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Abstract. This paper presents some new paranormed sequence spaces X(r, s, t, p;∆)

where X ∈ {l∞(p), c(p), c0(p), l(p)} defined by using generalized means and difference op-

erator. It is shown that these are complete linear metric spaces under suitable paranorms.

Furthermore, the α-, β-, γ- duals of these sequence spaces are computed and also obtained

necessary and sufficient conditions for some matrix transformations from X(r, s, t, p;∆) to

X. Finally, it is proved that the sequence space l(r, s, t, p;∆) is rotund when pn > 1 for

all n and has the Kadec-Klee property.

1. Introduction

The study of sequence spaces play an important role in several branches of anal-
ysis, namely, the structural theory of topological vector spaces, summability theory,
Schauder basis theory. Besides this, the theory of sequence spaces is a powerful tool
for obtaining some topological and geometrical results with the help of Schauder
basis.
Let w be the space of all real or complex sequences x = (xn), n ∈ N0. For an
infinite matrix A and a sequence space λ, the matrix domain of A, which is denoted
by λA and defined as λA = {x ∈ w : Ax ∈ λ} [3]. Basic methods, which are used
to determine the topologies, matrix transformations and inclusion relations on se-
quence spaces can also be applied to study the matrix domain λA. Recently, there
is an approach of forming new sequence spaces by using matrix domain of a suitable

* Corresponding Author.
Received September 18, 2013; revised February 26, 2014; accepted April 11, 2014.
2010 Mathematics Subject Classification: 46A45, 46A35, 46B45.
Key words and phrases: Sequence spaces, Difference operator, Generalized means, α-, β-,
γ- duals, Matrix transformations, Rotundity, Kadec-Klee property.
This work was supported by Council of Scientific and Industrial Research, New Delhi,
Govt. of India.

909



910 A. Manna, A. Maji and P. D. Srivastava

matrix and characterize the matrix mappings between these sequence spaces.
Let (pk)

∞
k=0 be a bounded sequence of strictly positive real numbers such that

H = sup
k
pk and M = max{1,H}. The linear spaces l∞(p), c(p), c0(p) and l(p) are

introduced and studied by Maddox [14], where

l∞(p) =
{
x = (xk) ∈ w : sup

k
|xk|pk <∞

}
,

c(p) =
{
x = (xk) ∈ w : lim

k→∞
|xk − l|pk = 0 for some scalar l

}
and ,

c0(p) =
{
x = (xk) ∈ w : lim

k→∞
|xk|pk = 0

}
,

l(p) =
{
x = (xk) ∈ w :

∞∑
k=0

|xk|pk <∞
}
.

The linear space c0(p) is a complete linear metric space with respect to the paranorm

g(x) = sup
k∈N0

|xk|
pk
M . But the spaces c(p), l∞(p) are fail to be linear metric space

because the continuity of scalar multiplication is not hold for them. The spaces
c(p) and l∞(p) are complete linear metric space with respect to the paranorm g(x)
iff inf pk > 0 for all k. The space l(p) is a complete linear metric space with the

paranorm g̃(x) =

( ∞∑
k=0

|xk|pk

) 1
M

.

Recently, several authors introduced new sequence spaces by using matrix domain.
For example, Başar et al. [11] studied the space bs(p) = [l∞(p)]S , where S is
the summation matrix. Altay and Başar [5] studied the sequence spaces rt(p)
and rt∞(p), which consist of all sequences whose Riesz transform are in the spaces
l(p) and l∞(p) respectively, i.e., rt(p) = [l(p)]Rt and rt∞(p) = [l∞(p)]Rt . Altay
and Başar also studied the sequence spaces rtc(p) = [c(p)]Rt and rt0(p) = [c0(p)]Rt

in [4]. Using weighted mean Altay and Başar have introduced and studied new
paranormed sequence spaces in [6] and [7]. Some recent results related to duals and
matrix transformations on sequence spaces can be found in [8] and [20].
Kizmaz [13] first introduced and studied the difference sequence space. Later on,
many authors including Ahmad and Mursaleen [25], Çolak and Et [18], Başar and
Altay[4] etc. studied new sequence spaces defined by using difference operator.
Using Euler and difference operator, Karakaya and Polat introduced the paranormed
sequence spaces eα0 (p; ∆), eαc (p;∆) and eα∞(p;∆) in [22]. Mursaleen and Noman [17]
introduced a sequence space of generalized means, which includes most of the earlier
known sequence spaces.
In 2012, Demiriz and Çakan [21] introduced new paranormed difference sequence
space λ(u, v, p;∆) for λ ∈ {l∞(p), c(p), c0(p), l(p)}, combining weighted mean and
difference operator, defined as

λ(u, v, p;∆) =
{
x ∈ w : (G(u, v).∆)x ∈ λ

}
,
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where the matrices G(u, v) = (gnk) and ∆ = (δnk) are given by

gnk =

{
unvk if 0 ≤ k ≤ n,
0 if k > n

and δnk =

 0 if 0 ≤ k < n− 1,
(−1)n−k if n− 1 ≤ k ≤ n,
0 if k > n.

By using matrix domain, one can write c0(u, v, p;∆) = [c0(p)]G(u,v;∆), c(u, v, p;∆) =
[c(p)]G(u,v;∆), l∞(u, v, p;∆) = [l∞(p)]G(u,v;∆) and l(u, v, p;∆) = [l(p)]G(u,v;∆).
The aim of this present paper is to introduce and study new sequence space
X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p), l(p)}. It is shown that these spaces
are complete paranormed sequence spaces under some suitable paranorms. Some
topological results and the α-, β-, γ- duals of these spaces are obtained. A char-
acterization of some matrix transformations between these new sequence spaces is
established. It is also shown that the sequence space l(r, s, t, p;∆) is rotund when
pn > 1 for all n and has the Kadec-Klee property.

2. Preliminaries

Let l∞, c and c0 be the spaces of all bounded, convergent and null sequences
x = (xn) respectively, with norm ∥x∥∞ = sup

n
|xn|. Let bs and cs be the sequence

spaces of all bounded and convergent series respectively. We denote by e = (1, 1, · · · )
and en for the sequence whose n-th term is 1 and others are zero and N0 = N∪{0},
where N is the set of all natural numbers.
For any subsets U and V of w, the multiplier space M(U, V ) of U and V is defined
as

M(U, V ) = {a = (an) ∈ w : au = (anun) ∈ V for all u ∈ U}.

