote the
spaces of all absolutely and p−absolutely convergent series, respectively, which
are BK spaces with the usual norm defined by

∥x∥ℓp =

( ∞∑
ϑ=0

|xϑ|p
)1/p

, for 0 ≤ p < ∞.

A sequence (xϑ) ∈ X is called a Schauder basis for a normed space (X, ∥.∥), if
for every x ∈ X, there is a unique scalar sequence (υϑ) such that∥∥∥∥x−

n∑
ϑ=0

υϑxϑ

∥∥∥∥ → 0 as n → ∞.
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Maddox [14] introduced the sequence spaces ℓ∞(p), c0(p), c(p) as follows:

ℓ∞(p) = {x = (xϑ) ∈ ω : sup
ϑ

|xϑ|pϑ < ∞},

c0(p) = {x = (xϑ) ∈ ω : lim
ϑ→∞

|xϑ|pϑ = 0}

and

c(p) = {x = (xϑ) ∈ ω : lim
ϑ→∞

|xϑ − l|pϑ = 0, for some l ∈ R},

where p = (pϑ) denotes bounded sequence of positive real numbers with sup
ϑ

pϑ =

M and R = max{1,M}.
Let β̃ be a positive proper fraction, Eς = (eςnϑ) denotes the Euler mean matrix,
∇m denotes the backward difference operator of order m and p = (pn) be a
bounded sequence of positive real numbers. Now, we define the following se-
quence spaces as follows:

eςp(∆
(β̃),∇m) =

{
x = (xϑ) :

∑
n

∣∣∣∣ n∑
ϑ=0

n∑
µ=ϑ

(−1)µ−ϑ

(
n

n− µ

)
Γ(β̃ + 1)

(µ− ϑ)!Γ(β̃ − µ+ ϑ+ 1)
ςµ(1− ς)n−µ(∇mxϑ)

∣∣∣∣p < ∞
}
,

eς0,p(∆
(β̃),∇m) =

{
x = (xϑ) : lim

n→∞

∣∣∣∣ n∑
ϑ=0

n∑
µ=ϑ

(−1)µ−ϑ

(
n

n− µ

)
Γ(β̃ + 1)

(µ− ϑ)!Γ(β̃ − µ+ ϑ+ 1)
ςµ(1− ς)n−µ(∇mxϑ)

∣∣∣∣pn

= 0

}
,

eςc,p(∆
(β̃),∇m) =

{
x = (xϑ) : lim

n→∞

∣∣∣∣ n∑
ϑ=0

n∑
µ=ϑ

(−1)µ−ϑ

(
n

n− µ

)
Γ(β̃ + 1)

(µ− ϑ)!Γ(β̃ − µ+ ϑ+ 1)
ςµ(1− ς)n−µ(∇mxϑ)

∣∣∣∣pn

exists

}
and

eς∞,p(∆
(β̃),∇m) =

{
x = (xϑ) : sup

n

∣∣∣∣ n∑
ϑ=0

n∑
µ=ϑ

(−1)µ−ϑ

(
n

n− µ

)
Γ(β̃ + 1)

(µ− ϑ)!Γ(β̃ − µ+ ϑ+ 1)
ςµ(1− ς)n−µ(∇mxϑ)

∣∣∣∣pn

< ∞
}
.

By taking the Eς(∆(β̃),∇m)-transform of x = (xϑ) in the spaces ℓp, c0(p), c(p)
and ℓ∞(p) one can easily obtain the above defined spaces as

eςp(∆
(β̃),∇m) = (ℓp)Eς(∆(β̃),∇m ), eς0,p(∆

(β̃),∇m) = (c0(p))Eς(∆(β̃),∇m), (2)
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eςc,p(∆
(β̃),∇m) = (c(p))Eς(∆(β̃),∇m) and eς∞,p(∆

(β̃),∇m) = (ℓ∞(p))Eς(∆(β̃),∇m).

