# On Some Lacunary Generalized Difference Sequence Spaces of Invariant Means Defined by a Sequence of Modulus Functions 

Gülcan Atici<br>Department of Mathematics, Mus Alparslan University, Mus, 49100, Turkey<br>e-mail: gatici23@hotmail.com<br>Çığdem Asma Bektaş*<br>Department of Mathematics, Firat University, Elazig, 23119, Turkey<br>e-mail: cigdemas78@hotmail.com

Abstract. The aim of this paper is to introduce and study the sequence spaces $[w, \theta, F, p, q]_{\infty}\left(\Delta_{v}^{m}\right),[w, \theta, F, p, q]_{1}\left(\Delta_{v}^{m}\right)$ and $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$, which arise from the notions of generalized difference sequence space, lacunary convergence, invariant mean and a sequence of Moduli $F=\left(f_{k}\right)$. We establish some inclusion relations between these spaces under some conditions.

## 1. Introduction

Let $\ell_{\infty}, c$ and $c_{0}$ denote the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$, with $x_{k} \in \mathbb{R}$ or $\mathbb{C}$, normed by $\|x\|=\sup _{k}\left|x_{k}\right|$, respectively.

Let $\sigma$ be a mapping of the set of positive integers into itself. A continuous linear functional $\phi$ on $\ell_{\infty}$, is said to be an invariant mean or $\sigma-$ mean if and only if
(i) $\phi(x) \geq 0$ when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$ for all $n$,
(ii) $\phi(e)=1$,
(iii) $\phi\left(x_{\sigma(n)}\right)=\phi(x)$ for all $x \in \ell_{\infty}$.

In case $\sigma$ is the translation mapping $n \rightarrow n+1$, a $\sigma$-mean is often called a Banach limit and $V_{\sigma}$, the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences. If $x=\left(x_{k}\right)$, write $T x=\left(T x_{k}\right)=$ $\left(x_{\sigma(k)}\right)$. It can be shown that

$$
V_{\sigma}=\left\{x \in \ell_{\infty}: \lim _{k} t_{k n}(x)=l, \text { uniformly in } n\right\}
$$

[^0]$l=\sigma-\lim x$ where
$$
t_{k n}(x)=\frac{x_{n}+x_{\sigma^{1}(n)}+x_{\sigma^{2}(n)}+\ldots+x_{\sigma^{k}(n)}}{k+1}[16]
$$

A sequence $x=\left(x_{k}\right) \in \ell_{\infty}$ is said to be almost convergent if all of its Banach limits coincide (see Banach [1]). Let $\hat{c}$ denote the space of all almost convergent sequences. Lorentz [11] proved that

$$
\hat{c}=\left\{x \in \ell_{\infty}: \lim _{m \rightarrow \infty} t_{m n}(x) \text { exists, uniformly in } n\right\}
$$

where $t_{m n}(x)=\left(x_{n}+x_{n+1}+\ldots+x_{n+m}\right) /(m+1)$.
The notion of difference sequence space was introduced by Kızmaz [10]. It was generalized by Et and Çolak [6] as follows:

$$
X\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right): \Delta^{m} x \in X\right\}
$$

for $X=c_{0}, c$ and $\ell_{\infty}$, where $m \in \mathbb{N}, \Delta^{0} x=\left(x_{k}\right),\left(\Delta^{m} x_{k}\right)=\left(\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}\right)$.
Let $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers. Et and Esi [7] generalized the above sequence spaces to the following sequence spaces:

$$
X\left(\Delta_{v}^{m}\right)=\left\{x=\left(x_{k}\right):\left(\Delta_{v}^{m} x_{k}\right) \in X\right\}
$$

for $X=\ell_{\infty}, c$ or $c_{0}$, where $\Delta_{v}^{0} x=\left(v_{k} x_{k}\right),\left(\Delta_{v} x_{k}\right)=\left(v_{k} x_{k}-v_{k+1} x_{k+1}\right)$ and $\left(\Delta_{v}^{m} x_{k}\right)=\left(\Delta_{v}^{m-1} x_{k}-\Delta_{v}^{m-1} x_{k+1}\right)$ and so that

$$
\Delta_{v}^{m} x_{k}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} v_{k+i} x_{k+i}
$$

Let $\theta=\left(k_{r}\right)$ be a sequence of positive integers such that $k_{0}=0,0<k_{r}<k_{r+1}$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Then $\theta$ is called a lacunary sequence. The intervals determined by $\theta$ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio $k_{r} / k_{r-1}$ will be denoted by $\rho_{r}$.

