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GENERALIZED α-KÖTHE TOEPLITZ DUALS OF CERTAIN

DIFFERENCE SEQUENCE SPACES

Sandeep Gupta, Ritu∗, and Manoj Kumar

Abstract. In this paper, we compute the generalized α-Köthe Toeplitz duals of
the X-valued (Banach space) difference sequence spaces E(X,∆), E(X,∆v) and
obtain a generalization of the existing results for α-duals of the classical difference
sequence spaces E(∆) and E(∆v) of scalars, E ∈ {`∞, c, c0}. Apart from this, we
compute the generalized α-Köthe Toeplitz duals for E(X,∆r) r ≥ 0 integer and
observe that the results agree with corresponding results for scalar cases.

1. Introduction

Kizmaz [12] in 1981, added to the field of sequence spaces a new idea of difference
sequence spaces by introducing `∞(∆), c(∆) and c0(∆) (termed as difference sequence
spaces) as follows:

`∞(∆) = {x = (xk) ∈ ω : (∆xk) ∈ `∞}
c(∆) = {x = (xk) ∈ ω : (∆xk) ∈ c}
c0(∆) = {x = (xk) ∈ ω : (∆xk) ∈ c0}

where c0, c, `∞ are Banach spaces of null, convergent and bounded sequences of scalars,
normed by
‖x‖∞ = supk |xk| and ω is the space of scalar sequences.

In other words, E(∆) = {x = (xk) ∈ ω : (∆xk) ∈ E} for E ∈ {`∞, c, c0}. It is
observed that E(∆) are Banach spaces with the norm
‖x‖∆ = |x1|+ ‖∆x‖∞ for x = (xk) ∈ E(∆), ∆x = (∆xk) = (xk − xk+1).
In 1995, Et and Çolak [7] generalized the above concept as follows:

E(∆n) = {x = (xk) ∈ ω : (∆nxk) ∈ E} for E ∈ {`∞, c, c0},where

∆nx = (∆nxk) = (∆n−1xk −∆n−1xk+1) for all k ∈ N and ∆0xk = xk.

These spaces turn out to be complete when equipped with the norm ‖x‖∆ =
∑n

i=1 |xi|+
‖∆nx‖∞. Obviously, for n = 1 the work of Et and Colak [7], reduces to that of Kiz-
maz [12].
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Using a multiplier sequence, Gnanaseelan and Srivastva [9] introduced the following
sequence spaces

`∞(∆v) = {x = (xk) ∈ ω : (vk(xk − xk+1)) ∈ `∞}

c(∆v) = {x = (xk) ∈ ω : (vk(xk − xk+1)) ∈ c}
c0(∆v) = {x = (xk) ∈ ω : (vk(xk − xk+1)) ∈ c0}

where v = (vk) is a sequence such that complex numbers vk 6= 0 and

(1)
|vk|
|vk+1|

= 1 +O

(
1

k

)
, for each k

(2) k−1 |vk|
k∑
i=1

|v−1
i | = O(1)

(3) (k|v−1
k |) is a monotonically ↑ sequence of positive numbers tending to infinity.

The spaces E(∆v) for v = (1, 1, 1, ...) are noting but the spaces E(∆) of Kizmaz
and have Banach space structure when equipped with norm

‖x‖∆v = |v1x1|+ sup
k
|vk(xk − xk+1)|.

For more insight into difference sequence spaces and its various generalizations one
may refer to [1–4,8, 14,16–21].

The theory of sequence spaces is considered to be incomplete without a touch to
the concept of dual spaces. Credit of introducing dual spaces goes to G. Köthe and
O. Toeplitz [13].

For a real or complex sequence space E,

Eα =

{
a = (ak) ∈ ω :

∞∑
k=1

|akxk| <∞ for each x = (xk) ∈ E

}

Eβ =

{
a = (ak) ∈ ω :

∞∑
k=1

akxk is convergent for each x = (xk) ∈ E

}
are called α− , β− duals spaces of E, respectively.

Kizmaz [12] observed that

[`∞(∆)]α = [c0(∆)]α = [c(∆)]α =

{
a = (ak) ∈ ω :

∑
k

k|ak| <∞

}
.

