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Abstract. In this paper, we investigate the problem of describing the
form of Jordan generalized derivations on trivial extension algebras. One

of the main results shows, under some conditions, that every Jordan gen-

eralized derivation on a trivial extension algebra is the sum of a gener-
alized derivation and an antiderivation. This result extends the study of

Jordan generalized derivations on triangular algebras (see [12]), and also

it can be considered as a “generalized” counterpart of the results given
on Jordan derivations of a trivial extension algebra (see [11]).

1. Introduction and preliminaries

Throughout the paper R will denote a commutative ring with identity, A
will be a unital R-algebra with center Z(A) and M will be a unital A-bimodule.

For a ∈ A and m ∈ M , we use a ◦ m (resp., [a,m]) to denote the Jordan
product am+ma (resp., the Lie product am−ma) of a and m.

Let d : A −→ M and f : A −→ M be linear maps. Recall that f is said to
be a generalized d-derivation (or simply a generalized derivation) if

(1.1) f(ab) = f(a)b+ ad(b) (a, b ∈ A).

For d = f , a generalized d-derivation f is just the classical derivation. Following
[12], f is said to be a Jordan generalized d-derivation (or simply a Jordan
generalized derivation) if

(1.2) f(a ◦ b) = f(a) ◦ b+ a ◦ d(b) (a, b ∈ A).

For d = f , a Jordan generalized d-derivation f is just the classical Jordan
derivation.

Describing various kind of derivation on some algebra constructions has been
the subject of several interesting works. It mainly helps to construct new in-
teresting examples of algebras satisfying preassigned conditions. In particular,
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the construction of trivial extension algebras, which can be seen as a general-
ization of triangular algebras, has been used by many authors (see for example
[5, 9]) and in various contexts in order to produce new family of particular ex-
amples or to resolve some open questions (see for instance [17]). In this paper,
we mainly deal with the problem of describing the form of Jordan generalized
derivations on trivial extension algebras. One of our main result (Theorem
2.19) shows that, where the algebra A and the A-bimodule M are 2-torsion
free, if there exists a nontrivial idempotent e in A such that eme′ = m for
all m ∈ M, where e′ = 1 − e, and such that eAe′Ae = {0} = e′AeAe′ and
e′r.AnnA(M)e′ = {0} = el.AnnA(M)e, then every Jordan generalized deriva-
tion on A nM can be written as the sum of a generalized derivation and an
antiderivation. This result generalizes the study of Jordan generalized deriva-
tions on triangular algebras done by Li and Benkonič in [12]. Also, it can be
considered as a “generalized” counterpart of Ghahramani’s main result in [11].
To prove it, several preparatory results are given. Namely, we first character-
ize, in Section 2, the general form of Jordan generalized derivations, generalized
derivations and antiderivations on trivial extension algebras (see Lemmas 2.1,
2.2 and 2.3). Then, we characterize in terms of the form of their components
when every Jordan generalized derivation on a trivial extension algebra can be
written as a sum of a generalized derivation and an antiderivation (see Theorem
2.5). This approach allows us to treat each component of a Jordan generalized
derivation on a trivial extension algebra separately. For this, a few lemmas are
given (see Lemmas 2.8 to 2.18). The method followed in this paper allows us
to establish other new situations than those ones presented in [11], in which
Jordan generalized derivations are described (see Theorems 2.7 and 2.21).

In [2, Theorem 1.3], Benkovič proved (under some conditions) that every
f -derivation is a Jordan derivation. Then, naturally one can ask whether there
exists a “generalized” counterpart of Benkovič’s results. In Section 3, we answer
this natural question positively.

For the reader’s convenience we briefly recall the constructions of trivial
extension algebras and triangular algebras. Recall that the direct product
A × M together with the pairwise addition, scalar product and the algebra
multiplication defined by

(a,m)(b, n) = (ab, an+mb) (a, b ∈ A,m, n ∈M),

is a unital algebra which is called a trivial extension of A by M and will be
denoted by AnM .