The space of lacunary strongly convergent sequences $N_{\theta}$ was defined by Freedman et al. [9] as

$$
N_{\theta}=\left\{x=\left(x_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|x_{k}-L\right|=0, \text { for some } L\right\} .
$$

A function $f:[0, \infty) \rightarrow[0, \infty)$ is called a modulus function if
(i) $f(t)=0$ iff $t=0$,
(ii) $f(t+u) \leq f(t)+f(u), \forall t, u \geq 0$,
(iii) $f$ is increasing,
(iv) $f$ is continuous from the right at 0 .

The following inequality will be used throughout the article. Let $p=\left(p_{k}\right)$ be a positive sequence of real numbers with $0<p_{k} \leq \sup p_{k}=G, D=\max \left(1,2^{G-1}\right)$. Then for all $a_{k}, b_{k} \in \mathbb{C}$ for all $k \in N$, we have

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right\}[12] . \tag{1}
\end{equation*}
$$

Let $q_{1}$ and $q_{2}$ be seminorms on a linear space $X$. Then $q_{1}$ is stronger than $q_{2}$ if there exists a constant $K$ such that $q_{2}(x) \leq K q_{1}(x)$ for all $x \in X$. If each is stronger than the other, $q_{1}$ and $q_{2}$ are said to be equivalent [29].

Ruckle [15] used the idea of a modulus function to construct some spaces of complex sequences. Maddox [13] investigated and discussed some properties of some sequence spaces defined using a modulus function $f$. After Bektaş and Çolak [2] used a sequence of moduli $F=\left(f_{k}\right)$ to define some sequence spaces. Later on Et [4] defined some sequence spaces by using a modulus function. Recently Bektaş and Çolak [3] introduced some new sequence spaces by using a sequence of moduli $F=\left(f_{k}\right)$.

Et and Gökhan [8] have defined the following sequence spaces:

$$
\begin{aligned}
&(w, \theta, f, p, q)=\left\{x \in w(X): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}}=0\right. \\
&\text { uniformly in } m, \text { for some } L\} \\
&(w, \theta, f, p, q)_{0}=\left\{x \in w(X): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}=0 \text { uniformly in } m\right\}, \\
&(w, \theta, f, p, q)_{\infty}=\left\{x \in w(X): \sup _{r, n} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}<\infty\right\} .
\end{aligned}
$$

## 2. Main results

Definition 2.1. Let $F=\left(f_{k}\right)$ be a sequence of moduli, $X$ be a seminormed space over the field $\mathbb{C}$ of complex numbers with the seminorm $q$ and $p=\left(p_{k}\right)$ be a sequence of strictly positive real numbers. By $w(X)$, we shall denote the space of all sequences defined over $X$. Now we define the following sequence spaces:

$$
\begin{aligned}
& {[w, \theta, F, p, q]_{\infty}\left(\Delta_{v}^{m}\right) }=\left\{x \in w(X): \sup _{r, n} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)\right]^{p_{k}}<\infty\right\} \\
& {[w, \theta, F, p, q]_{1}\left(\Delta_{v}^{m}\right) }=\left\{x \in w(X): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}-L\right)\right)\right)\right]^{p_{k}}=0\right. \\
&\text { for some } L>0\}
\end{aligned}
$$

$$
[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)=\left\{x \in w(X): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)\right]^{p_{k}}=0\right\}
$$

uniformly in $n$. Throughout the paper $Z$ denotes 0,1 or $\infty$.
For $p_{k}=1$ for all $k \in \mathbb{N}$, we write these spaces as $[w, \theta, F, q]_{Z}\left(\Delta_{v}^{m}\right)$.
For $f_{k}(x)=x$ for every $k$ and $p_{k}=1$ for all $k \in \mathbb{N}$, we write these spaces as $[w, \theta, q]_{Z}\left(\Delta_{v}^{m}\right)$.

