New Lacunary Strong Convergence Difference Sequence Spaces Defined by Sequence of Moduli

VAKEEL A. KHAN AND Q. M. DANISH LOHANI

Department of Mathematics, A. M. U. Aligarh-202002, India

e-mail: vakhan@math.com and danishlohani@rediff.mail.com

ABSTRACT. In this paper, we define \triangle^m -Lacunary strongly convergent sequences defined by sequence of moduli and give various properties and inclusion relations on these sequence spaces.

1. Introduction

Let ω be the set of all sequences of real or complex numbers and l_{∞} , c and c_0 be the sets of all bounded, convergent sequences and sequences convergent to zero respectively, normed by

$$||x||_{\infty} = \sup_{k} |x_k|,$$

where $k \in \mathbb{N} = \{1, 2, \dots\}$, the set of positive integers.

The difference sequence space $X(\triangle)$ was introduced by Kizmaz [3] as follows

$$X(\triangle) = \{x = (x_k) \in \omega : (\triangle x_k) \in X\} \text{ for } X = l_\infty, c \text{ and } c_0,$$

where $\triangle x_k = (x_k - x_{k+1})$ for all $k \in \mathbb{N}$.

The difference sequence spaces were generalized by Et and Colak [1] as follows

$$X(\triangle^m) = \{x = (x_k) \in \omega : \triangle^m x = (\triangle^m x_k) \in X\} \text{ for } X = l_\infty, c \text{ and } c_0,$$

where
$$\triangle^m x_k = (\triangle^{m-1} x_k - \triangle^{m-1} x_{k+1}).$$

A sequence of positive integers $\theta=(k_r)$ is called "lacunary" if $k_0=0,\ 0< k_r< K_{r+1}$ and $h_r=k_r-k_{r-1}\to\infty$ as $r\to\infty$. The intervals determined by θ will be denoted by $I_r=(k_{r-1},k_r)$ and $q_r=\frac{k_r}{k_{r-1}}$. The space of lacunary strongly convergent sequence L_θ was defined by Freedman et al [2] as:

$$L_{\theta} = \{x = (x_k) : \lim_{r} \frac{1}{h_r} \sum_{k \in I_r} |x_k - l| = 0 \text{ for some } l\}.$$

Received February 26, 2005.

2000 Mathematics Subject Classification: $40{\rm C}05,\,46{\rm A}45.$

Key words and phrases: difference sequence, Lacunary sequence, sequence of moduli.

The space L_{θ} is a BK-space with the norm

$$||x||_{\theta} = \sup_{r} \frac{1}{h_r} \sum_{k \in I_r} |x_k|.$$

 L_{θ}^{0} denotes the subset of L_{θ} those sequences for which l=0 in the definition of L_{θ} . $(L_{\theta}^{0},||.||_{\theta})$ is also a BK-space. There is a relation (see [2]) between L_{θ} and the space $|\sigma_{1}|$ of strongly Cesaro summable sequences defined by

$$|\sigma_1| = \{x \in \omega : \frac{1}{n} \sum_{k=1}^n |x_k - l| = 0, \text{ for some } l\}.$$

For $\theta = (2^r)$ we have $L_{\theta} = |\sigma_1|$.

Definition 1.1. A function $f:[0,\infty)\to[0,\infty)$ is called a modular if

- (1) f(t) = 0 if and only if t = 0,
- (2) $f(t+u) \le f(t) + f(u)$ for all $t, u \ge 0$,
- (3) f is increasing, and
- (4) f is continuous from the right of 0.

Let X be a sequence space. Then the sequence space X(f) is defined as

$$X(f) = \{x = (x_k) : (f(|x_k|)) \in X\}$$

for a modulus f([6], [8]).

Kolk [4], [5] gave an extension of X(f) by considering a sequence of moduli $F = (f_k)$ i.e.,

$$X(F) = \{x = (x_k) : (f_k(|x_k|)) \in X\}.$$

2. Main results

For a sequence $F = (f_k)$ of moduli, we define following sequence spaces

$$L_{\theta}(\triangle^{m}, F) = \{x \in \omega : \lim_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}(|\triangle^{m}x_{k} - l|) = 0 \text{ for some } l\},$$

$$L_{\theta}^{0}(\triangle^{m}, F) = \{x \in \omega : \lim_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}(|\triangle^{m}x_{k}|) = 0 \}, \text{ and}$$

$$L_{\theta}^{\infty}(\triangle^{m}, F) = \{x \in \omega : \lim_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f_{k}(|\triangle^{m}x_{k}|) < \infty\}.$$

Theorem 2.1. The sets $L^0_{\theta}(\triangle^m, F)$, $L_{\theta}(\triangle^m, F)$ and $L^{\infty}_{\theta}(\triangle^m, F)$ are linear spaces.