The class of trivial extension algebras includes a wide variety of algebras
includes a triangular algebra

Tri(A,M,B) =

{(
a m

b

)
: a ∈ A,m ∈M, b ∈ B

}
;

where, A and B are unital algebras and M is a unital (A,B)-module, which
is faithful as a left A-module as well as a right B-module. Indeed, it can be
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readily verified that Tri(A,M,B) is isomorphic to the trivial extension algebra
(A⊕B)nM , where the algebra A⊕B has its usual pointwise operations and M
as an (A⊕B)-module is equipped with the module operations (a, b)m = am and
m(a, b) = mb; (a ∈ A, b ∈ B,m ∈M). Note that AnM is naturally isomorphic
to the subalgebra of Tri(A,M,A) consisting of matrices ( a ma ) where a ∈ A and
m ∈M .

Triangular algebras introduced by Cheung [7]; see also [6]. Upper triangular
matrix algebras, block upper triangular matrix algebras and nest algebras are
standard examples of triangular algebras. Following [6], an algebra A is said
to have a triangular matrix representation if A is isomorphic to a triangular
algebra. By [6, Theorem 5.1.4], a unital algebra A has a triangular matrix
representation if there exists a nontrivial idempotent e ∈ A such that (1 −
e)Ae = 0. Namely, in this case, A is isomorphic to Tri(eAe, eA(1 − e), (1 −
e)A(1− e)).

2. Jordan generalized derivations on A n M

Our aim is to study a Jordan generalized derivation on a trivial extension
algebra. We give conditions under which it is a sum of a generalized derivation
and an antiderivation. Let us start with a general description of these kind of
mappings on a trivial extension algebra.

Clearly, every linear mapping f : AnM −→ AnM can be presented in the
form

(2.1) f(a,m) = (fA(a) + h1(m), fM (a) + h2(m)) ((a,m) ∈ AnM),

where the linear mappings fA : A −→ A, fM : A −→ M , h1 : M −→ A and
h2 : M −→ M are given by fA(a) = (πA ◦ f)(a, 0), fM (a) = (πM ◦ f)(a, 0),
h1(m) = (πA ◦ f)(0,m) and h2(m) = (πM ◦ f)(0,m), respectively. Here πA :
A nM −→ A and πM : A nM −→ M are the natural projections given by
πA(a,m) = a and πM (a,m) = m, respectively.

In the sequel, we suppose that f has a presentation given as in (2.1), and a
linear map d on AnM with a presentation as follows

d(a,m) = (dA(a) + T (m), dM (a) + S(m)), ((a,m) ∈ AnM).

The following three lemmas are obtained using standard arguments.

Lemma 2.1. A linear map f is a Jordan generalized d-derivation if and only
if the following conditions hold:

(1) fA is a Jordan generalized dA-derivation,
(2) fM is a Jordan generalized dM -derivation,
(3) h1(a ◦m) = a ◦ h1(m) = a ◦ T (m) for all a ∈ A and m ∈M ,
(4) h2(a ◦m) = fA(a) ◦m+a ◦S(m) = a ◦h2(m) +dA(a) ◦m for all a ∈ A

and m ∈M ,
(5) m ◦ h1(n) + h1(m) ◦ n = 0 for all m,n ∈M .



724 BAHMANI, BENNIS, EBRAHIMI VISHKI, ERFANIAN ATTAR, AND FAHID

Lemma 2.2. A linear map f is a generalized d-derivation if and only if the
following conditions hold:

(1) fA is a generalized dA-derivation,
(2) fM is a generalized dM -derivation,
(3) h1(am) = ah1(m) and h1(ma) = h1(m)a for all a ∈ A and m ∈M ,
(4) h2(am) = fA(a)m + aS(m) and h2(ma) = h2(m)a + mdA(a) for all

a ∈ A and m ∈M ,
(5) mh1(n) + h1(m)n = 0 for all m,n ∈M .

Lemma 2.3. A linear map f is an antiderivation if and only if the following
conditions hold:

(1) fA and fM are antiderivations,
(2) h1(am) = h1(m)a and h1(ma) = ah1(m) for all a ∈ A and m ∈M ,
(3) h2(am) = h2(m)a + mfA(a) and h2(ma) = ah2(m) + fA(a)m for all

a ∈ A and m ∈M ,
(4) mh1(n) + h1(m)n = 0 for all m,n ∈M .