Theorem 2.2. $p=\left(p_{k}\right)$ be a bounded sequence, then $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$, $[w, \theta, F, p, q]_{1}\left(\Delta_{v}^{m}\right)$ and $[w, \theta, F, p, q]_{\infty}\left(\Delta_{v}^{m}\right)$ are linear spaces over the set of complex numbers.
Proof. We give the proof for $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$ only. The others can be treated similarly. Let $x, y \in[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$. For $\alpha, \beta \in \mathbb{C}$ there exist positive integers $N_{\alpha}$ and $M_{\beta}$ such that $|\alpha| \leq N_{\alpha}$ and $|\beta| \leq M_{\beta}$. Since each $f_{k}$ is subadditive, $q$ is a seminorm, $\Delta_{v}^{m}$ linear and by inequality (1)
$\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m}\left(\alpha x_{k}+\beta y_{k}\right)\right)\right)\right)\right]^{p_{k}}$
$\leq \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[|\alpha| f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)+|\beta| f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} y_{k}\right)\right)\right)\right]^{p_{k}}$
$\leq D\left(N_{\alpha}\right)^{G} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)\right]^{p_{k}}+D\left(M_{\beta}\right)^{G} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} y_{k}\right)\right)\right)\right]^{p_{k}}$
$\rightarrow 0$
as $r \rightarrow \infty$ and uniformly in $n$. Thus $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$ is a linear space.
Theorem 2.3. Let $F=\left(f_{k}\right)$ be a sequence of moduli, then $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right) \subset$ $[w, \theta, F, p, q]_{1}\left(\Delta_{v}^{m}\right) \subset[w, \theta, F, p, q]_{\infty}\left(\Delta_{v}^{m}\right)$.
Proof. We prove the second inclusion, since the first inclusion is obvious. Let $x \in[w, \theta, F, p, q]_{1}\left(\Delta_{v}^{m}\right)$. We have

$$
\begin{aligned}
& \frac{1}{h_{r}} \sum_{k \in I_{r}} {\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)\right]^{p_{k}} } \\
& \quad \leq D \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}-L\right)\right)\right)\right]^{p_{k}}+D \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}(L)\right)\right)\right]^{p_{k}} .
\end{aligned}
$$

Then there exists an integer $K_{L}$ such that $q(L) \leq K_{L}$. Hence, we have

$$
\begin{aligned}
& \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)\right]^{p_{k}} \\
& \quad \leq D \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}-L\right)\right)\right)\right]^{p_{k}}+D \frac{1}{h_{r}} \max \left(1,\left[\left(K_{L}\right) f_{k}(1)\right]^{H}\right),
\end{aligned}
$$

so $x \in[w, \theta, F, p, q]_{1}\left(\Delta_{v}^{m}\right)$.
The proof of the following results are easy and thus omitted.