In particular,

Uα =M(U, l1), U
β =M(U, cs) and Uγ =M(U, bs)

are called the α-, β- and γ- duals of U respectively [3].
Let A = (ank)n,k be an infinite matrix with real or complex entries ank. We write
An as the sequence of the n-th row of A, i.e., An = (ank)k for every n. For
x = (xn) ∈ w, the A-transform of x is defined as the sequence Ax = ((Ax)n), where

An(x) = (Ax)n =

∞∑
k=0

ankxk,

provided the series on the right side converges for each n. For any two sequence
spaces U and V , we denote by (U, V ), the class of all infinite matrices A that map
U into V . Therefore A ∈ (U, V ) if and only if Ax = ((Ax)n) ∈ V for all x ∈ U .
In other words, A ∈ (U, V ) if and only if An ∈ Uβ for all n [3]. An infinite matrix
T = (tnk)n,k is said to be triangle if tnk = 0 for k > n and tnn ̸= 0, n ∈ N0.
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3. Sequence Space X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p), l(p)}

In this section, we first begin with the notion of generalized means given by
Mursaleen et al. [17].
We denote the sets U and U0 as

U =
{
u = (un)

∞
n=0 ∈ w : un ̸= 0 for all n

}
and

U0 =
{
u = (un)

∞
n=0 ∈ w : u0 ̸= 0

}
.

Let r = (rn), t = (tn) ∈ U and s = (sn) ∈ U0. The sequence y = (yn) of generalized
means of a sequence x = (xn) is defined by

yn =
1

rn

n∑
k=0

sn−ktkxk (n ∈ N0).

The infinite matrix A(r, s, t) of generalized means is defined by

(A(r, s, t))nk =

{ sn−ktk
rn

if 0 ≤ k ≤ n,

0 if k > n.

Since A(r, s, t) is a triangle, it has a unique inverse and the inverse is also a triangle

[2]. Take D
(s)
0 = 1

s0
and

D
(s)
n = 1

sn+1
0

∣∣∣∣∣∣∣∣∣∣∣

s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
...

...
...

...
sn−1 sn−2 sn−3 · · · s0
sn sn−1 sn−2 sn−3 · · · s1

∣∣∣∣∣∣∣∣∣∣∣
for n ≥ 1.

Then the inverse of A(r, s, t) is the triangle B = (bnk)n,k which is defined as

bnk =

{
(−1)n−k D

(s)
n−k

tn
rk if 0 ≤ k ≤ n,

0 if k > n.

Throughout this paper, we consider p = (pk) is a bounded sequence of strictly
positive real numbers such that H = sup

k
pk and M = max{1,H}.

We now introduce a sequence space X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p), l(p)}
as

X(r, s, t, p;∆) =

{
x = (xk) ∈ w :

( 1

rn

n∑
k=0

sn−ktk∆xk

)
n
∈ X

}
,

which is a combination of generalized means and difference operator ∆, where
∆xk = xk−xk−1, x−1 = 0. By using matrix domain, we can write X(r, s, t, p;∆) =
XA(r,s,t;∆) = {x ∈ w : A(r, s, t;∆)x ∈ X}, where A(r, s, t;∆) = A(r, s, t).∆, prod-
uct of two triangles A(r, s, t) and ∆. These sequence spaces include many well
known sequence spaces studied by several earlier authors as follows:
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I. if rn = 1
un

, tn = vn and sn = 1 ∀ n, then the sequence space X(r, s, t, p;∆) re-
duces to X(u, v, p; ∆) for X ∈ {l∞(p), c(p), c0(p), l(p)} introduced and studied
by Demiriz and Çakan [21].

II. if tn = 1, sn = 1 ∀ n and rn = n + 1, then the sequence space l(r, s, t, p;∆)
reduces to the non absolute type sequence space Xp(∆) studied by Başarir
[16].

III. if rn = 1
n! , tn = αn

n! , sn = (1−α)n

n! , where 0 < α < 1, then the sequence space
X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p)} reduces to eα∞(p; ∆), eαc (p;∆) and
eα0 (p;∆) respectively introduced and studied by Karakaya and Polat [22].

IV. if rn = n+1, tn = 1 + αn, 0 < α < 1 and sn = 1, pn = 1 ∀n, then the sequence
spaces c(r, s, t, p;∆) and c0(r, s, t, p;∆) reduce to the sequence spaces aαc (∆)
and aα0 (∆) respectively studied by Aydin and Başar [9].

4. Main Results

Throughout the paper, we denote the sequence spaces X(r, s, t, p;∆) as
l(r, s, t, p;∆), c0(r, s, t, p;∆), c(r, s, t, p; ∆) and l∞(r, s, t, p;∆) forX = l(p), c0(p), c(p)
and l∞(p) respectively.

Theorem 4.1. (a) The sequence space l(r, s, t, p;∆) is a complete linear metric
space paranormed by h̃ defined as

h̃(x) =

( ∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
) 1

M

.

(b) The sequence space X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p)} is a complete
linear metric space paranormed by h defined as

h(x) = sup
n

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣
pn
M

.

Proof. We prove the part (a) of this theorem. In a similar way, we can prove the
part (b).
Let x, y ∈ l(r, s, t, p;∆). Using Minkowski’s inequality( ∞∑

n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆(xk + yk)

∣∣∣∣pn
) 1

M

≤
( ∞∑

n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
) 1

M

+

( ∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆yk

∣∣∣∣pn
) 1

M

<∞,(4.1)
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so we have x+ y ∈ l(r, s, t, p;∆).
Let α be any scalar. Since |α|pk ≤ max{1, |α|M} for any scalar α, we have h̃(αx) ≤
max{1, |α|}h̃(x). Hence αx ∈ l(r, s, t, p; ∆). It is trivial to show that h̃(θ) = 0,
h̃(−x) = h̃(x) for all x ∈ l(r, s, t, p;∆) and subadditivity of h̃, i.e., h̃(x + y) ≤
h̃(x) + h̃(y) follows from (4.1).
Next we show that the scalar multiplication is continuous. Let (xm) be a sequence
in l(r, s, t, p; ∆), where xm = (xmk ) = (xm0 , x

m
1 , x

m
2 , . . .) ∈ l(r, s, t, p;∆) for each

m ∈ N0 such that h̃(xm−x) → 0 as m→ ∞ and (αm) be a sequence of scalars such
that αm → α as m → ∞. Then h̃(xm) is bounded that follows from the following
inequality

h̃(xm) ≤ h̃(x) + h̃(x− xm).

Now consider

h̃(αmx
m − αx)

=

( ∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆(αmx
m
k − αxk)

∣∣∣∣pn
) 1

M

=

( ∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆
(
(αm − α)(xmk − xk)

+ α(xmk − xk) + (αm − α)xk
)∣∣∣∣pn

) 1
M

≤ max{1, |αm − α|}h̃(xm − x) + |α|h̃(xm − x) +
( ∞∑

n=0

|(αm − α)yn|pn

) 1
M

,

where y = (yn) is defined in Section 3. Since αm → α as m → ∞, so there is a
natural numberm0 such that |αm−α| < 1 form ≥ m0. Then we have |αm−α|pn < 1
for all n. Let n0 ∈ N. Now we have

∞∑
n=0

|(αm − α)yn|pn ≤
n0∑
n=0

|(αm − α)yn|pn +
∞∑

n=n0+1

|yn|pn .

