• Title/Summary/Keyword: die matching

Search Result 28, Processing Time 0.025 seconds

A Die-matching Method for 3D Memory Yield Enhancement considering Additional Faults during Bonding (3차원 메모리의 수율 증진을 위해 접합 공정에서 발생하는 추가 고장을 고려한 다이 매칭 방법)

  • Lee, Joo-Hwan;Park, Ki-Hyun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.30-36
    • /
    • 2011
  • Three-dimensional (3D) memories using through-silicon vias (TSVs) as vertical bus across memory layers are implemented by many semiconductor companies. 3D memories are composed of known-good-dies (KGDs). If additional faults are arisen during bonding, they should be repaired. In order to enhance the yield of 3D memories with inter-die redundancies, a die-matching method is needed to effectively stack memory dies in a 3D memory. In this paper, a new die-matching method is proposed for 3D memory yield enhancement with inter-die redundancies considering additional faults arisen during bonding. Three boundary-limited conditions are used in the proposed die-matching method; they set bounds to the search spaces for selecting memory dies to manufacture a 3D memory. Simulation results show that the proposed die-matching method can greatly enhance the 3D memory yield.

Development of Web Based Die Discrimination System by matching the information of vision with CAD Database (비전정보와 캐드 DB 의 매칭을 통한 웹기반 금형판별 시스템 개발)

  • 김세원;김동우;전병철;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.277-280
    • /
    • 2004
  • In recent die industry, web-based production control system is applied widely because of the improvement of IT technology. In result, many researches are published about remote monitoring at a long distance. The target of this study is to develop Die Discrimination System using web-based vision, and CAD API when client discriminates die in process at a long distance. Special feature of this system is to use 2D vision image and to match with DB. We can get discrimination result enough to want with short time and a little low precision in web-monitoring by development of this system.

  • PDF

A study on the efficient method of constrained iterative regular expression pattern matching (제약 반복적인 정규표현식 패턴 매칭의 효율적인 방법에 관한 연구)

  • Seo, Byung-Suk
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.34-38
    • /
    • 2022
  • Regular expression pattern matching is widely used in applications such as computer virus vaccine, NIDS and DNA sequencing analysis. Hardware-based pattern matching is used when high-performance processing is required due to time constraints. ReCPU, SMPU, and REMP, which are processor-based regular expression matching processors, have been proposed to solve the problem of the hardware-based method that requires resynthesis whenever a pattern is updated. However, these processor-based regular expression matching processors inefficiently handle repetitive operations of regular expressions. In this paper, we propose a new instruction set to improve the inefficient repetitive operations of ReCPU and SMPU. We propose REMPi, a regular expression matching processor that enables efficient iterative operations based on the REMP instruction set. REMPi improves the inefficient method of processing a particularly short sub-pattern as a repeat operation OR, and enables processing with a single instruction. In addition, by using a down counter and a counter stack, nested iterative operations are also efficiently processed. REMPi was described with Verilog and synthesized on Intel Stratix IV FPGA.

Post Silicon Management of On-Package Variation Induced 3D Clock Skew

  • Kim, Tak-Yung;Kim, Tae-Whan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.139-149
    • /
    • 2012
  • A 3D stacked IC is made by multiple dies (possibly) with heterogeneous process technologies. Therefore, die-to-die variation in 2D chips renders on-package variation (OPV) in a 3D chip. In spite of the different variation effect in 3D chips, generally, 3D die stacking can produce high yield due to the smaller individual die area and the averaging effect of variation on data path. However, 3D clock network can experience unintended huge clock skew due to the different clock propagation routes on multiple stacked dies. In this paper, we analyze the on-package variation effect on 3D clock networks and show the necessity of a post silicon management method such as body biasing technique for the OPV induced 3D clock skew control in 3D stacked IC designs. Then, we present a parametric yield improvement method to mitigate the OPV induced 3D clock skew.

S-Band Internally-Matched High Efficiency and High Power Amplifier Using GaN HEMT Die (GaN HEMT Die를 이용한 S-대역 내부 정합형 고효율 고출력 증폭기)

  • Kim, Sang-Hoon;Choi, Jin-Joo;Choi, Gil-Wong;Kim, Hyoung-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.540-545
    • /
    • 2015
  • This paper presents the design, fabrication and measurement results of a S-band internally-matched power amplifier using Gallium Nitride High Electron Mobility Transistor(GaN HEMT) die. In order to fabricate the S-band internally-matched power amplifier, a high dielectric substrate and alumina were used for input/output matching circuits. The measured output power is 55.4 dBm, the drain efficiency is 78 % and the power gain is 11 dB under pulse operation at the frequency of 3 GHz.

Design and Fabrication of Ku-Band Power Amplifier Using GaN HEMT Die (GaN HEMT Die를 이용한 Ku-대역 전력 증폭기 설계 및 제작)

  • Kim, Sang-Hoon;Kim, Bo-Ki;Choi, Jin-Joo;Jeong, Byeoung-Koo;Tae, Hyun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.646-652
    • /
    • 2014
  • This paper presents a design and fabrication of Ku-band power amplifier using Gallium Nitride High Electron Mobility Transistor (GaN HEMT) die. In order to fabricate the low-cost Ku-band power amplifier, a Printed Circuit Board(PCB) was used for input/output matching circuits instead of manufacturing process to use an expensive substrate. The measured output power is 42.6 dBm, the drain efficiency is 37.7 % and the linear gain is 7.9 dB under pulse operation at the frequency of 14.8 GHz. Under the continuous wave(CW) test, the output power is 39.8 dBm, the drain efficiency is 24.1 % and the linear gain is 7.2 dB.