(3)

Now, we define the Eς(∆(β̃),∇m)-transform of the sequence x = (xϑ) i.e.,
y = (yν) as follows:

yν =

ν∑
ϑ=0

ν∑
µ=ϑ

(−1)µ−ϑ

(
ν

ν − µ

)
Γ(β̃ + 1)

(µ− ϑ)!Γ(β̃ − µ+ ϑ+ 1)
ςµ(1− ς)ν−µ(∇mxϑ),

for each ν ∈ N, where

∇mxϑ =

m∑
µ=0

(−1)µ
(
m

µ

)
xϑ−µ =

∑
µ=max{0,ϑ−m}

(−1)ϑ−µ

(
m

ϑ− µ

)
xµ.

2. Main results

Theorem 2.1. Suppose β̃ be a positive proper fraction. Then the Euler differ-

ence sequence space eςp(∆
(β̃),∇m) is a BK space with the norm

∥x∥eςp(∆(β̃),∇m) = ∥Eς(∆(β̃),∇m)x∥p for (1 ≤ p < ∞).

Proof. The sequence spaces ℓp, ℓ∞, c0, c areBK−spaces with their natural norms.

Also (∆(β̃)) is a triangle matrix, (2) and (3) holds. By using Theorem 4.3.12

of Wilansky [25], we conclude that Euler sequence space eςp(∆
(β̃),∇m) is a

BK−space. □

Theorem 2.2. The Euler difference sequence spaces eςp(∆
(β̃),∇m), eς0,p(∆

(β̃),∇m),

eςc,p(∆
(β̃),∇m) and eς∞,p(∆

(β̃),∇m) are linearly isomorphic to ℓp, c0(p), c(p) and
ℓ∞(p) spaces, respectively.

Proof. We only give the proof for the space eς∞,p(∆
(β̃),∇m). To prove

eς∞,p(∆
(β̃),∇m) ∼= ℓ∞(p), we need to show the existence of linear bijection be-

tween eς∞,p(∆
(β̃),∇m) and ℓ∞(p). Define a mapping Q : eς∞,p(∆

(β̃),∇m) →
ℓ∞(p) by x 7→ y = Qx. The linearity of Q is obvious. Moreover, x = θ whenever
Qx = θ = (0, 0, 0, · · · ). Therefore, Q is injective. Consider y = (yν) ∈ ℓ∞(p).
Now, define a sequence x = (xϑ) by

xϑ =

ϑ∑
µ=0

ϑ∑
j=µ

(−1)ϑ−j

(
m+ ϑ− j − 1

ϑ− j

)(
j

µ

)
Γ(−β̃ + 1)

(ϑ− j)!Γ(−β̃ − ϑ+ j + 1)
ς−j(ς − 1)j−µyµ.

(4)

So, we get

sup
n

∣∣∣∣ n∑
ϑ=0

n∑
µ=ϑ

(−1)µ−ϑ

(
n

n− µ

)
Γ(β̃ + 1)

(µ− ϑ)!Γ(β̃ − µ+ ϑ+ 1)
(1− ς)n−µςµ(∇mxϑ)

∣∣∣∣pn
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= sup
n

|yn|pn = ∥y∥∞,p < ∞,

which implies that for x ∈ eς∞,p(∆
(β̃),∇m). Hence, Q is surjective. Thus,

eς∞,p(∆
(β̃),∇m) ∼= ℓ∞(p). □

Theorem 2.3. Let ξϑ = (Eς(∆(β̃),∇m)x)ϑ ∀ µ, ϑ ∈ N0, define the sequence

g(ϑ) = {g(ϑ)µ }µ∈N0
by

g(ϑ)µ =



µ∑
j=ϑ

(−1)µ−j

(
m+ µ− j − 1

µ− j

)(
j

ϑ

)
Γ(−β̃+1)

(µ−j)!Γ(−β̃−µ+j+1)
ς−j(ς − 1)j−ϑ, (0 ≤ ϑ ≤ µ)

0, (ϑ > µ).