Since
∞∑

n=0

|yn|pn < ∞, so for given ϵ > 0 there exists n0 such that
∞∑

n=n0+1

|yn|pn <

ϵ

2
. Since αm → α as m → ∞, so we have

n0∑
n=0

|(αm − α)yn|pn → 0 . Hence

( ∞∑
n=0

|(αm − α)yn|pn

) 1
M → 0 as m → ∞. Therefore we have h̃(αmx

m − αx) → 0

as m → ∞. This shows that the scalar multiplication is continuous. Hence h̃ is a
paranorm on the space l(r, s, t, p;∆).
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Now we show that the completeness of the space l(r, s, t, p; ∆) with respect to the
paranorm h̃. Let (xm) be a Cauchy sequence in l(r, s, t, p;∆). So for every ϵ > 0
there is a n1 ∈ N such that

h̃(xm − xl) < ϵ
2 for all m, l ≥ n1.

Then by definition of h̃, we have for each n∣∣(A(r, s, t;∆)xm)n − (A(r, s, t;∆)xl)n
∣∣

≤
( ∞∑

n=0

∣∣∣∣(A(r, s, t;∆)xm)n − (A(r, s, t;∆)xl)n

∣∣∣∣pn
) 1

M

<
ϵ

2
(4.2)

for all m, l ≥ n1, which implies that the sequence ((A(r, s, t;∆)xm)n) is a Cauchy
sequence of scalars for each fixed n and hence converges for each n. We write

lim
m→∞

(A(r, s, t;∆)xm)n = (A(r, s, t;∆)x)n (n ∈ N0).

Now taking l → ∞ in (4.2), we obtain( ∞∑
n=0

∣∣∣∣(A(r, s, t;∆)xm)n − (A(r, s, t;∆)x)n

∣∣∣∣pn
) 1

M

< ϵ

for all m ≥ n1 and each fixed n. Thus (xm) converges to x in l(r, s, t, p; ∆) with
respect to h̃.
To show x ∈ l(r, s, t, p;∆), we take( ∞∑

n=0

∣∣∣ 1
rn

n∑
k=0

sn−ktk∆xk

∣∣∣pn
) 1

M

=
( ∞∑

n=0

∣∣∣ 1
rn

n∑
k=0

sn−ktk∆(xk − xmk + xmk )
∣∣∣pn
) 1

M

≤
( ∞∑

n=0

∣∣∣ 1
rn

n∑
k=0

sn−ktk∆(xk − xmk )
∣∣∣pn
) 1

M

+
( ∞∑

n=0

∣∣∣ 1
rn

n∑
k=0

sn−ktk∆x
m
k

∣∣∣pn
) 1

M

= h̃(x− xm) + h̃(xm) <∞ for all m ≥ n1.

Therefore x ∈ l(r, s, t, p;∆). This completes the proof. 2

Theorem 4.2. The sequence space X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p), l(p)}
is linearly isomorphic to the space X ∈ {l∞(p), c(p), c0(p), l(p)} respectively,
i.e., l∞(r, s, t, p;∆) ∼= l∞(p), c(r, s, t, p;∆) ∼= c(p), c0(r, s, t, p;∆) ∼= c0(p) and
l(r, s, t, p;∆) ∼= l(p).

Proof. We prove this theorem only for the case when X = l(p). For this, we need
to show that there exists a bijective linear map from l(r, s, t, p;∆) to l(p). Now we
define a map T : l(r, s, t, p;∆) → l(p) by x 7→ Tx = y = (yn), where
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yn =
1

rn

n∑
k=0

sn−ktk∆xk.

Since the difference operator ∆ is linear, so the linearity of T is trivial. It is easy
to see that Tx = 0 implies x = 0. Thus T is injective. To prove T is surjective, let
y ∈ l(p). Since y = (A(r, s, t).∆)x, i.e.,

x =
(
A(r, s, t).∆

)−1
y = ∆−1.A(r, s, t)−1y,

we can get a sequence x = (xn) as

(4.3) xn =
n∑

j=0

n−j∑
k=0

(−1)k
D

(s)
k

tk+j
rjyj (n ∈ N0).

Then

h̃(x) =

( ∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
) 1

M

=
( ∞∑

n=0

∣∣yn∣∣pn
) 1

M

= g̃(y) <∞.

Thus x ∈ l(r, s, t, p;∆) and this shows that T is surjective. Hence T is a linear
bijection from l(r, s, t, p;∆) to l(p). Also T is paranorm preserving. This completes
the proof. 2

4.1. α-, β-, γ-duals of X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p), l(p)}

In 1999, K. G. Grosse-Erdmann [15] has characterized the matrix transforma-
tions between the sequence spaces of Maddox, namely, l∞(p), c(p), c0(p) and l(p).
To compute α-, β-, γ-duals of X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p), l(p)} and
to characterize the classes of matrix mappings between these spaces, we list the
following conditions.
Let L, N be any two natural numbers, F denotes finite subset of N0 and α, αk are
complex numbers. Let p = (pk), q = (qk) be bounded sequences of strictly positive
real numbers and A = (ank)n,k be an infinite matrix. We put K1 = {k ∈ N0 : pk ≤
1} and K2 = {k ∈ N0 : pk > 1} and p′k = pk

pk−1 for k ∈ K2.

sup
F

sup
k∈K1

∣∣∣∣ ∑
n∈F

ank

∣∣∣∣pk

<∞(4.4)

∃L sup
F

∑
k∈K2

∣∣∣∣ ∑
n∈F

ankL
−1

∣∣∣∣p′
k

<∞(4.5)

lim
n

|ank|qn = 0 for all k(4.6)

∀L sup
n

sup
k∈K1

∣∣∣ankL 1
qn

∣∣∣pk

<∞(4.7)

∀L ∃N sup
n

∑
k∈K2

∣∣∣∣ankL 1
qnN−1

∣∣∣∣p′
k

<∞(4.8)
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sup
n

sup
k∈K1

|ank|pk <∞(4.9)

∃N sup
n

∑
k∈K2

∣∣∣ankN−1
∣∣∣p′

k

<∞(4.10)

∃(αk) lim
n

|ank − αk|qn = 0 for all k(4.11)

∃(αk) ∀L sup
n

sup
k∈K1

(
|ank − αk|L

1
qn

)pk

<∞(4.12)

∃(αk) ∀L ∃N sup
n

∑
k∈K2

(
|ank − αk|L

1
qnN−1

)p′
k <∞(4.13)

∃L sup
n

sup
k∈K1

∣∣∣ankL− 1
qn

∣∣∣pk

<∞(4.14)

∃L sup
n

∑
k∈K2

∣∣∣ankL− 1
qn

∣∣∣p′
k

<∞(4.15)

∃N sup
F

∑
n

∣∣∣∑
k∈F

ankN
− 1

pk

∣∣∣ <∞(4.16)

∀L ∃N sup
n
L

1
qn

∑
k

|ank|N− 1
pk <∞(4.17)

∃N sup
n

∑
k

|ank|N− 1
pk <∞(4.18)