Remark 2.4. (1) Notice that when A nM has a triangular matrix repre-
sentation, h1 = 0 for a Jordan generalized derivation f on A n M .
However, in general h1 is not zero. For this we use the example given
in [1]: Consider the trivial extension M2(Z/2Z) n M2(Z/2Z) where
M2(Z/2Z) is the algebra of 2×2 matrices with entries from Z/2Z. Con-
sider the identity map h1 : M2(Z/2Z) → M2(Z/2Z). Since the map
h1 verified (3) and (5) in Lemma 2.1, the linear map f : M2(Z/2Z) n
M2(Z/2Z) → M2(Z/2Z) nM2(Z/2Z) defined by f((a, b)) = (h1(b), 0)
for all a, b ∈M2(Z/2Z) is a Jordan generalized derivation with h1 6= 0.
However, using the equation (5) in Lemma 2.1, we can give a situation
where h1 = 0 (see Lemma 2.6).

(2) Note also that if g : A→M is a Jordan generalized derivation with an
associated linear map dg, then

(2.2) 2g(a) = g(1) ◦ a+ 2dg(a) (a ∈ A).

Thus, if g(1) = 0 and M is a 2-torsion free A-module, f = d is a Jor-
dan derivation. However, as shown in the following example, f(1) is
not zero in general: Let A2 be the algebra of 2 × 2 upper triangular
matrix on R. Consider R as an A2-module under the module opera-
tions am = a22m and ma = ma11 (a ∈ A2,m ∈ R). Fix 0 6= α ∈ R
and define g : A2 n R −→ A2 n R with g(a,m) = (αa, a12 + αm).
Then g is a Jordan generalized derivation with an associated linear
map dg(a,m) = (0, a12) such that f(I22, 0) 6= 0.
In Lemma 2.6 we give a situation where g(1) = 0 for a Jordan general-
ized derivation g : A→M .

(3) From the proof of [12, Theorem 2.5], f(1) ∈ Z(A nM) when A nM
has a triangular matrix representation and f is a Jordan generalized d-
derivation. This was the key of the proof. Indeed, using [12, Theorem
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2.3], this implies that the mapping d is a Jordan derivation and f(x) =
f(1)x + d(x) for all x ∈ A nM . However, this does not hold for any
trivial extension algebra as shown by [12, Example 2].

Now we give the first fundamental result.

Theorem 2.5. Every Jordan generalized derivation on AnM can be written
as the sum of a generalized derivation and an antiderivation if and only if the
following conditions hold:

(1) Every Jordan generalized derivation g : A −→M is a sum of a gener-
alized derivation and an antiderivation,

(2) Every linear map h : M → A such that, for all a ∈ A,m, n ∈ M ,
h(a ◦ m) = a ◦ h(m) and m ◦ h(n) + h(m) ◦ n = 0, is a sum of
an A-antihomomorphism δ and an A-homomorphism β which satisfy
mδ(n) + δ(m)n = 0 = mβ(n) + β(m)n for all m,n ∈M ,

(3) Every Jordan generalized derivation f on AnM of the form f(a,m) =
(fA(a), h2(m)) (i.e., h1 = 0 and fM = 0 in the presentation (2.1)) can
be written as the sum of a generalized derivation and an antiderivation.

Proof. (⇒) We only need to prove (1) and (2).
(1) Let g be a Jordan generalized derivation from A into M . Clearly (0, g) is

a Jordan generalized derivation on AnM . Then, by hypothesis, there exist a
generalized derivation (δA+K′, δM+L′) and an antiderivation (DA+K, DM+L)
such that, for all a ∈ A,m ∈M ,

(0, g(a)) = (DA(a) +K(m) + δA(a) +K′(m), DM (a) +L(m) + δM (a) +L′(m))

Take a = 0, we get L(m) + L′(m) = 0. Hence g = DM + δM , we are done.
(2) By hypotheses (h, 0) is a Jordan generalized derivation on AnM . Then,

by hypothesis, there exist a generalized derivation (δA + K′, δM + L′) and an
antiderivation (DA +K, DM + L) such that, for all a ∈ A,m ∈M ,

(h(m), 0) = (DA(a) +K(m) + δA(a) +K′(m), DM (a) +L(m) + δM (a) +L′(m))

Take m = 0, we get DA + δA = 0 and DM + δM = 0. Therefore, h = K + K′,
as desired.