Also we have in view of [7, 9]

[`∞(∆r)]α = [c0(∆r)]α = [c(∆r)]α =

{
a = (ak) ∈ ω :

∑
k

kr|ak| <∞

}
and

[`∞(∆v)]
α = [c0(∆v)]

α = [c(∆v)]
α =

{
a = (ak) ∈ ω :

∑
k

k|v−1
k ||ak| <∞

}
.
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The above introduced notion of Köthe Toeplitz duals [13] was further generalized by
Maddox [15] and termed as generalized Köthe Toeplitz duals (or operator duals). To
have a view of this, we first have the following:

Let us consider Banach spaces (X, ‖.‖) and (Y, ‖.‖) with θ as zero element. By
B(X, Y ), we notate the class of bounded linear operator from X to Y which turn out
to be Banach space with usual operator norm and ω(X) as the space of X-valued
sequences. Then for any nonempty subset E(X) of ω(X)

[E(X)]α =

{
(Ak) :

∑
k

‖Akxk‖ <∞ for x = (xk) ∈ E(X)

}
and

[E(X)]β =

{
(Ak) :

∑
k

Akxk converges in Y for x = (xk) ∈ E(X)

}
are termed as generalized α−, β− dual spaces of E(X) respectively. Here 〈Ak〉 is
a sequence of linear (not necessarily bounded) operators from X to Y . Due to the
completeness of Y , [E(X)]α ⊂ [E(X)]β.

It is to be noted that, the generalized dual spaces [E(X)]α and [E(X)]β reduce to
classical dual spaces Eα and Eβ for the case X = Y = C, because in this case the
operator Ak may be identified with scalar ak.

Maddox [15], Duyar [6], Haryadi et al. [10], Khan [11] and many more investi-
gated generalized Köthe Toeplitz duals, for sequence spaces c0(X), c(X) and `∞(X)
(the Banach spaces of null, convergent and bounded X-valued sequences respectively)
normed by ‖x‖∞ = supk ‖xk‖. It was shown that [`∞(X)]α = [c(X)]α = [c0(X)]α

which is natural generalization of the scalar case cα0 = cα = `α∞ = `1.
Bhardwaj and Gupta [5] introduced and studied the following difference sequence

spaces E(X,∆), E(X,∆v) and E(X,∆r) as follows:

E(X,∆) = {x = (xk) ∈ ω(X) : (∆xk) ∈ E(X)}
E(X,∆v) = {x = (xk) ∈ ω(X) : (vk(xk − xk+1)) ∈ E(X)}
E(X,∆r) = {x = (xk) ∈ ω(X) : (∆rxk) ∈ E(X)}

for E ∈ {`∞, c, c0} and compute their generalized β-Köthe Toeplitz duals.

In the present paper, we compute the generalized α-Köthe Toeplitz duals of differ-
ence sequence spaces E(X,∆), E(X,∆r) and E(X,∆v) for E ∈ {`∞, c, c0}. The re-
sults agree with those of the classical spaces E(∆), E(∆r) and E(∆v) for X = Y = C.

2. Generalized α-Köthe Toeplitz duals of difference sequence spaces E(X,∆)
and further generalizations

In the present snippet, we compute the generalized α-Köthe Toeplitz duals of dif-
ference sequence spaces E(X,∆), E ∈ {`∞, c, c0}. It is observed that results obtained
agree with that of Kizmaz [12] for X = Y = C and hence a generalization from scalar
valued theory to Banach space valued theory. Apart from this, we extend these re-
sults in the setting of generalized difference sequence spaces E(X,∆r), E ∈ {`∞, c, c0},
r ≥ 0 integer.

Proposition 2.1. (Ak) ∈ cα0 (X,∆) iff there exists integer m > 0 such that
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(i) Ak ∈ B(X, Y ) for all k ≥ m and
(ii)

∑
k≥m k‖Ak‖ <∞.

Proof. Sufficiency: Let (i) and (ii) hold and x = (xk) ∈ c0(X,∆). Then xk−xk+1 →
θ as k →∞ and so supk ‖xk − xk+1‖ <∞. Now

‖xk − xk+1‖ ≤

∥∥∥∥∥
k∑
v=1

(xv − xv+1)

∥∥∥∥∥ ≤
k∑
v=1

‖xv − xv+1‖ = O(k).