∃(αk) ∀L ∃N sup
n
L

1
qn

∑
k

|ank − αk|N− 1
pk <∞(4.19)

∃N sup
n

(∑
k

|ank|N− 1
pk

)qn

<∞(4.20)

∑
n

∣∣∣∑
k

ank

∣∣∣ <∞(4.21)

lim
n

∣∣∣∑
k

ank

∣∣∣qn = 0(4.22)

∃α lim
n

∣∣∣∑
k

ank − α
∣∣∣qn = 0(4.23)

sup
n

∣∣∣∑
k

ank

∣∣∣qn <∞(4.24)

∀N sup
F

∑
n

∣∣∣∣∑
k∈F

ankN
1
pk

∣∣∣∣ <∞(4.25)

∀N lim
n

(∑
k

|ank|N
1
pk

)qn

= 0(4.26)

∀N sup
n

∑
k

|ank|N
1
pk <∞(4.27)
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∃(αk) ∀N lim
n

(∑
k

|ank − αk|N
1
pk

)qn

= 0(4.28)

∀N sup
n

(∑
k

|ank|N
1
pk

)qn

<∞.(4.29)

Lemma 4.1.([15]) (i) A ∈ (l(p), l1) if and only if (4.4) and (4.5) hold.

(ii) A ∈ (l(p), c0(q)) if and only if (4.6), (4.7) and (4.8) hold.

(iii) A ∈ (l(p), c(q)) if and only if (4.9), (4.10), (4.11), (4.12) and (4.13) hold.

(iv) A ∈ (l(p), l∞(q)) if and only if (4.14) and (4.15) hold.

Lemma 4.2.([15]) (i) A ∈ (c0(p), l1) if and only if (4.16) holds.

(ii) A ∈ (c0(p), c0(q)) if and only if (4.6) and (4.17) hold.

(iii) A ∈ (c0(p), c(q)) if and only if (4.11), (4.18) and (4.19) hold.

(iv) A ∈ (c0(p), l∞(q)) if and only if (4.20) holds.

Lemma 4.3.([15]) (i) A ∈ (c(p), l1) if and only if (4.16) and (4.21) hold.

(ii) A ∈ (c(p), c0(q)) if and only if (4.6) and (4.17) and (4.22) hold.

(iii) A ∈ (c(p), c(q)) if and only if (4.11), (4.18), (4.19) and (4.23) hold.

(iv) A ∈ (c(p), l∞(q)) if and only if (4.20) and (4.24) hold.

Lemma 4.4.([15]) (i) A ∈ (l∞(p), l1) if and only if (4.25) holds.

(ii) A ∈ (l∞(p), c0(q)) if and only if (4.26) holds.

(iii) A ∈ (l∞(p), c(q)) if and only if (4.27) and (4.28) hold.

(iv) A ∈ (l∞(p), l∞(q)) if and only if (4.29) holds.

We consider the following sets to obtain α-dual of the sequence space X(r, s, t, p;∆)
for X ∈ {l∞(p), c(p), c0(p), l(p)}.

H1(p) =
∪
L∈N

{
a = (an) ∈ w : sup

F

∞∑
n=0

∣∣∣∣∑
k∈F

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkanL

−1
pk

∣∣∣∣ <∞
}
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H2(p) =

{
a = (an) ∈ w :

∞∑
n=0

∣∣∣∣ ∞∑
k=0

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkan

∣∣∣∣ <∞
}

H3(p) =
∩
L∈N

{
a = (an) ∈ w : sup

F

∞∑
n=0

∣∣∣∣∑
k∈F

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkanL

1
pk

∣∣∣∣ <∞
}

H4(p) =

{
a = (an) ∈ w : sup

F
sup
k∈N0

∣∣∣∣ ∑
n∈F

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkan

∣∣∣∣pk

<∞
}

H5(p) =
∪
L∈N

{
a = (an) ∈ w : sup

F

∞∑
k=0

∣∣∣∣ ∑
n∈F

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkanL

−1

∣∣∣∣p′
k

<∞
}
.

Theorem 4.3. (a) If pk > 1, then [l(r, s, t, p;∆)]α = H5(p) and [l(r, s, t, p;∆)]α =
H4(p) for 0 < pk ≤ 1.

(b) If 0 < pk ≤ H <∞, then
(i) [c0(r, s, t, p;∆)]α = H1(p),

(ii) [c(r, s, t, p;∆)]α = H1(p) ∩H2(p),

(iii) [l∞(r, s, t, p;∆)]α = H3(p).

Proof. (a) Let pk > 1 ∀k, a = (an) ∈ w, x ∈ l(r, s, t, p;∆) and y ∈ l(p). Then for
each n, we have

anxn =

n∑
k=0

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkanyk = (Cy)n,

where the matrix C = (cnk)n,k is defined as

cnk =


n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkan if 0 ≤ k ≤ n

0 if k > n

and xn is given by (4.3). Thus for each x ∈ l(r, s, t, p;∆), (anxn)n ∈ l1 if and only
if Cy ∈ l1 where y ∈ l(p). Therefore a = (an) ∈ [l(r, s, t, p; ∆)]α if and only if
C ∈ (l(p), l1). By using Lemma 4.1 (i), we have

sup
F

∞∑
k=0

∣∣∣ ∑
n∈F

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkanL

−1
∣∣∣p′

k

<∞.

Hence [l(r, s, t, p; ∆)]α = H5(p).
If 0 < pk ≤ 1 ∀k, then by using Lemma 4.1 (i), we have

sup
F

sup
k∈N0

∣∣∣ ∑
n∈F

n−k∑
j=0

(−1)j
D

(s)
j

tj+k
rkan

∣∣∣pk

<∞.
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Thus [l(r, s, t, p;∆)]α = H4(p).
(b) In a similar way, using Lemma 4.2 (i), Lemma 4.3 (i) and Lemma 4.4
(i), we obtain [c0(r, s, t, p;∆)]α = H1(p), [c(r, s, t, p;∆)]α = H1(p) ∩ H2(p) and
[l∞(r, s, t, p;∆)]α = H3(p) respectively. 2

To compute γ-dual of the sequence space X(r, s, t, p; ∆) for X ∈ {l∞(p), c(p), c0(p),
l(p)}, we consider the following sets:

Γ1(p) =
∪
L∈N

{
a = (ak) ∈ w : sup

n∈N0

∞∑
k=0

|enk|L
−1
pk <∞

}

Γ2(p) =
{
a = (ak) ∈ w : sup

n∈N0

∣∣∣ ∞∑
k=0

enk

∣∣∣ <∞
}

Γ3(p) =
∩
L∈N

{
a = (ak) ∈ w : sup

n∈N0

∞∑
k=0

∣∣enk∣∣L 1
pk <∞

}
Γ4(p) =

∪
L∈N

{
a = (ak) ∈ w : sup

n∈N0

sup
k∈N0

|enkL−1|pk <∞
}

Γ5(p) =
∪
L∈N

{
a = (ak) ∈ w : sup

n∈N0

∞∑
k=0

|enkL−1|p
′
k <∞

}
,

where the matrix E = (enk) is defined as
(4.30)

enk =


rk

[
ak
s0tk

+
(D(s)

0

tk
− D

(s)
1

tk+1

) n∑
j=k+1

aj +
n∑

l=k+2

(−1)l−k
D

(s)
l−k

tl

( n∑
j=l

aj

)]
if 0 ≤ k ≤ n,

0
if k > n.