Theorem 2.4. Let $F=\left(f_{k}\right)$ and $G=\left(g_{k}\right)$ be two sequences of moduli. For any two sequences $p=\left(p_{k}\right)$ and $t=\left(t_{k}\right)$ of strictly positive real numbers and seminorms $q, q_{1}$ and $q_{2}$, we have
(i) $[w, \theta, F, p, q]_{Z}\left(\Delta_{v}^{m}\right) \subset[w, \theta, F \circ G, p, q]_{Z}\left(\Delta_{v}^{m}\right)$,
(ii) $[w, \theta, F, p, q]_{Z}\left(\Delta_{v}^{m}\right) \cap[w, \theta, G, p, q]_{Z}\left(\Delta_{v}^{m}\right) \subseteq[w, \theta, F+G, p, q]_{Z}\left(\Delta_{v}^{m}\right)$,
(iii) $\left[w, \theta, F, p, q_{1}\right]_{Z}\left(\Delta_{v}^{m}\right) \cap\left[w, \theta, F, p, q_{2}\right]_{Z}\left(\Delta_{v}^{m}\right) \subset\left[w, \theta, F, p, q_{1}+q_{2}\right]_{Z}\left(\Delta_{v}^{m}\right)$,
(iv) If $q_{1}$ is stronger than $q_{2}$ then $\left[w, \theta, F, p, q_{1}\right]_{Z}\left(\Delta_{v}^{m}\right) \subset\left[w, \theta, F, p, q_{2}\right]_{Z}\left(\Delta_{v}^{m}\right)$,
(v) If $q_{1}$ is equivalent to $q_{2}$ then $\left[w, \theta, F, p, q_{1}\right]_{Z}\left(\Delta_{v}^{m}\right)=\left[w, \theta, F, p, q_{2}\right]_{Z}\left(\Delta_{v}^{m}\right)$,
(vi) $\left[w, \theta, F, p, q_{1}\right]_{Z}\left(\Delta_{v}^{m}\right) \cap\left[w, \theta, F, t, q_{2}\right]_{Z}\left(\Delta_{v}^{m}\right) \neq \varnothing$,
where $Z=1,0$ or $\infty$.
Lemma 2.5. Let $F=\left(f_{k}\right)$ be a sequence of moduli and let $0<\delta<1$. Then for each $x>\delta$ we have $f_{k}(x) \leq 2 f_{k}(1) \delta^{-1} x$ [14].

Theorem 2.6. Let $F=\left(f_{k}\right)$ be a sequence of moduli. Then

$$
[w, \theta, q]_{Z}\left(\Delta_{v}^{m}\right) \subset[w, \theta, F, q]_{Z}\left(\Delta_{v}^{m}\right)
$$

Proof. We give the proof for $Z=0$ only. Let $x \in[w, \theta, q]_{0}\left(\Delta_{v}^{m}\right)$. Then we have

$$
\varphi_{r}=\frac{1}{h_{r}} \sum_{k \in I_{r}} q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right) \rightarrow 0
$$

as $r \rightarrow \infty$ uniformly in $n$. Let $\varepsilon>0$ and choose $\delta$ with $0<\delta<1$ such that $f_{k}(u)<\varepsilon$ for every $u$ with $0 \leq u \leq \delta$. Then we can write

$$
\begin{aligned}
\frac{1}{h_{r}} & \sum_{k \in I_{r}} f_{k}\left(q\left(\Delta_{v}^{m} x_{k}\right)\right) \\
& =\frac{1}{h_{r}} \sum_{k \in I_{r}, q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right) \leq \delta} f_{k}\left(q\left(\Delta_{v}^{m} x_{k}\right)\right)+\frac{1}{h_{r}} \sum_{k \in I_{r}, q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)>\delta} f_{k}\left(q\left(\Delta_{v}^{m} x_{k}\right)\right) \\
& \leq \frac{1}{h_{r}}\left(h_{r} \varepsilon\right)+\frac{1}{h_{r}} 2 f_{k}(1) \delta^{-1} h_{r} \varphi_{r} .
\end{aligned}
$$

Therefore $x \in[w, \theta, F, q]_{0}\left(\Delta_{v}^{m}\right)$. The others can be treated similarly.
Theorem 2.7. Let $F=\left(f_{k}\right)$ be a sequence of moduli, if $\lim _{u \rightarrow \infty} \frac{f_{k}(u)}{u}=\beta>0$, then

$$
[w, \theta, q]_{1}\left(\Delta_{v}^{m}\right)=[w, \theta, F, q]_{1}\left(\Delta_{v}^{m}\right)
$$

Proof. By Theorem 2.6, we need only show that $[w, \theta, F, q]_{1}\left(\Delta_{v}^{m}\right) \subset[w, \theta, q]_{1}\left(\Delta_{v}^{m}\right)$. Let $\beta>0$ and $x \in[w, \theta, F, q]_{1}\left(\Delta_{v}^{m}\right)$. Since $\beta>0$, we have $f_{k}(u) \geq \beta u$ for all $u \geq 0$. Hence we have