(⇐) Let f : A nM −→ A nM be a Jordan generalized d-derivation. By
hypothesis, h1 is a sum of an A-antihomomorphism δ and an A-homomorphism
β. Also, fM is a sum of a generalized derivation f1 and an antiderivation f2. On
the other hand, Lemma 2.1 shows that the linear map (a,m) 7−→ (fA(a), h2(m))
is a Jordan generalized derivation on A nM . Then, by (3), it can be written
as the sum of a generalized derivation Θ and an antiderivation ∆. Then,
f(a,m) = ((δ(a), f2(a)) + ∆(a,m)) + ((β(a), f1(a)) + Θ(a,m)), where, using
Lemmas 2.1, 2.2 and 2.3, (a,m) 7−→ (δ(a), f2(a))+∆(a,m) is an antiderivation
and (a,m) 7−→ (β(a), f1(a)) + Θ(a,m) is a generalized derivation. �

From [12, Theorem 2.5], triangular algebras are examples of algebras that
satisfy the conditions of Theorem 2.5. Our second main result (Theorem 2.19)
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generalizes both [12, Theorem 2.5] and [11, Theorem 3.1]. Before giving this
result, we treat another situation which is of independent interest. It gives new
other examples of algebras outside of the prime ones on which every Jordan
generalized derivation is a generalized derivation (see [12, Lemma 2.6] in which
it is shown that on prime algebras every Jordan generalized derivation is a
generalized derivation).

First we give the following lemma.

Lemma 2.6. Assume that A is 2-torsion free. If a linear map h : A → A
satisfies h(a ◦ b) = a ◦ h(b) and a ◦ h(b) + h(a) ◦ b = 0 for all a, b ∈ A, then
h = 0.

Proof. We have, for every two elements a, b ∈ A,

0 = a ◦ h(b) + h(a) ◦ b = 2h(a ◦ b).
Then, since A is 2-torsion free, h(a ◦ b) = 0. This implies that h = 0. �

Theorem 2.7. Assume that A is a 2-torsion free prime algebra. Then every
Jordan generalized d-derivation f on AnA is a generalized d-derivation of the
form f(x) = f(1)x+ d(x) for all x ∈ AnA.

Proof. Let f be a Jordan generalized d-derivation. Using [12, Lemma 2.6],
the Jordan generalized derivations fA and fM are generalized derivations (here
M = A). And, by Lemma 2.6, h1 = 0. Now, the relation h2(a ◦ b) = h2(a) ◦
b + a ◦ dA(b) shows that h2 is a Jordan generalized derivation, and so it is a
generalized derivation. Then, h2(ab) = h2(a)b + adA(b) = ah2(b) + dA(a)b.
Then, h2(1) ∈ Z(A). Indeed,

h2(1)a+ dA(a) = h2(1.a) = h2(a.1) = ah2(1) + dA(a).

It remains to prove that h2(ab) = fA(a)b + aS(b). We first show that S(b) =
fA(b)− bh2(1) + b ◦S(1). We have fA(a) ◦ b+ a ◦S(b) = h2(a ◦ b) = a ◦ fA(b) +
b ◦S(a). Then, h2(1) = fA(1) +S(1) and fA(1) ◦ b+ 2S(b) = 2fA(b) + b ◦S(1).
Hence, 2(bh2(1) − b ◦ S(1)) = b ◦ h2(1) − 2b ◦ S(1) = b ◦ (fA(1) − S(1)) =
2fA(b)− 2S(b). So

S(b) = fA(b)− bh2(1) + b ◦ S(1).

Now,

h2(ab)− fA(a)b− aS(b) = bfA(1a) + S(b)a− h2(ba)

= bfA(1)a+ bdA(a) + fA(b)a− bh2(1)a

+ bS(1)a+ S(1)ba− h2(b)a− bdA(a)

= fA(b)a+ S(1)ba− h2(b)a

= fA(b)a+ S(1)ba− (h2(1)b+ dA(b))a

= fA(b)a− fA(1)ba− dA(b)a

= fA(b)a− fA(b)a = 0.
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Finally, using [12, Proposition 2.1], f is of the form f(x) = f(1)x+ d(x) for all
x ∈ AnA. This completes the proof. �

Now we turn to our second aim. We study Jordan generalized derivations on
AnM when there exists a nontrivial idempotent e in A that satisfies eme′ = m
for all m ∈M (where e′ = 1− e). To get the second main result we need some
lemmas. First recall that the existence of the above idempotent implies the
following nice properties which will be used without explicit mention (see also
the remark given before [14, Theorem 2.2]).