Also

‖xk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − x1‖+ ‖x1‖ for every k,

which implies k−1‖xk‖ ≤ k−1O(1) + O(1) + k−1‖x1‖. Thus supk k
−1‖xk‖ < ∞. Also

by (ii) for given ε > 0, there exists an integer k1 ≥ m such that
∑

k≥k1 k‖Ak‖ <
ε
M

where M = supk k
−1‖xk‖. Now∑
k≥k1

‖Akxk‖ ≤
∑
k≥k1

(k‖Ak‖)(k−1‖xk‖) < M.
ε

M
= ε.

Thus
∑

k≥k1 ‖Akxk‖ converges and (Ak) ∈ cα0 (X,∆).
Necessity: suppose (Ak) ∈ cα0 (X,∆) but no m ∈ N exists for which Ak ∈ B(X, Y )

for all k ≥ m. Then there exists a sequence (ki) of natural numbers m ≤ k1 < k2 < . . .
with Aki /∈ B(X, Y ) for each i ≥ 1. Thus for each i ≥ 1, we can find zi ∈ S such that
‖Akizi‖ > i. Define

xk =

{ zi
i

for k = ki , i ≥ 1

θ otherwise.

Then x = (xk) ∈ c0(X,∆) and ‖Akixki‖ > 1 for each i ≥ 1. This implies
∑

k ‖Akxk‖
diverges, which contradicts that (Ak) ∈ cα0 (X,∆). Hence the Ak

′
s are ultimately

bounded.
Now suppose (ii) does not holds, i.e.,

∑
k≥m k‖Ak‖ = ∞. Following Maddox [15],

there exists natural numbers n(1) < n(2) < ... with n(1) ≥ m such that for each

i ≥ 1,
∑n(i+1)

1+n(i) k‖Ak‖ > 2n(i+1). Moreover, for each k ≥ m, there exists zk ∈ S such

that ‖Ak‖ ≤ 2‖Akzk‖. Define

xk =

{
k
2k
zk for n(i) < k ≤ n(i+ 1), i ≥ 1
θ otherwise.

Then x = (xk) ∈ c0(X,∆) but

n(i+1)∑
1+n(i)

‖Akxk‖ =

n(i+1)∑
1+n(i)

k

2k
‖Akzk‖

>
1

2

n(i+1)∑
1+n(i)

k

2k
‖Ak‖

>
1

2

n(i+1)∑
1+n(i)

k‖Ak‖
2n(i+1)

>
1

2
for each i ≥ 1,

shows that
∑

k ‖Akxk‖ =∞, which is a contradiction to
∑

k ‖Akxk‖ <∞. Hence (ii)
holds.
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Proposition 2.2. (Ak) ∈ cα(X,∆) iff there exists integer m > 0 with

(i) Ak ∈ B(X, Y ) for all k ≥ m and
(ii)

∑
k≥m k‖Ak‖ <∞.

Proof. Sufficiency: Let (i) and (ii) hold and x = (xk) ∈ c(X,∆). Then (xk−xk+1) ∈
c(X) and so supk ‖xk − xk+1‖ <∞. Arguing in the same way, as in sufficiency portion
of Proposition 2.1, we get (Ak) ∈ cα(X,∆).

Necessity: Since cα(X,∆) ⊂ cα0 (X,∆), so the necessary part follows from the
necessary part of Proposition 2.1.

Proposition 2.3. (Ak) ∈ `α∞(X,∆) iff there exists integer m > 0 such that

(i) Ak ∈ B(X, Y ) for all k ≥ m and
(ii)

∑
k≥m k‖Ak‖ <∞.

Proof. Sufficiency: Let (i) and (ii) hold and x = (xk) ∈ `∞(X,∆). Then (xk −
xk+1) ∈ `∞(X) and so supk ‖xk − xk+1‖ < ∞. Arguing in the same way, as in
Proposition 2.1, we get (Ak) ∈ `α∞(X,∆).

Necessity: Since `α∞(X,∆) ⊂ cα0 (X,∆), so the result follows in view of Proposition
2.1.

Corollary 2.4. [c0(X,∆)]α = [c(X,∆)]α = [`∞(X,∆)]α.