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}\left(q\left(\Delta_{v}^{m} x_{k}-L\right)\right) \geq \frac{1}{h_{r}} \sum_{k \in I_{r}} \beta\left(q\left(\Delta_{v}^{m} x_{k}-L\right)\right)=\frac{1}{h_{r}} \beta \sum_{k \in I_{r}}\left(q\left(\Delta_{v}^{m} x_{k}-L\right)\right) .
$$

Therefore we have $x \in[w, \theta, q]_{1}\left(\Delta_{v}^{m}\right)$.
Theorem 2.8. Let $0<p_{k} \leq r_{k}$ and $\left(\frac{r_{k}}{p_{k}}\right)$ be bounded. Then $[w, \theta, F, r, q]_{Z}\left(\Delta_{v}^{m}\right) \subset$ $[w, \theta, F, p, q]_{Z}\left(\Delta_{v}^{m}\right)$ where $Z=1,0$ or $\infty$.
Proof. We shall prove only $[w, \theta, F, r, q]_{0}\left(\Delta_{v}^{m}\right) \subset[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$. The other inclusions can be proved similarly. Let $x \in[w, \theta, F, r, q]_{0}\left(\Delta_{v}^{m}\right)$. Write $w_{k, n}=$ $\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)\right]^{r_{k}}$ and $\lambda_{k}=\frac{P_{k}}{r_{k}}$, so that $0<\lambda<\lambda_{k} \leq 1$ for each $k$.

We define the sequences $\left(u_{k, n}\right)$ and $\left(s_{k, n}\right)$ as follows:
Let $u_{k, n}=w_{k, n}$ and $s_{k, n}=0$ if $w_{k, n} \geq 1$, and let $u_{k, n}=0$ and $s_{k, n}=w_{k, n}$ if $w_{k, n}<1$. Then it is clear that for all $k, n \in \mathbb{N}$, we have $w_{k, n}=u_{k, n}+s_{k, n}$, $w_{k, n}^{\lambda_{k}}=u_{k, n}^{\lambda_{k}}+s_{k, n}^{\lambda_{k}}$. Now it follows that $u_{k, n}^{\lambda_{k}} \leq u_{k, n} \leq w_{k, n}$ and $s_{k, n}^{\lambda_{k}} \leq s_{k, n}^{\lambda}$. Now we have

$$
\lim _{k} w_{k, n}^{\lambda_{k}} \leq \lim _{k} w_{k, n}+\left(\lim _{k} s_{k, n}\right)^{\lambda}
$$

This implies that $x \in[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$.
Theorem 2.9. Let $m \geq 1$ be a fixed integer, then $[w, \theta, F, p, q]_{Z}\left(\Delta_{v}^{m-1}\right) \subset$ $[w, \theta, F, p, q]_{Z}\left(\Delta_{v}^{m}\right)$.
Proof. The proof of the inclusions follows from the following inequality

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right]^{p_{k}} \leq\right. & D \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m-1} x_{k}\right)\right)\right)\right]^{p_{k}} \\
& +D \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m-1} x_{k+1}\right)\right)\right)\right]^{p_{k}}
\end{aligned}
$$

Theorem 2.10. The sequence spaces $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$ and $[w, \theta, F, p, q]_{\infty}\left(\Delta_{v}^{m}\right)$ are not solid.
Proof. We give the proof only for $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$.For this let $p_{k}=1$ for all $k \in \mathbb{N}, \theta=\left(2^{r}\right), f_{k}(x)=x$ for all $k \in \mathbb{N}, q(x)=|x|$ and $m=0$.Consider the sequence $x_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$ and $\left(\alpha_{k}\right)$ be defined as $\alpha_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$. Then $\left(x_{k}\right) \in[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$ but $\left(\alpha_{k} x_{k}\right) \notin[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$. Hence $[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$ is not solid.