Note: We mean
k∑
n

= 0 if n > k.

Theorem 4.4. (a) If pk > 1, then [l(r, s, t, p; ∆)]γ = Γ5(p) and [l(r, s, t, p;∆)]γ =
Γ4(p) if 0 < pk ≤ 1.

(b) If 0 < pk ≤ H <∞, then
(i) [c0(r, s, t, p;∆)]γ = Γ1(p),

(ii) [c(r, s, t, p;∆)]γ = Γ1(p) ∩ Γ2(p),

(iii) [l∞(r, s, t, p;∆)]γ = Γ3(p).

Proof. (a) Let pk > 1 ∀k, a = (ak) ∈ w, x ∈ l(r, s, t, p;∆) and y ∈ l(p). Then by
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using (4.3), we have

n∑
k=0

akxk

=

n∑
k=0

k∑
j=0

k−j∑
l=0

(−1)l
D

(s)
l rjyjak
tl+j

=
n−1∑
k=0

k∑
j=0

k−j∑
l=0

(−1)l
D

(s)
l rjyjak
tl+j

+
n∑

j=0

n−j∑
l=0

(−1)l
D

(s)
l rjyjan
tl+j

=

[
D

(s)
0

t0
a0 +

(D(s)
0

t0
− D

(s)
1

t1

) n∑
j=1

aj +
n∑

l=2

(−1)l
D

(s)
l

tl

( n∑
j=l

aj

)]
r0y0

+

[
D

(s)
0

t1
a1 +

(D(s)
0

t1
− D

(s)
1

t2

) n∑
j=2

aj +

n∑
l=3

(−1)l−1
D

(s)
l−1

tl

( n∑
j=l

aj

)]
r1y1

+ · · ·+ rnan
tn

D
(s)
0 yn

=

n∑
k=0

rk

[
ak
s0tk

+
(D(s)

0

tk
− D

(s)
1

tk+1

) n∑
j=k+1

aj +

n∑
l=k+2

(−1)l−k
D

(s)
l−k

tl

( n∑
j=l

aj

)]
yk

= (Ey)n,
(4.31)

where the matrix E is defined in (4.30).
Thus a ∈

[
l(r, s, t, p;∆)

]γ
if and only if ax = (akxk) ∈ bs, where x ∈ l(r, s, t, p;∆)

if and only if
( n∑

k=0

akxk

)
n
∈ l∞, i.e., Ey ∈ l∞, where y ∈ l(p). Hence by using

Lemma 4.1 (iv) with qn = 1 ∀n, we have

sup
n∈N0

∞∑
k=0

|enkL−1|p
′
k <∞, for some L ∈ N.

Hence
[
l(r, s, t, p;∆)

]γ
= Γ5(p).

If 0 < pk ≤ 1 ∀k, then using Lemma 4.1 (iv), we have

sup
n∈N0

sup
k∈N0

|enkL−1|pk <∞ for some L ∈ N.

Thus [l(r, s, t, p;∆)]γ = Γ4(p).
(b) In a similar way, using Lemma 4.2 (iv), Lemma 4.3 (iv) and Lemma 4.4
(iv), we obtain [c0(r, s, t, p;∆)]γ = Γ1(p), [c(r, s, t, p;∆)]γ = Γ1(p) ∩ Γ2(p) and
[l∞(r, s, t, p;∆)]γ = Γ3(p) respectively. 2
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To find β-dual of X(r, s, t, p;∆) for X ∈ {l∞(p), c(p), c0(p), l(p)}, we define the
following sets:

B1 =
{
a = (an) ∈ w :

∞∑
j=k+1

aj exists for all k ∈ N0

}
,

B2 =
{
a = (an) ∈ w :

∞∑
j=k+2

(−1)j−k
D

(s)
j−k

tj

∞∑
l=j

al exists for all k ∈ N0

}
,

B3 =
{
a = (an) ∈ w :

(rkak
tk

)
∈ l∞(p)

}
,

B4 =
∪
L∈N

{
a = (an) ∈ w : sup

n∈N0

∞∑
k=0

∣∣∣enkL−1
∣∣∣pk

′

<∞
}
,

B5 =
{
a = (an) ∈ w : sup

n,k∈N0

|enk|pk <∞
}
,

B6 =
{
a = (an) ∈ w : ∃(αk) lim

n→∞
enk = αk ∀ k

}
,

B7 =
∩
L∈N

{
a = (an) ∈ w : ∃(αk) sup

n,k∈N0

(
|enk − αk|L

)pk

<∞
}
,

B8 =
∩
L∈N

{
a = (an) ∈ w : ∃(αk) sup

n∈N0

∞∑
k=0

(
|enk − αk|L

)p′
k

<∞
}
,

B9 =
∪
L∈N

{
a = (an) ∈ w : ∃(αk) sup

n∈N0

∞∑
k=0

∣∣∣enk − αk

∣∣∣L−1
pk <∞

}
,

B10 =
∪
L∈N

{
a = (an) ∈ w : sup

n∈N0

∞∑
k=0

∣∣∣enk∣∣∣L−1
pk <∞

}
,

B11 =
{
a = (an) ∈ w : ∃α lim

n

∣∣∣ ∞∑
k=0

enk − α
∣∣∣ = 0

}
,

B12 =
∩
L∈N

{
a = (an) ∈ w : sup

n∈N0

∞∑
k=0

∣∣∣enk∣∣∣L 1
pk <∞

}
,

B13 =
∩
L∈N

{
a = (an) ∈ w : ∃(αk) lim

n

∞∑
k=0

|enk − αk|L
1
pk = 0

}
.

Theorem 4.5. (a) If pk > 1 for all k, then [l(r, s, t, p; ∆)]β = B1

∩
B2

∩
B3

∩
B4

∩
B6

∩
B8 and if 0 < pk ≤ 1 for all k, then [l(r, s, t, p;∆)]β = B1

∩
B2

∩
B3

∩
B5

∩
B6∩

B7.

(b) Let pk > 0 for all k. Then
(i) [c0(r, s, t, p;∆)]β = B1

∩
B2

∩
B3

∩
B6

∩
B9

∩
B10.

(ii) [c(r, s, t, p;∆)]β = B1

∩
B2

∩
B3

∩
B6

∩
B9

∩
B10

∩
B11.
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(iii) [l∞(r, s, t, p;∆)]β = B1

∩
B2

∩
B3

∩
B12

∩
B13.