Lemma 2.8 ([5, Proposition 2.5]). Consider a non-trivial idempotent e of an
algebra A and set e′ = 1−e. For every A-bimodule M , the following assertions
are equivalent:

(1) For every m ∈M , eme′ = m.
(2) For every m ∈M , e′m = 0 = me.
(3) For every m ∈M , em = m = me′.
(4) For every m ∈M and a ∈ A, am = eaem and ma = me′ae′.

We start with the following lemma which shows that the first condition of
Theorem 2.5 holds when M is a 2-torsion free A-bimodule.

Lemma 2.9. Assume that the A-bimodule M is 2-torsion free. Let g : A→M
be a Jordan generalized derivation with an associated linear map dg. If there
exists a nontrivial idempotent e in A such that eme′ = m for all m ∈M (where
e′ = 1 − e), then g(1) = 0, g = dg is a Jordan derivation and g is a sum of a
derivation and an antiderivation.

Proof. Using equation (2.2) for g, we get

2g(e′) = g(e′ ◦ e′) = g(e′) ◦ e′ + e′ ◦ dg(e′) = g(e′) + dg(e
′).

Then g(e′) = dg(e
′). Now, replacing a by e′ in equation (2.2), we get g(1) = 0

and so 2-torsion freeness of M implies that g = dg.
Now let g = f1 + f2, where f1 and f2 are defined by f1(a) = g(e′ae) and

f2(a) = g(eae+eae′+e′ae′) for all a ∈ A. We prove that f1 is an antiderivation.
Let a, b ∈ A. We have

f1(ab) = g(e′abe)

= g(e′aebe) + g(e′ae′be)

= g((e′ae) ◦ (ebe)) + g((e′ae′) ◦ (e′be))

= bg(e′ae) + g(e′be)a

= bf1(a) + f1(b)a.

It remains to prove that f2 is a derivation. To this end, we show that Γ :
a 7−→ g(eae) + g(e′ae′) is an inner derivation (that is a derivation of the form
Γ(a) = ax− xa for a fixed x ∈ A) and d′ : a 7−→ g(eae′) is a derivation. Note
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that, for all a ∈ A,

0 = g((eae) ◦ (e′ae′))

= ag(e′ae′) + g(eae)a.

Hence, replacing a by e′ae′ + e in the previous equation, we get

g(e′ae′) + g(e)a = 0.

And replacing a by eae+ e′ in the same equation, we get

ag(e′) + g(eae) = 0.

Using these relations with the fact that g(e) = −g(e′), we get, for every a ∈ A,

Γ(a) = g(eae) + g(e′ae′)

= −ag(e′)− g(e)a

= ag(e)− g(e)a.

Then, Γ is an inner derivation.
Now, for every a, b ∈ A,

d′(ab) = g(eabe′)

= g(eae′ ◦ e′be′) + g(eae ◦ ebe′)
= g(eae′)b+ ag(ebe′)

= d′(a)b+ ad′(b).

This completes the proof. �

The following lemma shows that also the second condition of Theorem 2.5
holds when M is a 2-torsion free A-bimodule.

Lemma 2.10. Let h : M → A be a linear map such that h(a ◦m) = a ◦ h(m)
for all a ∈ A,m ∈ M . If there exists a nontrivial idempotent e in A such that
eme′ = m for all m ∈M and eAe′Ae = {0} = e′AeAe′, where e′ = 1− e, then
h is a sum of an A-antihomomorphism and an A-homomorphism.

Proof. First note that h(m) = h(em) = h(e ◦m) = e ◦ h(m) = eh(m) + h(m)e.
Then, eh(m)e = 0. Similarly we get e′h(m)e′ = 0.

This shows that h = δ+β where δ and β are defined by δ(m) = e′h(m)e and
β(m) = eh(m)e′ (for m ∈ M). We claim that δ is an A-antihomomorphism.
Let a ∈ A,m ∈M . We have δ(am) = e′h(ea ◦m)e = e′h(m)eae+ e′h(m)ea =
e′h(m)ea = δ(m)a. Similarly we prove that δ(ma) = aδ(m).