Theorem 2.11. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence. If $1<\liminf _{r} \rho_{r}<$ $\limsup _{r} \rho_{r}<\infty$, then we have $[w, \sigma, F, p, q]_{0}\left(\Delta_{v}^{m}\right)=[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$

$$
[w, \sigma, F, p, q]_{0}\left(\Delta_{v}^{m}\right)=\left\{x \in w(X): \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left[f_{k}\left(q\left(t_{k n}\left(\Delta_{v}^{m} x_{k}\right)\right)\right)\right]^{p_{k}}=0\right\}
$$

Proof. Suppose $\liminf _{r} \rho_{r}>1$ then there exists $\delta>0$ such that $\rho_{r}=\frac{k_{r}}{k_{r-1}} \geq 1+\delta$
for all $r \geq 1$. Then for $x \in[w, \sigma, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$, we write

$$
\begin{aligned}
& \frac{1}{h_{r}} \sum_{i \in I_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \\
& \quad=\frac{1}{h_{r}} \sum_{i=1}^{k_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}}-\frac{1}{h_{r}} \sum_{i=1}^{k_{r-1}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \\
& \quad=\frac{k_{r}}{h_{r}}\left(k_{r}^{-1} \sum_{i=1}^{k_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}}\right)-\frac{k_{r-1}}{h_{r}}\left(k_{r-1}^{-1} \sum_{i=1}^{k_{r-1}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}}\right)
\end{aligned}
$$

Since $h_{r}=k_{r}-k_{r-1}$, we have

$$
\frac{k_{r}}{h_{r}} \leq \frac{(1+\delta)}{\delta} \text { and } \frac{k_{r-1}}{h_{r}} \leq \frac{1}{\delta}
$$

Since $k_{r}^{-1} \sum_{i=1}^{k_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \rightarrow 0$ and $k_{r-1}^{-1} \sum_{i=1}^{k_{r-1}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \rightarrow$ 0 uniformly in $n$, we have

$$
\frac{1}{h_{r}} \sum_{i \in I_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \rightarrow 0
$$

as $r \rightarrow \infty$ and uniformly in $n$, that is, $x \in[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$.
If $\lim \sup _{r} \rho_{r}<\infty$, there exists $\beta>0$ such that $\rho_{r}<\beta$ for all $r \geq 1$. Let $x \in[w, \theta, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$ and $\varepsilon>0$ be given. Then there exists $R>0$ such that for every $j \geq R$ and all $n$

$$
A_{j}=\frac{1}{h_{j}} \sum_{i \in I_{j}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}}<\varepsilon
$$

We can also find $K>0$ such that $A_{j}<K$ for all $j=1,2, \ldots$. Now let $u$ be any integer with $k_{r-1}<u \leq k_{r}$, where $r>R$. Then

$$
\begin{aligned}
& \frac{1}{u} \sum_{i=1}^{u}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \leq k_{r-1}^{-1} \sum_{i=1}^{k_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right]^{p_{i}}\right. \\
& =k_{r-1}^{-1}\left\{\sum_{i \in I_{1}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}}+\sum_{i \in I_{2}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}}\right. \\
& \quad+\ldots+\sum_{i \in I_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right]^{p_{i}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k_{1}}{k_{r-1}} k_{1}^{-1} \sum_{i \in I_{1}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}}+\frac{k_{2}-k_{1}}{k_{r-1}}\left(k_{2}-k_{1}\right)^{-1} \sum_{i \in I_{2}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \\
& \quad+\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}}\left(k_{R}-k_{R-1}\right)^{-1} \sum_{i \in I_{R}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \\
& \quad+\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}}\left(k_{r}-k_{r-1}\right)^{-1} \sum_{i \in I_{r}}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \\
& \quad=\frac{k_{1}}{k_{r-1}} A_{1}+\frac{k_{2}-k_{1}}{k_{r-1}} A_{2}+\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}} A_{R}+\frac{k_{R+1}-k_{R}}{k_{r-1}} A_{R+1}+\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}} A_{r} \\
& \leq\left(\sup _{j \geq 1} A_{j}\right) \frac{k_{R}}{k_{r-1}}+\left(\sup _{j \geq R} A_{j}\right) \frac{k_{r}-k_{R}}{k_{r-1}}<K \frac{k_{R}}{k_{r-1}}+\varepsilon \beta .
\end{aligned}
$$

Since $k_{r-1} \rightarrow \infty$ as $u \rightarrow \infty$, it follows that $u^{-1} \sum_{i=1}^{u}\left[f_{i}\left(q\left(t_{i n}\left(\Delta_{v}^{m} x_{i}\right)\right)\right)\right]^{p_{i}} \rightarrow 0$ uniformly in $n$ and consequently $x \in[w, \sigma, F, p, q]_{0}\left(\Delta_{v}^{m}\right)$.