Proof. Let $x, y \in L_{\theta}(\Delta^m, F)$ and $\alpha, \beta \in \mathbb{C}$. Then exists positive integers N_{α} and M_{β} such that $|\alpha| \leq N_{\alpha}$ and $|\beta| \leq M_{\beta}$. From the definition of modulus function and Δ^m we have

$$\frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^m (\alpha x_k + \beta y_k) - (\alpha l_1 + \beta l_2)|) \\
\leq N_\alpha \frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^m x_k - l_1|) + M_\beta \frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^m y_k - l_2|) \to 0, \quad r \to \infty.$$

Thus $L_{\theta}(\triangle^m, F)$ is a linear space.

Lemma 1 ([7]). Let $F = (f_k)$ be a sequence of moduli and let $0 < \delta < 1$. Then for each $x > \delta$ we have $f_k(x) \leq 2f_k(1)\delta^{-1}x$.

Theorem 2.2. Let $F = (f_k)$ be a sequence of moduli. Then $L_{\theta}(\triangle^m) \subset L_{\theta}(\triangle^m, F)$.

Proof. Let $x \in L_{\theta}(\triangle^m)$. Then we have

(2.1)
$$\tau_r = \frac{1}{h_r} \sum_{k \in I_r} |\triangle^m x_k - l| \to 0 \quad as \quad r \to \infty, \quad \text{for some } l.$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f_k(u) < \epsilon$ for every u with $0 \le u \le \delta$. Then we can write

$$\frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^m x_k - l|)$$

$$= \frac{1}{h_r} \sum_{k \in I_r, |\triangle^m x_k - l| \le \delta} f_k(|\triangle^m x_k - l|) + \frac{1}{h_r} \sum_{k \in I_r, |\triangle^m x_k - l| > \delta} f_k(|\triangle^m x_k - l|)$$

$$\leq \frac{1}{h_r} (h_r \epsilon) + \frac{1}{h_r} 2f_k(1) \delta^{-1} h_r \tau_r \text{ (from Lemma 1)}.$$

Therefore $x \in L_{\theta}(\Delta^m, F)$.

Theorem 2.3. Let $F = (f_k)$ be a sequence of moduli, if $\lim_{t \to \infty} \frac{f_k(t)}{t} = \gamma > 0$, then $L_{\theta}(\triangle^m) = L_{\theta}(\triangle^m, F)$.

Proof. We need to show that $L_{\theta}(\triangle^m, F) \subset L_{\theta}(\triangle^m)$. Let $\gamma > 0$ and $x \in L_{\theta}(\triangle^m, F)$. Since $\gamma > 0$, we have $f_k(t) > \gamma t$ for all $t \ge 0$. Hence we have

$$\frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^m x_k - l|) \ge \frac{1}{h_r} \sum_{k \in I_r} \gamma |\triangle^m x_k - l| = \frac{1}{h_r} \gamma \sum_{k \in I_r} |\triangle^m x_k - l|.$$

Therefore we have $x \in L_{\theta}(\triangle^m)$. Hence $L_{\theta}(\triangle^m, F) \subset L_{\theta}(\triangle^m)$. On the other hand, by Theorem 2.2 we have $L_{\theta}(\triangle^m) \subset L_{\theta}(\triangle^m, F)$. Thus $L_{\theta}(\triangle^m) = L_{\theta}(\triangle^m, F)$. \square

Theorem 2.4. Let $m \ge 1$ be a fixed integer, then

- $(1) \ L^0_{\theta}(\triangle^{m-1}, F) \subset L^0_{\theta}(\triangle^m, F);$
- (2) $L_{\theta}(\triangle^{m-1}, F) \subset L_{\theta}(\triangle^{m}, F);$
- (3) $L_{\theta}^{\infty}(\triangle^{m-1}, F) \subset L_{\theta}^{\infty}(\triangle^{m}, F);$

and the inclusions are strict.

Proof. The proof of the inclusions follows from the following inequality

$$\frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^m x_k|) \le \frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^{m-1} x_k|) + \frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^{m-1} x_{k+1}|).$$

To show the inclusions are strict, let $\theta=(2^r)$ and $x=(k^m)$. Then $x\in (\triangle^m,F)$, but $x\notin (\triangle^{m-1},F)$. If $x=(k^m)$, then $\triangle^m x=(-1)^m m!$ and $\triangle^{m-1}x_k=(-1)^{m+1}r!(k+\frac{(m-1)}{2})$.