It remains to prove that β is an A-homomorphism. We have

β(am) = eh(am)e′ = eh(ae ◦m)e′ = eaeh(m)e′ = eaβ(m).

Since e′aβ(m) = e′aeh(m)e′ = e′(e′ae ◦ h(m))e′ = e′h(e′ae ◦m)e′ = 0, we get

β(am) = eaβ(m) + e′aβ(m) = aβ(m).

Similarly, we can show that β(ma) = β(m)a. �
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Lemmas 2.9 and 2.10 show that to get the desired result one should fo-
cus on the Jordan generalized d-derivation on A nM of the form f(a,m) =
(fA(a), h2(m)) (i.e., h1 = 0 and fM = 0 in the presentation (2.1)). In the se-
quel, we will refer to such a particular kind of Jordan generalized d-derivations
as a Jordan generalized d-derivation of type ∆. Recall that in this case, fA is
a Jordan generalized dA-derivation and h2 satisfies h2(a ◦m) = fA(a) ◦m+ a ◦
S(m) = a ◦ h2(m) + dA(a) ◦m for all a ∈ A and m ∈M (Lemma 2.1).

We use the idea of [11] for the decomposition of a Jordan generalized deriva-
tion. First, we give the following observation (compare it with [11, Lemma
3.7]).

Lemma 2.11. Assume that the algebra A and the A-bimodule M are 2-torsion
free. Suppose there is a nontrivial idempotent e such that eAe′Ae = {0} =
e′AeAe′, where e′ = 1− e. Then, for a Jordan generalized dA-derivation fA on
A, the following assertions hold for all a ∈ A:

(1) efA(e′ae′)e = 0.
(2) e′fA(eae)e′ = 0.
(3) efA(eae′)e = 0.
(4) e′fA(eae′)e′ = 0.
(5) efA(e′ae)e = 0.
(6) e′fA(e′ae)e′ = 0.

Proof. We prove only (1) and (3). The other assertions are proved similarly.
(1) We have 0 = fA(e ◦ (e′ae′)) = e ◦ fA(e′ae′) + e′ae′ ◦ dA(e). Then,

efA(e′ae′)e = 0.
(3) We have fA(eae′) = fA(e′ ◦ (eae′)) = fA(e′) ◦ (eae′) + e′ ◦ dA(eae′). This

implies that efA(eae′)e = 0. �

Thus, using Lemma 2.11, a Jordan generalized d-derivation f of type ∆ can
be decomposed as follows

(2.3) f = J + I +D,

where, for all (a,m) ∈ AnM ,

(2.4) J(a,m) = (efA(e′ae)e′ + e′fA(eae′)e, 0),

(2.5) I(a,m) = (efA(eae+ e′ae′)e′ + e′fA(eae+ e′ae′)e, 0) and

(2.6) D(a,m) = (efA(eae)e+efA(eae′)e′+e′fA(e′ae)e+e′fA(e′ae′)e′, h2(m)).

We treat each map separately. For this we use the following lemma.

Lemma 2.12. Suppose there is a nontrivial idempotent e such that eAe′Ae =
{0} = e′AeAe′, where e′ = 1− e. Then, for a Jordan generalized d-derivation
f , the following assertions hold for all a, b ∈ A:

(1) ef(e′aebe)e′ = ebef(e′ae)e′.
(2) ef(e′ae′be)e′ = ef(e′be)e′ae′.
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(3) e′f(eaebe′)e = e′f(ebe′)eae.
(4) e′f(eae′be′)e = e′be′f(eae′)e.

Proof. We prove only the first assertion. The other ones are proved similarly.
Since f is a Jordan generalized d-derivation, we have

f(e′aebe) = f(e′ae)ebe+ ebef(e′ae) + d(ebe)e′ae+ e′aed(ebe).

Then, ef(e′aebe)e′ = ebef(e′ae)e′. �

Now we prove that J (defined by (2.4)) is an antiderivation. In fact this
follows from Lemma 2.3 and the following lemma which is a generalization of
[11, Lemma 3.3].

Lemma 2.13. Suppose there is a nontrivial idempotent e such that eAe′Ae =
{0} = e′AeAe′, where e′ = 1 − e. Then, the mapping f : A −→ A defined by
f(a) = ef(e′ae)e′ + e′f(eae′)e is an antiderivation.