Wafer Fail Pattern Classification Simulation (웨이퍼 오류 패턴 인식 시뮬레이션)

  • 김상진;한영신;이칠기
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2003
  • Semiconductor Manufacturing has emerged as one of the most important world industries. Even with the highly automated and precisely monitored facilities used to process the complex manufacturing steps in a near particle free environment, processing variations in wafer fabrication still exist. The causes of these variations may arise from equipment malfunctions, delicate and difficult processing steps, or human mistakes. In this paper, we could specify the cause stage and the cause equipment and take countermeasures at a speed by the conventional method, without depending on the experience and skills of the engineer

  • PDF

An Optimized Stacked Driver for Synchronous Buck Converter

  • Lee, Dong-Keon;Lee, Sung-Chul;Jeong, Hang-Geun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.186-192
    • /
    • 2012
  • Half-rail stacked drivers are used to reduce power consumption of the drivers for synchronous buck converters. In this paper, the stacked driver is optimized by matching the average charging and discharging currents used by high-side and low-side drivers. By matching the two currents, the average intermediate bias voltage can remain constant without the aid of the voltage regulator as long as the voltage ripple stays within the window defined by the hysteresis of the regulator. Thus the optimized driver in this paper can minimize the power consumption in the regulator. The current matching requirement yields the value for the intermediate bias voltage, which deviates from the half-rail voltage. Furthermore the required capacitance is also reduced in this design due to decreased charging current, which results in significantly reduced die area. The detailed analysis and design of the stacked driver is verified through simulations done using 5V MOSFET parameters of a typical 0.35-${\mu}m$ CMOS process. The difference in power loss between the conventional half-rail driver and the proposed driver is less than 1%. But the conventional half-rail driver has excess charge stored in the capacitor, which will be dissipated in the regulator unless reused by an external circuit. Due to the reduction in the required capacitance, the estimated saving in chip area is approximately 18.5% compared to the half-rail driver.

A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ-Δ Fractional-N Frequency Synthesizers

  • Chen, Zuow-Zun;Lee, Tai-Cheng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.179-192
    • /
    • 2008
  • A multiphase compensation method with mismatch linearization technique, is presented and demonstrated in a $\Sigma-\Delta$ fractional-N frequency synthesizer. An on-chip delay-locked loop (DLL) and a proposed delay line structure are constructed to provide multiphase compensation on $\Sigma-\Delta$ quantizetion noise. In the delay line structure, dynamic element matching (DEM) techniques are employed for mismatch linearization. The proposed $\Sigma-\Delta$ fractional-N frequency synthesizer is fabricated in a $0.18-{\mu}m$ CMOS technology with 2.14-GHz output frequency and 4-Hz resolution. The die size is 0.92 mm$\times$1.15 mm, and it consumes 27.2 mW. In-band phase noise of -82 dBc/Hz at 10 kHz offset and out-of-band phase noise of -103 dBc/Hz at 1 MHz offset are measured with a loop bandwidth of 200 kHz. The settling time is shorter than $25{\mu}s$.

Design of a Wide-Frequency-Range, Low-Power Transceiver with Automatic Impedance-Matching Calibration for TV-White-Space Application

  • Lee, DongSoo;Lee, Juri;Park, Hyung-Gu;Choi, JinWook;Park, SangHyeon;Kim, InSeong;Pu, YoungGun;Kim, JaeYoung;Hwang, Keum Cheol;Yang, Youngoo;Seo, Munkyo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.126-142
    • /
    • 2016
  • This paper presents a wide-frequency-range, low-power transceiver with an automatic impedance-matching calibration for TV-white-space (TVWS) application. The wide-range automatic impedance matching calibration (AIMC) is proposed for the Drive Amplifier (DA) and LNA. The optimal $S_{22}$ and $S_{11}$ matching capacitances are selected in the DA and LNA, respectively. Also, the Single Pole Double Throw (SPDT) switch is integrated to share the antenna and matching network between the transmitter and receiver, thereby minimizing the systemic cost. An N-path filter is proposed to reject the large interferers in the TVWS frequency band. The current-driven mixer with a 25% duty LO generator is designed to achieve the high-gain and low-noise figures; also, the frequency synthesizer is designed to generate the wide-range LO signals, and it is used to implement the FSK modulation with a programmable loop bandwidth for multi-rate communication. The TVWS transceiver is implemented in $0.13{\mu}m$, 1-poly, 6-metal CMOS technology. The die area of the transceiver is $4mm{\times}3mm$. The power consumption levels of the transmitter and receiver are 64.35 mW and 39.8 mW, respectively, when the output-power level of the transmitter is +10 dBm at a supply voltage of 3.3 V. The phase noise of the PLL output at Band 2 is -128.3 dBc/Hz with a 1 MHz offset.