Corollary 2.5. [c0(∆)]α = [c(∆)]α = [`∞(∆)]α = {(ak) :
∑

k k|ak| <∞}.

Proof. As in case X = Y = C, the operator Ak may be replace by scalar ak, hence
the result follows from Proposition 2.1, Proposition 2.2 and Proposition 2.3.

Before proceeding further in this section, we recall the following

c0(X,∆r) = {(xk) : (∆rxk) ∈ c0}
c(X,∆r) = {(xk) : (∆rxk) ∈ c}
`∞(X,∆r) = {(xk) : (∆rxk) ∈ `∞} .

Obviously, taking X = C, the above spaces reduce to `∞(∆r), c(∆r) and c0(∆r)
respectively of [7].

Lemma 2.6. If supk ‖∆rxk‖ <∞ then supk k
−1‖∆r−1xk‖ <∞, r ∈ N.

Proof. Let supk ‖∆rxk‖ <∞, i.e., supk ‖∆r−1xk −∆r−1xk+1‖ <∞. Now

‖∆r−1x1 −∆r−1xk+1‖ =

∥∥∥∥∥
k∑
v=1

(
∆r−1xv −∆r−1xv+1

)∥∥∥∥∥
≤

k∑
v=1

‖∆r−1xv −∆r−1xv+1‖ = O(k)

and this holds for each k ∈ N. Also

‖∆r−1xk‖ ≤ ‖∆r−1x1‖+ ‖∆r−1xk+1 −∆r−1x1‖+ ‖∆r−1xk −∆r−1xk+1‖

for each k ∈ N, which implies supk k
−1‖∆r−1xk‖ <∞.

Lemma 2.7. If supk k
−i‖∆r−ixk‖ < ∞ then supk k

−(i+1)
∥∥∆r−(i+1)xk

∥∥ < ∞, for all
i, r ∈ N and 1 ≤ i ≤ r.
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Proof. Let supk k
−i‖∆r−ixk‖ <∞. Then∥∥∆r−(i+1)x1 −∆r−(i+1)xk+1

∥∥ =

∥∥∥∥∥
k∑
v=1

(
∆r−(i+1)xv −∆r−(i+1)xv+1

)∥∥∥∥∥
≤

k∑
v=1

∥∥∆r−(i+1)xv −∆r−(i+1)xv+1

∥∥
=

k∑
v=1

∥∥∆r−ixv
∥∥ = O

(
ki+1

)
.

Also∥∥∥∆r−(i+1)xk

∥∥∥ ≤ ∥∥∥∆r−(i+1)x1

∥∥∥+
∥∥∥∆r−(i+1)xk+1 −∆r−(i+1)x1

∥∥∥+
∥∥∥∆r−(i+1)xk −∆r−(i+1)xk+1

∥∥∥
which implies supk k

−(i+1)
∥∥∆r−(i+1)xk

∥∥ <∞.

Corollary 2.8. If supk k
−1 ‖∆r−1xk‖ <∞ then supk k

−r ‖xk‖ <∞.

Proof. Repeated application of Lemma 2.7, yields the result.

Proposition 2.9. (Ak) ∈ cα0 (X,∆r) iff there exists integer m > 0 such that

(i) Ak ∈ B(X, Y ) for all k ≥ m and
(ii)

∑
k≥m k

r‖Ak‖ <∞.

Proof. Sufficiency: Let (i) and (ii) hold and x = (xk) ∈ cα0 (X,∆r). Then (∆rxk) ∈
c0(X) and so supk ‖∆rxk‖ <∞. Now Lemma 2.6 and Corollary 2.8, yields supk k

−r‖xk‖ <
∞. Also for given ε > 0, there exists an integer k1 ≥ m such that

∑
k≥k1 k

r‖Ak‖ < ε
M

where M = supk k
−r‖xk‖. Now∑

k≥k1

‖Akxk‖ ≤
∑
k≥k1

‖Ak‖‖xk‖

=
∑
k≥k1

(kr‖Ak‖)(k−r‖xk‖) ≤M
ε

M
= ε.

Thus
∑

k ‖Akxk‖ converges and (Ak) ∈ cα0 (X,∆r).
Necessity: (Ak) ∈ cα0 (X,∆r) but no m exists such that Ak ∈ B(X, Y ) for all k ≥ m.