Theorem 2.5. Let $\theta = (k_r)$ be a lacunary sequence. If $1 < \liminf_r q_r \le \limsup_r q_r < \infty$, then $|\sigma_1|(\triangle^m, F) = L_{\theta}(\triangle^m, F)$, where

$$|\sigma_1|(\triangle^m, F) = \{x \in \omega : \frac{1}{n} \sum_{k=1}^n f_k(|\triangle^m x_k - l| = 0, \text{ for some } l\}.$$

Proof. Let $\liminf_r q_r > 1$, then there exists $\delta > 0$ such that $q_r = \frac{k_r}{k_r + 1} \ge 1 + \delta$ for all $r \ge 1$. Furthermore we have $\frac{k_r}{h_r} \le \frac{(1+\delta)}{\delta}$ and $\frac{k_{r-1}}{h_r} \le \frac{1}{\delta}$ for all $r \ge 1$. Then we write

$$\frac{1}{h_r} \sum_{k \in I_r} f_k(|\triangle^m x_i|) = \frac{1}{h_r} \sum_{i=1}^{k_r} f_k(|\triangle^m x_i|) - \frac{1}{h_r} \sum_{i=1}^{k_{r-1}} f_k(|\triangle^m x_i|)
= \frac{k_r}{h_r} \left(k_r^{-1} \frac{1}{h_r} \sum_{i=1}^{k_r} f_k(|\triangle^m x_i|) - \frac{k_{r-1}}{h_r} \left(k_{r-1}^{-1} \sum_{i=1}^{k_{r-1}} f_k(|\triangle^m x_i|) \right) \right).$$

Now suppose that the $\limsup_r q_r < \infty$ and let $\epsilon > 0$ be given. Then there exists j_0 such that for every $j \geq j_0$

$$A_j = \frac{1}{h_j} \sum_{i \in I_j} f_k(|\triangle^m x_i|) < \epsilon.$$

Choose a number M>0 such that $A_j\leq M$ for all j. If $\limsup_r q_r<\infty$, then there exists a number $\beta>0$ such that $q_r<\beta$ for every r. Now let n be any integer

with $k_{r-1} < n < k_r$. Then

$$\frac{1}{n} \sum_{i=1}^{n} f_{k}(|\triangle^{m} x_{i}|) \leq k_{r-1}^{-1} \sum_{i=1}^{k_{r}} f_{k}(|\triangle^{m} x_{i}|)$$

$$= k_{r-1}^{-1} \left\{ \sum_{i \in I_{1}} f_{k}(|\triangle^{m} x_{i}|) + \dots + \sum_{i \in I_{r}} f_{k}(|\triangle^{m} x_{i}|) \right\}$$

$$= k_{r-1}^{-1} \left\{ \sum_{j=1}^{j_{0}} \sum_{i \in I_{j}} f_{k}(|\triangle^{m} x_{i}|) + \sum_{j=j_{0}+1}^{r} \sum_{i \in I_{j}} f_{k}(|\triangle^{m} x_{i}|) \right\}$$

$$\leq k_{r-1}^{-1} \left\{ \sum_{j=1}^{j_{0}} \sum_{i \in I_{j}} f_{k}(|\triangle^{m} x_{i}|) + \epsilon(k_{r} - k_{j_{0}})k_{r-1}^{-1} \right\}$$

$$= k_{r-1}^{-1} h_{1} A_{1} + h_{2} A_{2} \dots + h_{j_{0}} A_{j_{0}} + \epsilon(k_{r} - k_{j_{0}})k_{r-1}^{-1}$$

$$\leq k_{r-1}^{-1} (\sup_{1 \leq i \leq j_{0}} A_{j})k_{j_{0}} + \epsilon(k_{r} - k_{j_{0}})k_{r-1}^{-1}$$

$$\leq Mk_{r-1}^{-1} k_{j_{0}} + \epsilon\beta.$$

Thus $x \in |\sigma_1|(\triangle^m, F)$.

References

- M. Et and Colak, On some generalized difference sequence spaces, Soochow J. of Math., 21(1995), 377-386.
- [2] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., 37(3)(1978), 508-520.
- [3] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24(2)(1981), 169-176.
- [4] E. Kolk, On strong boundedness and summability with respect to a sequence of moduli, Acta Comment. Univ. Tartu, 960(1993), 41-50.
- [5] E. Kolk, Inclusion theorems for some sequence spaces defined by a sequence of moduli, Acta Comment. Univ. Tartu, 970(1994), 65-72.
- [6] I. J. Maddox, Sequence spaces defined by a modulus, Math. Camb. Phil. Soc., 100(1986), 161-166.
- [7] S. Pehilvan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment Math. Univ. Carolin, 36(1995), 69-76.
- [8] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-975.