Proof. Using Lemma 2.12 and the assumption eAe′Ae = {0} = e′AeAe′, we
get

f(ab) = ef(e′ae)e′ + e′f(ebe′)e

= ef(e′aebe)e′ + ef(e′ae′be)e′ + e′f(eaebe′)e+ e′f(eae′be′)e

= ebef(e′ae)e′ + ef(e′be)e′ae′ + e′f(ebe′)eae+ e′be′f(eae′)e

= bef(e′ae)e′ + ef(e′be)e′a

+ e′f(eye′)ea+ ye′f(eae′)e

= bf(a) + f(b)a.

As desired. �

Recall that a map H : A → A is said to be an inner derivation (resp.,
a generalized inner derivation) if H(x) = ax − xa for a fixed a ∈ A (resp.,
H(x) = ax+xb for fixed a, b ∈ A). In [11, Lemma 3.5], it is proved that the first
component of our I is an inner derivation when fA is a Jordan derivation. Here
we prove it is an inner generalized derivation when fA is a Jordan generalized
derivation. This helps to show that I is an inner generalized derivation on
AnM (see Lemma 2.15).

Lemma 2.14. Suppose there is a nontrivial idempotent e such that eAe′Ae =
{0} = e′AeAe′, where e′ = 1 − e. Then, the mapping IA : A −→ A defined by
IA(a) = ef(eae+ e′ae′)e′+ e′f(eae+ e′ae′)e is an inner generalized derivation.
Namely, IA(a) = aT − T ′a for every a ∈ A, where T = ef(e)e′ − e′f(e)e and
T ′ = ed(e)e′ − e′f(e)e.

Proof. For all a ∈ A, we have

0 = f((eae)(e′ae′) + (e′ae′)(eae))

= eaed(e′ae′) + f(eae)e′ae′ + e′ae′f(eae) + d(e′ae′)eae.
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Then, for every a ∈ A,

(2.7) eaed(e′ae′)e′ + ef(eae)e′ae′ = 0

and

(2.8) e′ae′f(eae)e+ e′d(e′ae′)eae = 0.

For any a ∈ A replace a by a+ e in (2.7). This gives

eaed(e′ae′)e′ + ed(e′ae′)e′ + ef(eae)e′ae′ + ef(e)e′ae′ = 0.

Hence, replacing a by e′ae′ in the previous equation, we get

ed(e′ae′)e′ + ef(e)e′ae′ = 0.

And also we obtain

ef(e′ae′)e′ + ed(e)e′ae′ = 0.

Taking a = e′, we get

ed(e′)e′ + ef(e)e′ = 0.

Now, for any a ∈ A, replacing a by eae+ e′ in (2.7), we obtain

eaed(e′)e′ + ef(eae)e′ = 0.

Using these relations we obtain

−eaef(e)e′ + ef(eae)e′ = 0.

Similarly, we can obtain from relation (2.8) that

e′ae′f(e)e+ e′f(e′ae′)e = 0 and − e′f(e)eae+ e′f(eae)e = 0.

These relations and the assumption eAe′Ae = {0} = e′AeAe′ imply that

IA(a) = ef(eae)e′ + ef(e′ae′)e′ + e′f(eae)e+ e′f(e′ae′)e

= eaef(e)e′ − ed(e)e′ae′ + e′f(e)eae− e′ae′f(e)e

= aef(e)e′ − ed(e)e′a+ e′f(e)ea− ae′f(e)e

= a(ef(e)e′ − e′f(e)e)− (ed(e)e′ − e′f(e)e)a

= aT − T ′a.

As desired. �

As a consequence of the lemma above, I is an inner generalized derivation
on AnM . Namely we have the following lemma.

Lemma 2.15. Suppose there exists a nontrivial idempotent e in A such that
eme′ = m for all m ∈M, and eAe′Ae = {0} = e′AeAe′, where e′ = 1−e. Then,
the mapping I (defined by (2.5)) is an inner generalized derivation. Namely,
I(a,m) = (a,m)(T, 0) − (T ′, 0)(a,m) for every (a,m) ∈ A nM , where T =
ef(e)e′ − e′f(e)e and T ′ = ed(e)e′ − e′f(e)e.
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Now we prove that D is a generalized derivation. For this, we use the
following two lemmas. The first one can be of independent interest. It presents
some properties of a Jordan generalized d-derivation of type ∆.

