Acknowledgement
Authors would like to thank the referees for helpful comments and suggestions, which improved the presentation of this paper.
References
- A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math. 37 (4) (2014), 525-530. https://doi.org/10.2989/16073606.2014.981683
- Y. Altin and M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31 (2) (2005), 233-243. https://www.researchgate.net/publication/228659065
- Y. Altin, M. Isik and R. Colak, A new sequence space defined by a modulus, Stud. Univ. Babes-Bolyai Math. 53 (2008), 3-13. https://zbmath.org/1212.46010
- Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. 29 (2) (2009), 427-434. https://doi.org/10.1016/s0252-9602(09)60042-4
- C. A. Bektas, M. Et and R. Colak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2) (2004), 423-432. https://doi.org/10.1016/j.jmaa.2003.12.006
- V. K. Bhardwaj and I. Bala, On lacunary generalized difference sequence spaces defined by orlicz functions in a seminormed space and ∆mq-lacunary statistical convergence, Demonstr. Math. 41 (2) (2008), 415-424. https://doi.org/10.1515/dema-2008-0217
- V. K. Bhardwaj and S. Gupta, Cesaro summable difference sequence space, J. Inequal. Appl. 2013 (1), 1-9. https://doi.org/10.1186/1029-242x-2013-315
- V. K. Bhardwaj and N. Singh, Some sequence spaces defined by Orlicz functions, Demonstr. Math. 33 (3) (2000), 571-582. https://doi.org/10.1515/dema-2000-0314
- R. C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (2) (1953), 335-346. https://doi.org/10.2307/2372456
- M. Burgin and O. Duman, Statistical convergence and convergence in statistics, arXiv preprint. math/0612179 (2006). https://doi.org/10.48550/arXiv.math/0612179
- R. Colak, On some generalized sequence spaces, Commun. Fac. Sci. Uni. Ank. Ser. A1 Math. Stat. 38 (1989) 35-46. https://doi.org/10.1501/commua1_0000000301
- J. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis. 8 (1-2) (1988), 47-64. https://doi.org/10.1524/anly.1988.8.12.47
- J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (2) (1989), 194-198. https://doi.org/10.4153/cmb-1989-029-3
- M. Et, V. K. Bhardwaj and S. Gupta On deferred statistical boundedness of order α, Comm. Statist. Theory Methods. 51 (24) (2022), 8786-8798. https://doi.org/10.1080/03610926.2021.1906434
- H. Fast, Sur la convergence statistique, Colloq Math. 2 (3-4) (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. math. Soc. 37 (3) (1978), 508-520. https://doi.org/10.1112/plms/s3-37.3.508
- J. A. Fridy, On statistical convergence, Analysis. 5 (4) (1985), 301-314. https://doi.org/10.1524/anly.1985.5.4.301
- D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using a modulus function, Indian J. pure appl. Math. 30 (8) (1999), 819-826.
- S. Gupta and V. K. Bhardwaj, On deferred f-statistical convergence, Kyungpook Math. J. 58 (2018), 91-103. https://doi.org/10.5666/KMJ.2018.58.1.91
- M. Isik, On statistical convergence of generalized difference sequences Soochow J. Math. 30 (2) (2004), 197-206. https://www.researchgate.net/publication/267671338
- G. Karabacak and A. Or, Rough Statistical Convergence for Generalized Difference Sequences, Electron J. Mathe. Anal. Appl. 11 (1) (2023), 222-230.
- H. Kizmaz, On certain sequence spaces, Canad. Math. bull. 24 (2) (1981), 169-176. https://doi.org/10.4153/CMB-1981-027-5
- E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu. Math. 928 (1991), 41-52. http://www.ams.org/mathscinet-getitem?mr=1150232
- I. J. Maddox, Elements of functional analysis, Camb. Univ. Press. 1970. https://doi.org/10.1002/bimj.19700120325
- I. J. Maddox, Spaces of strongly summable sequences, Q. J. Math. 18 (1) (1967), 345-355. https://doi.org/10.1093/qmath/18.1.345
- M. Mursaleen, λ-statistical convergence, Math. Slovaca. 50 (1) (2000), 111-115.
- H. Nakano, Concave modulars, J. Math. Soc. Japan. 5 (1) (1953), 29-49. https://doi.org/10.2969/jmsj/00510029
- I. Niven and H. S. Zuckerman, An Introduction to Theory of Numbers, Fourth.Ed., New York John Willey and Sons, 1980
- E. Ozturk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 25 (6) (1994), 621-621.
- D. Rath and B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl Math. 25 (1994), 381-381.
- W. H. Ruckle, Sequence Spaces, Pitman Advanced Publishing Program, 1981.
- T. Salat, On statistically convergent sequences of real numbers Math. slovaca. 30 (2) (1980), 139-150. http://dml.cz/dmlcz/136236
- H. Sengul and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α, Filomat. 32 (13) (2018), 4513-4521. https://doi.org/10.2298/fil1813513s
- N. Sharma and S. Kumar, Statistical Convergence and Cesaro Summability of Difference Sequences relative to Modulus Function, J. Class. Anal. 23 (1) (2024), 51-62. https://doi.org/10.7153/jca-2024-23-05
- H. Steinhaus, Sur la convergence ordinaireet la convergence asymptotique, Colloq. Math. 2 (1) (1951), 73-74.
- B. C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malays. Math. Soc. 20 (1) (1997), 31-33.
- B. C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary ∆-statistical convergence, An. stiint. Univ. "Ovidius" Constanta. Ser. Mat. 20 (1) (2012), 417-430. https://doi.org/10.2478/v10309-012-0028-1
- B. C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math. 31 (3) (2005), 333-340. https://www.researchgate.net/publication/266984781
- A. K. Verma and L. K. Singh, (∆mv, f)-lacunary statistical convergence of order α, Proyecciones. 41 (4) (2022), 791-804. https://doi.org/10.22199/issn.0717-6279-4757
- A. Zygmund, Trigonometric Series, Cambridge Univ. Press, UK, 1979.