• 제목/요약/키워드: derivations and generalized derivations

검색결과 93건 처리시간 0.026초

SEMIPRIME NEAR-RINGS WITH ORTHOGONAL DERIVATIONS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.303-310
    • /
    • 2006
  • M. $Bre\v{s}ar$ and J. Vukman obtained some results concerning orthogonal derivations in semiprime rings which are related to the result that is well-known to a theorem of Posner for the product of two derivations in prime rings. In this paper, we present orthogonal generalized derivations in semiprime near-rings.

  • PDF

REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN SEMIPRIME RINGS

  • Hongan, Motoshi;ur Rehman, Nadeem
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.535-542
    • /
    • 2017
  • Let R be an associative ring and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an (${\alpha},{\beta}$)-derivation of R if $d(xy)=d(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $D:R{\rightarrow}R$ is called a generalized (${\alpha},{\beta}$)-derivation of R associated with an (${\alpha},{\beta}$)-derivation d if $D(xy)=D(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].

ON GENERALIZED DERIVATIONS OF BE-ALGEBRAS

  • Kim, Kyung Ho
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.227-236
    • /
    • 2014
  • In this paper, we introduce the notion of a generalized derivation in a BE-algebra, and consider the properties of generalized derivations. Also, we characterize the fixed set $Fix_d(X)$ and Kerd by generalized derivations. Moreover, we prove that if d is a generalized derivation of a BE-algebra, every filter F is a d-invariant.

JORDAN GENERALIZED DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Bahmani, Mohammad Ali;Bennis, Driss;Vishki, Hamid Reza Ebrahimi;Attar, Azam Erfanian;Fahid, Barahim
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.721-739
    • /
    • 2018
  • In this paper, we investigate the problem of describing the form of Jordan generalized derivations on trivial extension algebras. One of the main results shows, under some conditions, that every Jordan generalized derivation on a trivial extension algebra is the sum of a generalized derivation and an antiderivation. This result extends the study of Jordan generalized derivations on triangular algebras (see [12]), and also it can be considered as a "generalized" counterpart of the results given on Jordan derivations of a trivial extension algebra (see [11]).

LINEAR 𝜃-DERIVATIONS ON JB*-TRIPLES

  • Bak, Chunkil
    • 충청수학회지
    • /
    • 제19권1호
    • /
    • pp.27-36
    • /
    • 2006
  • In [1], the concept of generalized (${\theta}$, ${\phi}$)-derivations on rings was introduced. We introduce the concept of linear ${\theta}$-derivations on $JB^*$-triples, and prove the Cauchy-Rassias stability of linear ${\theta}$-derivations on $JB^*$-triples.

  • PDF

PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS

  • Wei, Feng;Xiao, Zhankui
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.857-866
    • /
    • 2009
  • Let n be a fixed positive integer, R be a 2n!-torsion free prime ring and $\mu$, $\nu$ be a pair of generalized derivations on R. If < $\mu^2(x)+\nu(x),\;x^n$ > = 0 for all x $\in$ R, then $\mu$ and $\nu$ are either left multipliers or right multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-torsion free prime ring with the center $C_R$ and d, g be a pair of derivations on R. If < $d^2(x)+g(x)$, $x^n$ > $\in$ $C_R$ for all x $\in$ R, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • 대한수학회논문집
    • /
    • 제31권2호
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.