Then there exists natural numbers k1 < k2 < . . . and zi ∈ S such that for each i ≥ 1,
‖Akizi‖ > 2i. Define

xk =

{ zi
2i

for k = ki, for each i ≥ 1

θ otherwise.

Then x = (xk) ∈ c0(X,∆r) but ‖Akxk‖ > 1 for k = ki, i ≥ 1, which is a contradiction
as
∑

k ‖Akxk‖ converges. Hence condition (i) holds.
Next, suppose if possible, that

∑
k≥m k

r‖Ak‖ = ∞. Then there exists an increas-
ing(strictly) sequence 〈n(i)〉 with n(1) ≥ m and sequence 〈zk〉 in S such that 2‖Akzk‖ ≥
‖Ak‖ and

∑n(i+1)
1+n(i) k

r‖Ak‖ > 2n(i+1). Define

xk =

{
kr

2k
zk for n(i) < k ≤ n(i+ 1), i ≥ 1

θ otherwise.
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Then x = (xk) ∈ c0(X,∆r) but

n(i+1)∑
1+n(i)

‖Akxk‖ =

n(i+1)∑
1+n(i)

kr

2k
‖Akzk‖

>
1

2

n(i+1)∑
1+n(i)

kr‖Ak‖
2n(i+1)

>
1

2
for each i ≥ 1,

show that
∑

k ‖Akxk‖ diverges, contrary to the fact that
∑

k ‖Akxk‖ <∞. Hence (ii)
holds and proposition is proved.

The proofs of the following runs on the similar lines as that of the above propositions
and corollaries and hence omitted.

Proposition 2.10. (Ak) ∈ cα(X,∆r) iff there exists integer m > 0 with

(i) Ak ∈ B(X, Y ) for all k ≥ m and
(ii)

∑
k≥m k

r‖Ak‖ <∞.

Proof. The proof runs on similar lines as that of Proposition 2.2 and hence omitted.

Proposition 2.11. The conditions (i) and (ii) of Proposition 2.10 are also neces-
sary as well as sufficient for (Ak) ∈ `α∞(X,∆r).

Corollary 2.12. cα0 (X,∆r) = cα(X,∆r) = `α∞(X,∆r).

Remark 2.13. From Corollary 2.12,

1. For r = 1, we obtained [c0(X,∆)]α = [c(X,∆)]α = [`∞(X,∆)]α, i.e. Corollary
2.4.

2. For r = 0, we get results obtained by Maddox [15], i.e. [c0(X)]α = [c(X)]α =
[`∞(X)]α.

3. For r = 1, and X = Y = C, we get the corresponding results of Kizmaz [12].
4. For X = Y = C, we deduce the corresponding results of Et and Çolak [7].

3. Generalized α-Köthe Toeplitz Dual of sequence space E(X,∆v)

In this snippet, we investigate the generalized α-Köthe Toeplitz duals of the fol-
lowing sequence spaces E(X,∆v) for E ∈ {`∞, c, c0} and give a generalization to the
existing results (for scalar valued) on duality theory.

Before stepping further, we recall the spaces E(X,∆v), introduced by Bhardwaj
and Gupta [5] as follows:

`∞(X,∆v) = {x = (xk) : (vk(xk − xk+1)) ∈ `∞(X)}
c(X,∆v) = {x = (xk) : (vk(xk − xk+1)) ∈ c(X)}
c0(X,∆v) = {x = (xk) : (vk(xk − xk+1)) ∈ c0(X)} .

Clearly, forX = C, these spaces are nothing but the spaces introduced by Gnanaseelan
and Srivastva [9].

Lemma 3.1. If supk ‖vk(xk − xk+1)‖ <∞, then supk k
−1 ‖vkxk‖ <∞.
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Proof. Let supk ‖vk(xk − xk+1)‖ <∞. We get

‖x1 − xk+1‖ =

∥∥∥∥∥
k∑
i=1

(xi − xi+1)

∥∥∥∥∥ ≤
k∑
i=1

‖xi − xi+1‖

=
k∑
i=1

‖vi(xi − xi+1)‖
∣∣v−1
i

∣∣
= O(1)

k∑
i=1

∣∣v−1
i

∣∣ = O(1)
(
k−1|vk|

) k∑
i=1

∣∣v−1
i

∣∣ k ∣∣v−1
k

∣∣
= O(k

∣∣v−1
k

∣∣) (using 2).