Proof. (a) Let pk > 1 for all k. We have from (4.31)

n∑
k=0

akxk = (Ey)n,

where the matrix E is defined in (4.30). Thus a ∈
[
l(r, s, t, p;∆)

]β
if and only if

ax = (akxk) ∈ cs where x ∈ l(r, s, t, p;∆) if and only if Ey ∈ c where y ∈ l(p), i.e.,
E ∈ (l(p), c). Hence by Lemma 4.1 (iii) with qn = 1 ∀n, we have

∃L ∈ N sup
n∈N0

∞∑
k=0

∣∣∣enkL−1
∣∣∣pk

′

<∞,

∃(αk) lim
n→∞

enk = αk for all k,

∃(αk) sup
n∈N0

∞∑
k=0

(
|enk − αk|L

)p′
k

<∞ for all L.

Therefore [l(r, s, t, p;∆)]β = B1

∩
B2

∩
B3

∩
B4

∩
B6

∩
B8.

If 0 < pk ≤ 1 ∀k, then using Lemma 4.1 (iii) with qn = 1, ∀n, we have

sup
n,k∈N0

|enk|pk <∞, ∃(αk) lim
n→∞

enk = αk for all k,

∀L ∈ N ∃(αk) sup
n,k∈N0

(
|enk − αk|L

)pk

<∞.

Thus [l(r, s, t, p;∆)]β = B1

∩
B2

∩
B3

∩
B5

∩
B6

∩
B7.

(b) In a similar way, using Lemma 4.2 (iii), Lemma 4.3 (iii) and Lemma 4.4
(iii), we can obtain β-duals of c0(r, s, t, p;∆), c(r, s, t, p;∆) and l∞(r, s, t, p;∆)
respectively. 2

4.2. Matrix mappings

Theorem 4.6. Let Ẽ = (ẽnk) be the matrix which is same as the matrix E = (enk)
defined in (4.30), where aj is replaced by anj and ak by ank.
(a) Let pk > 1 for all k, then A ∈ (l(r, s, t, p; ∆), l∞) if and only if there exists

L ∈ N such that

sup
n

∑
k

∣∣ẽnkL−1
∣∣p′

k <∞ and (ank)k ∈ B1

∩
B2

∩
B3

∩
B4

∩
B6

∩
B8.

(b) Let 0 < pk ≤ 1 for all k. Then A ∈ (l(r, s, t, p;∆), l∞) if and only if

sup
n,k∈N0

∣∣ẽnk∣∣pk <∞ and (ank)k ∈ B1

∩
B2

∩
B3

∩
B5

∩
B6

∩
B7.
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Proof. (a) Let pk > 1 for all k. Since (ank)k ∈
[
l(r, s, t, p; ∆)

]β
for each fixed n,

Ax exists for all x ∈ l(r, s, t, p;∆). Now for each n, we have

m∑
k=0

ankxk

=
m∑

k=0

rk

[ ank
s0tk

+
(D(s)

0

tk
− D

(s)
1

tk+1

) n∑
j=k+1

anj +
n∑

j=k+2

(−1)j−k
D

(s)
j−k

tj

( n∑
l=j

anl

)]
yk

=
m∑

k=0

ẽnkyk,

Taking m→ ∞, we have

∞∑
k=0

ankxk =
∞∑
k=0

ẽnkyk for all n.

We know that for any L > 0 and any two complex numbers a, b

(4.32) |ab| ≤ L(|aL−1|p
′
+ |b|p),

where p > 1 and 1
p + 1

p′ = 1. Using (4.32), we get

sup
n

∣∣∣∣ ∞∑
k=0

ankxk

∣∣∣∣ ≤ sup
n

∞∑
k=0

∣∣ẽnk∣∣∣∣yk∣∣ ≤ L

[
sup
n

∞∑
k=0

|ẽnkL−1|pk
′
+

∞∑
k=0

|yk|pk

]
<∞.

Thus Ax ∈ l∞. This proves that A ∈ (l(r, s, t, p;∆), l∞).
Conversely, assume that A ∈ (l(r, s, t, p;∆), l∞) and pk > 1 for all k. Then Ax
exists for each x ∈ l(r, s, t, p; ∆), which implies that (ank)k ∈ [l(r, s, t, p;∆)]β for
each n. Thus

(ank)k ∈ B1

∩
B2

∩
B3

∩
B4

∩
B6

∩
B8. Also from

∞∑
k=0

ankxk =
∞∑
k=0

ẽnkyk, we have

Ẽ = (ẽnk) ∈ (l(p), l∞), i.e., for some natural number L, sup
n∈N0

∞∑
k=0

∣∣ẽnkL−1
∣∣p′

k < ∞.

This completes the proof.
(b) We omit the proof of this part as it is similar to the previous one. 2

Theorem 4.7. (a) Let pk > 1 for all k. Then A ∈ (l(r, s, t, p;∆), l1) if and only if

sup
F

∞∑
k=0

∣∣∣ ∑
n∈F

ẽnkL
−1
∣∣∣p′

k

<∞ for some L ∈ N

and (ank)k∈N0 ∈ B1

∩
B2

∩
B3

∩
B4

∩
B6

∩
B8.

(b) Let 0 < pk ≤ 1 for all k. Then A ∈ (l(r, s, t, p;∆), l1) if and only if

sup
F

sup
k

∣∣∣ ∑
n∈F

ẽnk

∣∣∣pk

<∞
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and
(ank)k ∈ B1

∩
B2

∩
B3

∩
B5

∩
B6

∩
B7.

Proof. We omit the proof as it follows in a similar way of Theorem 4.5. 2

Corollary 4.1. (a) A ∈ (c0(r, s, t, p;∆), c0(q)) if and only if (4.6), (4.17) hold with

ẽnk in place of ank and (ank) ∈
[
c0(r, s, t, p; ∆)

]β
,

(b) A ∈ (c0(r, s, t, p;∆), c(q)) if and only if (4.11), (4.18), (4.19) hold with ẽnk

in place of ank and (ank) ∈
[
c0(r, s, t, p; ∆)

]β
,

(c) A ∈ (c0(r, s, t, p;∆), l∞(q)) if and only if (4.20) holds with ẽnk in place of

ank and (ank) ∈
[
c0(r, s, t, p;∆)

]β
.

Corollary 4.2. (a) A ∈ (c(r, s, t, p; ∆), c0(q)) if and only if (4.6), (4.17), (4.22)

hold with ẽnk in place of ank and (ank) ∈
[
c(r, s, t, p;∆)

]β
,

(b) A ∈ (c(r, s, t, p; ∆), c(q)) if and only if (4.11), (4.18), (4.19), (4.23) hold with

ẽnk in place of ank and (ank) ∈
[
c(r, s, t, p; ∆)

]β
,

(c) A ∈ (c(r, s, t, p; ∆), l∞(q)) if and only if (4.20), (4.24) hold with ẽnk in place

of ank and (ank) ∈
[
c(r, s, t, p;∆)

]β
.