Then
(i) The sequence {g(ϑ)µ }µ∈N0

is a basis for the space eς0,p(∆
(β̃),∇m) and x ∈

eς0,p(∆
(β̃),∇m) has a unique representation in the form

x =
∑
ϑ

ξϑg
(ϑ). (5)

(ii) The set {w, g(ϑ)} is a basis for the space eςc,p(∆
(β̃),∇m) and x ∈ eςc,p(∆

(β̃),∇m)
has a unique representation in the form

x = φw +
∑
ϑ

(ξϑ − φ)g(ϑ),

where φ = lim
ϑ→∞

ξϑ and w = (wν) defined by

wν =
ν∑

ϑ=0

ν∑
j=ϑ

(−1)ν−j

(
j

ϑ

)(
m+ ν − j − 1

ν − j

)
Γ(−β̃ + 1)

(ν − j)!Γ(−β̃ − ν + j + 1)
ς−j(ς − 1)j−ϑ.

Proof. (i) Clearly, Eς(∆(β̃),∇m)g
(ϑ)
µ = (eϑ) ∈ c0, where (eϑ) is the sequence with

1 in the ϑth place and zeros elsewhere for each ϑ ∈ N. Now for x ∈ eς0,p(∆
(β̃),∇m)

and l ∈ N, we define

x(l) =

l∑
ϑ=0

ξϑg
(ϑ). (6)

By applying Eς(∆(β̃),∇m) to (6) with (5), we have

(Eς(∆(β̃),∇m)x(l)
µ ) =

l∑
ϑ=0

ξϑ(E
ς(∆(β̃),∇m)g(ϑ)µ ) =

l∑
ϑ=0

ξϑeϑ.
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Also,

(Eς(∆(β̃),∇m)(xµ − x(l)
µ ))ϑ =

{
0, 0 ≤ ϑ ≤ l;

(Eς(∆(β̃),∇m)xµ)ϑ, ϑ ≥ l.

Let ϵ > 0 be arbitrary. We choose l0 ∈ N, such that∣∣(Eς(∆(β̃),∇m)xµ)ϑ
∣∣ < ϵ

2
, ∀ ϑ ≥ l0.

Then, we have

∥x− x(l)∥eς0,p(∆(β̃),∇m) = sup
ϑ≥l

|(Eς(∆β̃ ,∇m)xµ)ϑ|

≤ sup
ϑ≥l0

|(Eς(∆(β̃),∇m)xµ)ϑ|

<
ϵ

2
< ϵ.

This implies x =
∑
ϑ

ξϑg
(ϑ). Now we should show the uniqueness of this repre-

sentation. Let us assume that there exists

x =
∑
ϑ

λϑg
(ϑ).

By using the continuity of Q transformation defined in the proof of Theorem
2.2, we get

(Eς(∆(β̃),∇m)xµ)ϑ =
∑
ϑ

λϑ(E
ς(∆(β̃),∇m)g(ϑ)µ )ϑ

=
∑
ϑ

λϑ(eϑ)ϑ = λϑ

which is a contradiction with the assumption that ξϑ = (Eς(∆(β̃),∇m)xµ)ϑ for
each ϑ ∈ N. Hence, the representation

x =
∑
ϑ

ξϑg
(ϑ)

is unique.
(ii) In a similar manner as in (i), one can easily show that {w, g(ϑ)} is a basis for

the Euler difference sequence space eςc,p(∆
(β̃),∇m) and x ∈ eςc,p(∆

(β̃),∇m) has

a unique representation in the form x = φw +
∑
ϑ

(ξϑ − φ)g(ϑ). □

Lemma 2.4. [6] Let H = (hνϑ) be an infinite matrix, A be a positive integer
and G be a collection of all finite subsets of N. Then, following conditions hold:
(i) H = (hνϑ) ∈ (c0(p) : ℓ(q)) iff

sup
K∈G

∑
ν

∣∣∣∣ ∑
ϑ∈K

hνϑA
−1/pϑ

∣∣∣∣qν < ∞. (7)
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(ii) H = (hνϑ) ∈ (c(p) : ℓ(q)) iff (7) holds and∑
ν

∣∣∣∣∑
ϑ

hνϑ

∣∣∣∣qν < ∞. (8)