Also

‖xk‖ = ‖xk − xk+1 + xk+1 − x1 + x1‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − x1‖+ ‖x1‖

for every k, which implies

k−1‖vkxk‖ ≤ k−1 |vk| ‖xk − xk+1‖+ k−1 |vk| ‖xk+1 − x1‖+ k−1 |vk| ‖x1‖.

Using (3), we get, k−1‖vkxk‖ ≤ k−1O(1) +O(1) + k−1 |vk| ‖x1‖.
Hence supk k

−1 ‖vkxk‖ <∞ by (3).

Proposition 3.2. (Ak) ∈ cα0 (X,∆v) iff there exists integer m > 0 such that
Ak ∈ B(X, Y ) for all k ≥ m and

∑
k≥m k

∣∣v−1
k

∣∣ ‖Ak‖ <∞.

Proof. Sufficiency: Let x = (xk) ∈ c0(X,∆v). Then vk(xk − xk+1) → θ as k → ∞
and so supk ‖vk(xk − xk+1)‖ <∞. By Lemma 3.1, we get supk k

−1 ‖vkxk‖ <∞. Also
for given ε > 0, there exists an integer k1 ≥ m such that

∑
k≥k1 k

∣∣v−1
k

∣∣ ‖Ak‖ < ε
M

where M = supk k
−1‖vkxk‖. Now∑

k≥k1

‖Akxk‖ ≤
∑
k≥k1

(
k
∣∣v−1
k

∣∣ ‖Ak‖)(k−1 |vk| ‖xk‖
)
< M.

ε

M
= ε.

Thus
∑

k ‖Akxk‖ converges and (Ak) ∈ cα0 (X,∆v).
Necessity: (Ak) ∈ cα0 (X,∆v) but no m exists such that Ak ∈ B(X, Y ) for all k ≥ m.

Then there exists natural numbers k1 < k2 < . . . and zi ∈ S such that for each i ≥ 1,
‖Akizi‖ > 2i|v−1

ki
|. Now the sequence x = (xk) defined by

xk =

{ zi
2i
∣∣v−1
ki

∣∣ for k = ki, i ≥ 1,

θ otherwise,
is in c0(X,∆v)

but ‖Akixki‖ > 1 and so
∑

k ‖Akxk‖ diverges, which is a contradiction to (Ak) ∈
cα0 (X,∆v).
Next, suppose that

∑
k≥m k

∣∣v−1
k

∣∣ ‖Ak‖ =∞. Then there exists an increasing(strictly)

sequence 〈n(i)〉 of positive integers such that
∑n(i+1)

1+n(i) k
∣∣v−1
k

∣∣ ‖Ak‖ > 2n(i+1). Moreover

for each k ≥ m, there exists a sequence 〈zk〉 in S such that 2‖Akzk‖ ≥ ‖Ak‖. Now
define x = (xk) by

xk =

{
k

2k
∣∣v−1
k

∣∣ zk for n(i) < k ≤ n(i+ 1), i ≥ 1

θ otherwise.
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Then x = (xk) ∈ c0(X,∆v) but for each i,

n(i+1)∑
1+n(i)

‖Akxk‖ =

n(i+1)∑
1+n(i)

k

2k
∣∣v−1
k

∣∣ ‖Akzk‖ ≥ 1

2

n(i+1)∑
1+n(i)

k

2k
∣∣v−1
k

∣∣ ‖Ak‖
≥ 1

2

n(i+1)∑
1+n(i)

k

2n(i+1)

∣∣v−1
k

∣∣ ‖Ak‖ > 1

2

which show that
∑

k≥m ‖Akxk‖ diverges, again contradictory.

Proposition 3.3. (Ak) ∈ cα(X,∆v) iff there exists integer m > 0 with Ak ∈
B(X, Y ) for all k ≥ m and

∑
k≥m k

∣∣v−1
k

∣∣ ‖Ak‖ <∞.