## References

[1] S. Banach, Theorie des Operations Lineaires, PWN, Warszawa, 1932.
[2] Ç. A. Bektaş and R. Çolak, Generalized difference sequences defined by a sequence of moduli, Soochow J. Math., 29(2)(2003), 215-220.
[3] Ç. A. Bektaş and R. Çolak, Generalized strongly almost summable difference sequences of order $m$ defined by a sequence of moduli, Demonstratio Mathematica, 40(3)(2007), 581-591.
[4] M. Et, Spaces of Cesáro difference sequences of order $r$ defined by a Modulus function in a locally convex space, Taiwanese Journal of Mathematics, 10(4)(2006), 865-879.
[5] M. Et, Y. Altin, B. Choudhary and B. C. Tripathy, On some classes of sequences defined by sequences of Orlicz functions, Mathematical Inequalities and Applications, 9 (2)(2006), 335-342.
[6] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21(1995), 377-386.
[7] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sc. Soc., 23(2)(2000), 25-32.
[8] M. Et and A. Gökhan, Lacunary strongly almost summable sequences, Studia Univ. Babeş-Bolyai Mathematica, 4(2008), 29-38.
[9] A. R. Freedman, J. J. Sember and M. Raphael, Some Ces'aro-type summability spaces, Proc. London Math. Soc., $37(3)(1978), 508-520$.
[10] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176.
[11] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-190.
[12] I. J. Maddox, Elements of Functional Analysis. Cambridge University Press, Cambridge, London and New York, 1970.
[13] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100(1986), 161-166.
[14] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment Math. Univ. Carolin, 36(1995), 69-76.
[15] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[16] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.
[17] B. C. Tripathy and M. Sen, On generalized statistically convergent sequences, Indian Journal of Pure and Applied Mathematics, 32(11)(2001), 1689-1694.
[18] B. C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian Journal of Pure and Applied Mathematics, 35(5)(2004), 655-663.
[19] B. C. Tripathy and S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Mathematica Applicata Sinica, 20(2)(2004), 231-238.
[20] B. C. Triapthy and S. Mahanta, On a class of vector valued sequences associated with multiplier sequences, Acta Mathematica Applicata Sinica, 20(3)(2004), 487-494.
[21] B. C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang Journal of Mathematics, 37(2)(2006), 155-162.
[22] B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Mathematica Sinica, 24(5)(2008), 737-742.
[23] B. C. Tripathy, Y. Altin and M. Et, Generalized difference sequences spaces on seminormed spaces defined by Orlicz functions, Mathematica Slovaca, 58(3)(2008), 315324.
[24] B. C. Tripathy and S. Borgohain, Difference sequence space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ of fuzzy real numbers, Mathematical Modelling and Analysis, 13(4)(2008), 577-586.
[25] B. C. Tripathy, B. Choudhary and B. Sarma, On some new type generalized difference sequence spaces, Kyungpook Math. J., 48(4)(2008), 613-622.
[26] B. C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Mathematica Slovaca, 59(6)(2009), 767-776.
[27] B. C. Tripathy and A. Baruah, New type of difference sequence spaces of fuzzy real numbers, Mathematical Modelling and Analysis, 14(3)(2009), 391-397.
[28] B. C. Tripathy and H. Dutta, On some new paranormed difference sequence spaces defined by Orlicz functions, Kyungpook Math. J., 50(2010), 59-69.
[29] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, 1964.


[^0]:    * Corresponding Author.

    Received August 31, 2010; revised October 8, 2010; accepted December 9, 2010. 2010 Mathematics Subject Classification: 46A45, 40A05.
    Key words and phrases: Invariant mean, Difference sequence spaces, lacunary sequence, modulus function.