Corollary 4.3. (a) A ∈ (l∞(r, s, t, p;∆), c0(q)) if and only if (4.26) holds with ẽnk

in place of ank and (ank) ∈
[
l∞(r, s, t, p;∆)

]β
,

(b) A ∈ (l∞(r, s, t, p;∆), c(q)) if and only if (4.27), (4.28) hold with ẽnk in place

of ank and (ank) ∈
[
l∞(r, s, t, p;∆)

]β
,

(c) A ∈ (l∞(r, s, t, p;∆), l∞(q)) if and only if (4.29) holds with ẽnk in place of

ank and (ank) ∈
[
l∞(r, s, t, p; ∆)

]β
.

5. Kadec-Klee Property and Rotundity of l(r, s, t, p;∆)

In many geometric properties of Banach spaces, Kadec-Klee property and ro-
tundity play an important role in metric fixed point theory. These properties are
extensively studied in Orlicz spaces (see [10], [12], [19]) and also studied in differ-
ence sequence spaces by Kananthai [1]. In this section, we discuss these properties
in the sequence space l(r, s, t, p;∆).
Throughout the paper, for any Banach space (Y, ∥.∥), we denote S(Y ) and B(Y ) as
the unit sphere and closed unit ball respectively.
A point x ∈ S(Y ) is called an extreme point if x = y+z

2 implies y = z for every
y, z ∈ S(Y ). A Banach space Y is said to be rotund (strictly convex) if every point
of S(Y ) is an extreme point.
Let X be a real vector space. A functional σ : X → [0,∞] is called a modular if
(i) σ(x) = 0 if and only if x = 0,
(ii) σ(−x) = σ(x),
(iii) σ(αx+ βy) ≤ σ(x) + σ(y) for all x, y ∈ X and α, β ≥ 0 with α+ β = 1.
A modular σ is said to be convex if
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(iv) σ(αx+ βy) ≤ ασ(x) + βσ(y) for all x, y ∈ X and α, β ≥ 0 with α+ β = 1.
For any modular σ, the modular space Xσ is defined by

Xσ = {x ∈ X : σ(λx) → 0 as λ→ 0+}.

We define X∗
σ = {x ∈ X : σ(λx) < ∞ for some λ > 0}. It is clear that Xσ ⊆ X∗

σ.
Orlicz [23] prove that if σ is convex then Xσ = X∗

σ.
A modular σ is said to be
(i) right continuous if lim

λ→1+
σ(λx) = σ(x),

(ii) left continuous if lim
λ→1−

σ(λx) = σ(x),

(iii) continuous if it is both left and right continuous.
A modular σ is said to satisfy ∆2-condition [24], denoted by σ ∈ ∆2 if for any ϵ > 0,
there exist constants K ≥ 2 and a > 0 such that σ(2x) ≤ Kσ(x) + ϵ for all x ∈ Xσ

with σ(x) ≤ a.
If σ satisfies ∆2-condition for any a > 0 with K ≥ 2 dependent on a, we say that σ
satisfies strong ∆2-condition, denoted by σ ∈ ∆s

2 [24].
Let pn > 1 for all n ∈ N0. Then for x ∈ l(r, s, t, p;∆), we define

σp(x) =
∞∑

n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn

(n ∈ N0).

By the convexity of the function t 7−→ |t|pn for each n ∈ N0, we have σp is a convex
modular on l(r, s, t, p;∆).
We consider l(r, s, t, p;∆) equipped with the so called Luxemburg norm given by

∥x∥ = inf
{
c > 0 : σp

(x
c

)
≤ 1
}
.

It is easy to observe that the space l(r, s, t, p;∆) endowed with the norm ∥x∥ forms a
Banach space. A normed sequence space X is said to be K-space if each coordinate
mapping Pk defined by Pk(x) = xk is continuous for each k ∈ N0. If X is a Banach
space as well as K-space, then it is called a BK space. Let pk ≥ 1 ∀k ∈ N0 and
M = sup

k
pk. It is easy to show that σp satisfies the strong ∆2-condition, i.e.,

σp ∈ ∆s
2.

Proposition 5.1. For x ∈ l(r, s, t, p;∆), the modular σp on l(r, s, t, p;∆) satisfies
the following:

(i) if 0 < α ≤ 1, then αMσp(
x
α ) ≤ σp(x) and σp(αx) ≤ σp(x).

(ii) if α ≥ 1, then σp(x) ≤ αMσp(
x
α ).

(iii) if α ≥ 1, then σp(x) ≤ ασp(x) ≤ σp(αx).

Proof. (i) We have

σp

(x
α

)
=

∞∑
n=0

∣∣∣∣ 1

αrn

n∑
k=0

sn−ktk∆xk

∣∣∣∣pn

≤ 1

αM

∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn

=
1

αM
σp(x),
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i.e., αMσp(
x
α ) ≤ σp(x) and using convexity of σp, we have σp(αx) ≤ σp(x) for

0 < α ≤ 1.
Statements (ii) and (iii) can be proved in a similar way. So, we omit the details.2

Proposition 5.2. The modular σp is continuous.

Proof. Let λ > 1. From Proposition , we have

σp(x) ≤ λσp(x) ≤ σp(λx) ≤ λMσp(x).

Taking λ→ 1+, we obtain lim
λ→1+

σp(λx) = σp(x). So σp is right continuous.

If 0 < λ < 1, then we have λMσp(x) ≤ σp(λx) ≤ λσp(x). Taking λ → 1−, we
obtain lim

λ→1−
σp(λx) = σp(x). So σp is left continuous. Thus σp is continuous. 2

Now we give some relationship between norm and modular.

Proposition 5.3. For any x ∈ l(r, s, t, p;∆), we have

(i) if ∥x∥ < 1 then σp(x) ≤ ∥x∥,
(ii) if ∥x∥ > 1 then σp(x) ≥ ∥x∥,
(iii) ∥x∥ = 1 if and only if σp(x) = 1,

(iv) ∥x∥ < 1 if and only if σp(x) < 1,

(v) ∥x∥ > 1 if and only if σp(x) > 1,

(vi) if 0 < α < 1 and ∥x∥ > α then σp(x) > αM ,

(vii) if α ≥ 1 and ∥x∥ < α then σp(x) < αM .

Proof. (i) Suppose ∥x∥ < 1. Let u be a positive number such that ∥x∥ < u < 1.

Then by the definition of norm ∥.∥, we have σp

(
x
u

)
≤ 1. Using convexity of σp,

we have σp(x) = σp

(
ux
u

)
< uσp

(
x
u

)
≤ u. Since u is arbitrary, this implies that

σp(x) ≤ ∥x∥.
(ii) Let u be a positive number such that ∥x∥ > u > 1. Then σp

(
x
u

)
> 1 and

1 < σp

(
x
u

)
< 1

uσp(x), i.e., σp(x) > u. Taking u→ ∥x∥−, we obtain σp(x) ≥ ∥x∥.
(iii) Since σp ∈ ∆s

2, so the proof follows from Corollary 2.2 in [24] and Proposition
5.2.
(iv) and (v) follows from (i) and (iii).
(vi) and (vii) follows from Proposition 5.1 (i) and (ii). 2

Proposition 5.4. Let (xm) be any sequence of elements of l(r, s, t, p;∆).