Proof. Sufficiency: Let Ak ∈ B(X, Y ) for all k ≥ m and
∑

k≥m k
∣∣v−1
k

∣∣ ‖Ak‖ < ∞.
In order to prove (Ak) ∈ cα(X,∆v), let x = (xk) ∈ c(X,∆v). Then (vk(xk − xk+1)) ∈
c(X) and so supk ‖vk(xk − xk+1)‖ < ∞. Arguing in the same way as in Proposition
3.2, we get (Ak) ∈ cα(X,∆v)

Necessity: As cα(X,∆v) ⊂ cα0 (X,∆v), so the proof follows from Proposition 3.2.

Proposition 3.4. (Ak) ∈ `α∞(X,∆v) iff there exists integer m > 0 with Ak ∈
B(X, Y ) for all k ≥ m and

∑
k≥m k

∣∣v−1
k

∣∣ ‖Ak‖ <∞.

Proof. Proof runs on similar lines as in Proposition 3.3 and hence left for reader.

Corollary 3.5. (a) cα0 (X,∆v) = cα(X,∆v) = `α∞(X,∆v)
(b) cα0 (X,∆) = cα(X,∆) = `α∞(X,∆)
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[11] S. A. Khan, Cesàro difference sequence spaces and its duals, Int. J. Math. Appl. 11 (1) (2023),
41–48.
http://ijmaa.in/index.php/ijmaa/article/view/883

[12] H. Kizmaz, On certain sequence spaces, Canad. Math. bull. 24 (2) (1981) 169–176.
https://doi.org/10.4153/CMB-1981-027-5

[13] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Deker. Inc., New York and
Basel.
https://books.google.co.in/books?id=-HoZAQAAIAAJ

[14] G. G. Lorentz and M. S. Macphail, Unbounded operators and a theorem of A. Robinson, Trans.
Royal Soc. Canada. 46 (1952), 33–37.

[15] I. J. Maddox, Infinite matrices of operators, Lecture notes Math.- Berlin etc. Springer 1980.
https://doi.org/10.1007/bfb0088196

[16] E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference sequences of
order m and matrix transformations, Acta Math. Sin. (Engl. Ser.) 23 (3) (2007), 521–532.
https://doi.org/10.1007/s10114-005-0719-x

[17] E. Malkowsky and S. D. Parashar, Matrix transformations in spaces of bounded and convergent
difference sequences of order m, Analysis. 17 (1) (1997), 87–98.
https://doi.org/10.1524/anly.1997.17.1.87

[18] N. Rath, Operator duals of some sequence-spaces, Indian J. Pure Appl. Math. 20 (10) (1989),
953–963.

[19] A. Robinson, On functional transformations and summability, Proc. London Math. Soc. 1950.
https://doi.org/10.1112/plms/s2-52.2.132

[20] J. K. Srivastava and B. K. Srivastava, Generalized sequence space c0(X,λ, p), Indian J. Pure
Appl Math. 27 (1996), 73–84.

[21] S. Suantai and W. Sanhan, On β-dual of vector-valued sequence spaces of Maddox, Int. J. Math.
Math. Sci. 30 (2001), 385–392.
https://doi.org/10.1155/s0161171202012772

Sandeep Gupta
Department of Mathematics, Arya P.G. College, Panipat-132103, India
E-mail : sandeep80.gupta@rediffmail.com

Ritu
Department of Mathematics, Baba Mastnath University,
Asthal Bohar, Rohtak-124021, India
E-mail : ritukharb91@gmail.com

Manoj Kumar
Department of Mathematics, Baba Mastnath University,
Asthal Bohar, Rohtak-124021, India
E-mail : manojantil18@gmail.com

https://www.researchgate.net/publication/284263561
https://www.researchgate.net/publication/247009485
https://www.ripublication.com/gjpam18/gjpamv14n4_06.pdf
http://ijmaa.in/index.php/ijmaa/article/view/883
https://doi.org/10.4153/CMB-1981-027-5
https://books.google.co.in/books?id=-HoZAQAAIAAJ
https://doi.org/10.1007/bfb0088196
https://doi.org/10.1007/s10114-005-0719-x
https://doi.org/10.1524/anly.1997.17.1.87
https://doi.org/10.1112/plms/s2-52.2.132
https://doi.org/10.1155/s0161171202012772