(iii) H = (hνϑ) ∈ (c0(p) : c(q)) iff

sup
ν∈N

∑
ϑ

∣∣∣∣hνϑ

∣∣∣∣A−1/pϑ < ∞, (9)

lim
ν→∞

∣∣∣∣hνϑ − cϑ

∣∣∣∣qν = 0, ∀ ϑ ∈ N (10)

and

sup
ν∈N

∑
ϑ

∣∣∣∣hνϑ − cϑ

∣∣∣∣A−1/pϑ < ∞, where cϑ ∈ R. (11)

(iv) H = (hνϑ) ∈ (c(p) : c(q)) iff (9), (10), (11) hold and

lim
ν→∞

∣∣∣∣∑
ϑ

hνϑ − c

∣∣∣∣qν = 0, where c ∈ R. (12)

(v) H = (hνϑ) ∈ (ℓ(p) : ℓ1) iff
(a) Let 0 < pϑ ≤ 1, ∀ ϑ ∈ N. Then

sup
N∈G

sup
ϑ∈N

∣∣∣∣∑
ν∈N

hνϑ

∣∣∣∣pϑ

< ∞. (13)

(b) Let 1 < pϑ ≤ M ≤ ∞, ∀ ϑ ∈ N. Then

sup
N∈G

∑
ϑ

∣∣∣∣∑
ν∈N

hνϑA
−1

∣∣∣∣p′
ϑ

< ∞, where p′ϑ = pϑ/(pϑ − 1). (14)

Lemma 2.5. [13] The following statements hold.
(i) Let 1 < pϑ ≤ M ≤ ∞. Then H = (hνϑ) ∈ (ℓ(p) : ℓ∞) iff ∃ an integer A > 1
such that

sup
n

∑
ϑ

∣∣∣hνϑA
−1

∣∣∣p′
ϑ

< ∞. (15)

(ii) Let 0 < pϑ ≤ 1, for every ϑ ∈ N. Then H = (hνϑ) ∈ (ℓ(p) : ℓ∞) iff

sup
ν,ϑ

∣∣∣hνϑ

∣∣∣pϑ

< ∞. (16)

Lemma 2.6. [13] Let 0 < pϑ ≤ M < ∞, for every ϑ ∈ N. Then H = (hνϑ) ∈
(ℓ(p) : c) iff (15) and (16) hold along with there is βϑ ∈ C such that lim

ν
hνϑ = βϑ,

for every natural number ϑ.
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Theorem 2.7. Let β̃ be a positive proper fraction. Then, {eς0,p(∆(β̃),∇m)}α =

L1(p) and {eςc,p(∆(β̃),∇m)}α = L1(p) ∩ L2, where the sets L1(p)and L2 are
defined below:

L1(p) =

{
r = (rϑ) ∈ ω : sup

K∈G

∑
ϑ

∣∣∣∣ ∑
µ∈K

λϑµA
−1/pµ

∣∣∣∣ < ∞
}

and

L2 =

{
r = (rϑ) ∈ ω :

∑
ϑ

∣∣∣∣ ϑ∑
µ=0

λϑµ

∣∣∣∣ exists for each ϑ ∈ N
}
,

where

Λ = λϑµ =



ϑ∑
j=µ

(−1)ϑ−j

(
j

µ

)(
m+ ϑ− j − 1

ϑ− j

)
Γ(−β̃+1)

(ϑ−j)!Γ(−β̃−ϑ+j+1)
(ς − 1)j−µς−jrϑ, if 0 ≤ µ ≤ ϑ;

0, if µ > ϑ.

Proof. Let r = (rϑ) ∈ ω . From (4) we can see that

rϑxϑ =

ϑ∑
j=µ

(−1)ϑ−j

(
j

µ

)(
m+ ϑ− j − 1

ϑ− j

)
Γ(−β̃ + 1)

(ϑ− j)!Γ(−β̃ − ϑ+ j + 1)
(ς − 1)j−µς−jrϑyµ.