(i) If ∥xm∥ → 1 then σp(x
m) → 1 as m→ ∞,

(ii) If ∥xm∥ → 0 if and only if σp(x
m) → 0 as m→ ∞.

Proof. (i) Suppose that ∥xm∥ → 1 as m → ∞. Then for every ϵ ∈ (0, 1) there
exists N ∈ N0 such that 1− ϵ < ∥xm∥ < 1 + ϵ for all m ≥ N . Thus by Proposition
5.3 (vi) and (vii), we have (1 − ϵ)M < σp(x

m) < (1 + ϵ)M for all m ≥ N . Hence
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σp(x
m) → 1 as m→ ∞.

(ii) Since σp ∈ ∆s
2, so the proof follows from Lemma 2.3 in [24]. 2

Lemma 5.1. The space l(r, s, t, p;∆) is a BK space.

Proof. Since the space l(r, s, t, p;∆) equipped with the Luxemberg norm ∥.∥ is a
Banach space, so it is enough to prove that l(r, s, t, p;∆) is a K-space. Suppose
(xm) ⊂ l(r, s, t, p;∆) such that xm → 0 as m → ∞. By Proposition 5.4 (ii), we
have σp(x

m) → 0 as m→ ∞. This implies that

∣∣∣∣ 1
rn

n∑
k=0

sn−ktk∆x
m
k

∣∣∣∣pn

→ 0 as m→ ∞ and for each n ∈ N0.

By induction, we have xmk → 0 as m → ∞ for each k ∈ N0. Hence the coordinate
mappings Pk(x

m) = xmk → 0 as m→ ∞ which implies that Pk’s are continuous for
each k. 2

Lemma 5.2. Let x ∈ l(r, s, t, p;∆) and (xm) ⊂ l(r, s, t, p;∆). If σp(x
m) → σp(x)

and xmk → xk as m→ ∞ for each k then xm → x.

Proof. Since x ∈ l(r, s, t, p; ∆), i.e., σp(x) < ∞, so for a given ϵ > 0 there exists
n0 ∈ N such that

(5.1)
∞∑

n=n0+1

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn

<
ϵ

3

1

2M+1
.

Again σp(x
m) → σp(x) and xmk → xk as m → ∞ for each k, so there exists

m0, n0 ∈ N such that for m ≥ m0

σp(x
m)−

( n0∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆x
m
k

∣∣∣∣pn
)

< σp(x)−
( n0∑

n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
)
+
ϵ

3

1

2M
(5.2)

and

(5.3)

( n0∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk(∆x
m
k −∆xk)

∣∣∣∣pn
)
<
ϵ

3
.

Thus for m ≥ m0, using equations (5.1), (5.2) and (5.3), we have
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σp(x
m − x)

=

∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk(∆x
m
k −∆xk)

∣∣∣∣pn

=

n0∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk(∆x
m
k −∆xk)

∣∣∣∣pn

+

∞∑
n=n0+1

∣∣∣∣ 1rn
n∑

k=0

sn−ktk(∆x
m
k −∆xk)

∣∣∣∣pn

<
ϵ

3
+ 2M

{ ∞∑
n=n0+1

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆x
m
k

∣∣∣∣pn

+
∞∑

n=n0+1

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
}

=
ϵ

3
+ 2M

{
σp(x

m)−
n0∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆x
m
k

∣∣∣∣pn

+
∞∑

n=n0+1

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
}

<
ϵ

3
+ 2M

{
σp(x)−

n0∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn

+
ϵ

3.2M
+

∞∑
n=n0+1

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
}

=
ϵ

3
+ 2M

{ ∞∑
n=n0+1

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn
}
+
ϵ

3
+ 2M .

ϵ

3

1

2M+1

<
ϵ

3
+ 2M .

ϵ

3

1

2M+1
+
ϵ

3
+
ϵ

6
= ϵ.

This shows that σp(x
m−x) → 0 as m→ ∞. Therefore by Proposition 5.4, we have

xm → x in norm. 2

Theorem 5.1. The space l(r, s, t, p; ∆) has the Kadec-Klee property.

Proof. Let x ∈ S(l(r, s, t, p; ∆)) and (xm) be a sequence in l(r, s, t, p;∆) such that
∥xm∥ → 1 as m → ∞ and xm → x weakly as m → ∞. Since ∥x∥ = 1 so by
Proposition 5.3 (iii), we have σp(x) = 1 and it follows from Proposition 5.4 that
σp(x

m) → σp(x) as m → ∞. By Lemma 5.1, we conclude that the coordinate
mapping Pk : l(r, s, t, p;∆) → R is continuous, which follows that xmk → xk as
m → ∞ for each k. Hence by Lemma 5.2, we obtain xm → x as m → ∞ in norm.

2

Theorem 5.2. The space l(r, s, t, p; ∆) is rotund if pn > 1 for each n.

Proof. Let x ∈ S(l(r, s, t, p;∆)) and y, z ∈ B(l(r, s, t, p;∆)) with x = y+z
2 . We have

to show that y = z. Since σp(x) = 1 and

1 = σp(x) = σp(
y+z
2 ) ≤ 1

2 (σp(y) + σp(z)) ≤ 1,

we have σp(x) =
1
2 (σp(y) + σp(z)) and σp(y) = 1, σp(z) = 1.

Therefore, we have
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∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆xk

∣∣∣∣pn

=

1

2

∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆yk

∣∣∣∣pn

+
1

2

∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆zk

∣∣∣∣pn

.

Since x = y+z
2 , we have from above

∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk
∆yk +∆zk

2

∣∣∣∣pn

=

1

2

∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆yk

∣∣∣∣pn

+
1

2

∞∑
n=0

∣∣∣∣ 1rn
n∑

k=0

sn−ktk∆zk

∣∣∣∣pn

.

By the strict convexity of the function f(t) = |t|pk , pk > 1 for each k, from above,
we obtain for each n

1

2rn

n∑
k=0

sn−ktk∆yk =
1

2rn

n∑
k=0

sn−ktk∆zk.

By induction, we obtain yk = zk for each k ∈ N0, i.e., y = z. Therefore the sequence
space l(r, s, t, p;∆) is rotund. 2
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[9] C. Aydin and F. Başar, Some new difference sequence spaces, Appl. Math. Comput.,
157(3)(2004), 677-693.

[10] C. Wu, S. Chen and Y. Wang, H-property of sequence Orlicz spaces, J. Harbin Inst.
Tech. Math Issue, (1985), 6-11.
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[20] S. Demiriz and C. Çakan, On some new paranormed sequence spaces, Gen. Math.
Notes, 1(2)(2010), 26-42.
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