This implies
rϑxϑ = (Λy)ϑ, ∀µ, ϑ ∈ N. (17)

Also, from (17) one can easily get that rx = (rϑxϑ) ∈ ℓ1, whenever

x ∈ eς0,p(∆
(β̃),∇m) iff Λy ∈ ℓ1, whenever y ∈ c0(p). Therefore, r = (rϑ) ∈

{eς0,p(∆(β̃),∇m)}α iff Λ ∈ (c0(p) : ℓ1). Thus, from (7) and for qϑ = 1, ∀ ϑ ∈ N
gives {eς0,p(∆(β̃),∇m)}α = L1(p). By using (8) with qϑ = 1, ∀ ϑ ∈ N and (17)

the proof of the {eςc,p(∆(β̃),∇m)}α = L1(p) ∩ L2 can be obtained in a similar
manner. □

Theorem 2.8. Let β̃ be a positive proper fraction. Define the sets L3(p), L4,
L5(p), L6 by

L3(p) =
⋃
A>1

{
r = (rϑ) ∈ ω : sup

K∈N

ν∑
ϑ=0

|κνϑ|A−1/pϑ < ∞
}
,

L4 =

{
r = (rϑ) ∈ ω : lim

ν→∞
|κνϑ| exists for each ϑ ∈ N

}
,

L5(p) =
⋃
A>1

{
r = (rϑ) ∈ ω : sup

K∈N

ν∑
ϑ=0

|κνϑ − cϑ|A−1/pϑ < ∞
}
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and

L6 =

{
r = (rϑ) ∈ ω : lim

ν→∞

ν∑
ϑ=0

|κνϑ| exists
}
,

where the matrix τ = κνϑ is given by

κνϑ =



ν∑
µ=ϑ

µ∑
j=ϑ

(−1)µ−j

(
j

ϑ

)(
m+ µ− j − 1

µ− j

)
Γ(−β̃+1)

(µ−j)!Γ(1−β̃−µ+j)
(ς − 1)j−ϑς−jrµ, if 0 ≤ ϑ ≤ ν;

0, if ϑ > ν.

(18)

Then, we have

{eς0,p(∆(β̃),∇m)}β = L3(p) ∩ L4 ∩ L5(p)

and

{eςc,p(∆(β̃),∇m)}β = {eς0,p(∆(β̃),∇m)}β ∩ L6.

Proof. Consider the equality

ν∑
ϑ=0

rϑxϑ =

ν∑
ϑ=0

[ ϑ∑
j=µ

(−1)ϑ−j

(
j

µ

)(
m+ ϑ− j − 1

ϑ− j

)
Γ(−β̃ + 1)

(ϑ− j)!Γ(1− β̃ − ϑ+ j)
(ς − 1)j−µς−jyµ

]
rϑ

=

ν∑
ϑ=0

[ ν∑
µ=ϑ

µ∑
j=ϑ

(−1)µ−j

(
j

ϑ

)(
m+ µ− j − 1

µ− j

)
Γ(−β̃ + 1)

(µ− j)!Γ(1− β̃ − µ+ j)
(ς − 1)j−ϑς−jrµ

]
yϑ.

This implies
ν∑

ϑ=0

rϑxϑ = (τy)ν , (19)

where τ = κνϑ is defined by (18). Hence, from (19) we have rx = (rϑxϑ) ∈ cs,

whenever x = (xϑ) ∈ {eς0,p(∆(β̃),∇m)}β iff τy ∈ c, whenever y = (yϑ) ∈ c0(p).

Thus, by using (9), (10) and (11) for qϑ = 1, ∀ ϑ ∈ N, we get {eς0,p(∆(β̃),∇m)}β =

L3(p) ∩ L4 ∩ L5(p). In the similar manner one can obtain the proof of

{eςc,p(∆(β̃), u,∇m)}β = {eς0,p(∆(β̃),∇m)}β ∩L6 by using (9), (10), (11) and (12)
with qϑ = 1, ∀ϑ ∈ N. □

Theorem 2.9. Let β̃ be a positive proper fraction. Then the γ dual of spaces

eς0,p(∆
(β̃),∇m) is L3(p) and that of eς∞,p(∆

(β̃),∇m) is eς0,p(∆
(β̃),∇m)∩L7, where
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the set L7 is defined as:

L7 =

{
r = (rϑ) ∈ ω : sup

ν
|
∑
ϑ

κνϑ| < ∞
}
.

Proof. In a similar manner as in the above theorem one can easily get the proof
of this theorem. □
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