Recall that the left annihilator, l.AnnA(M), of M is the set of all elements
r in A such that rM = 0. Similarly the right annihilator, r.AnnA(M), of M is
defined.

Lemma 2.16. Assume that the algebra A and the A-bimodule M are 2-torsion
free and there exists a nontrivial idempotent e in A such that eme′ = m for all
m ∈ M (where e′ = 1− e). Let f be a Jordan generalized d-derivation of type
∆. Then the following assertions hold:

(1) h2(am) = fA(a)m + aS(m) and h2(ma) = mfA(a) + S(m)a for all
a ∈ A and m ∈M .

(2) mfA(e′) = fA(e)m for all m ∈M .
(3) fA(ab)− fA(a)b− adA(b) ∈ r.AnnA(M) ∩ l.AnnA(M).

Proof. (1) We need only to prove the first equality. The second one follows
immediately. First we prove that dA(e)m = 0 = mdA(e).

We have fA(2e) = fA(e ◦ e) = fA(e)e + efA(e) + edA(e) + dA(e)e. Then,
edA(e)e = 0 (since A is 2-torsion free). Then, dA(e)m = edA(e)em = 0. On
the other hand, since h2(m) = h2(e ◦m) = h2(m) + dA(e)m+mdA(e), we get

(2.9) mdA(e) = −dA(e)m = 0.

Now,

2h2(am) = h2((ae+ ea)m)

= h2((ae+ ea) ◦m)

= fA(e ◦ a) ◦m+ (ae+ ea) ◦ S(m)

= (fA(a)e+ efA(a) + adA(e) + dA(e)a) ◦m+ 2aS(m)

= 2fA(a)m+ 2aS(m).

Therefore, the 2-torsion freeness of M implies that h2(am) = fA(a)m+aS(m),
as desired.

(2) For every m ∈ M , mfA(e′) + S(m)e′ = h2(me′) = h2(em) = fA(e)m +
eS(m). Then, mfA(e′) = fA(e)m.

(3) We have h2(am) = fA(a)m + aS(m). Then, h2(m) = fA(e)m + S(m)
which means that S(m) = h2(m)− fA(e)m, and so

S(am) = h2(am)− fA(e)am

= fA(a)m+ aS(m)− fA(e)am

= (fA(a)− fA(e)a)m+ aS(m).

Then,

h2(abm) = fA(a)bm+ aS(bm)

= fA(a)bm+ a(fA(b)− fA(e)b)m+ abS(m).
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On the other hand, h2(abm) = fA(ab)m+ abS(m). Then,

(2.10) fA(ab)m = (fA(a)b+ a(fA(b)− fA(e)b))m.

We prove that (fA(b)− bfA(e))m = dA(b)m.
In (2.10), for a = e we get

(2.11) fA(eb)m = fA(b)m.

And, for b = e, we get

(2.12) fA(ae)m = fA(a)m.

Since fA is a Jordan generalized dA-derivation,

fA(eb+ be) = fA(e)b+ bfA(e) + edA(e) + dA(e)e.

Then, using (2) and equalities (2.11) and (2.12), we get

2fA(b)m = bfA(e)m+ bfA(e)m+ 2dA(b)m.

Then, (fA(b)− bfA(e))m = dA(b)m. Hence, (2.10) becomes

(2.13) (fA(ab)− fA(a)b− adA(b))m = 0.

The same argument as above, using h2(mb) = mfA(b) + S(m)b and taking e′

instead of e, shows that

(2.14) m(fA(ba)− bfA(a)− dA(b)a) = 0.

Finally, since fA is a Jordan generalized dA-derivation,

fA(ab)− fA(a)b− adA(b) = −fA(ba) + bfA(a) + dA(b)a.

This ends the proof. �

Lemma 2.17. Assume that the algebra A and the A-bimodule M are 2-torsion
free and there exists a nontrivial idempotent e in A such that eme′ = m for all
m ∈ M (where e′ = 1− e). Let f be a Jordan generalized d-derivation of type
∆. If fA is a generalized dA-derivation, then h2(ma) = h2(m)a + mdA(a) for
all a ∈ A, m ∈M .

Consequently, the Jordan generalized d-derivation f is a generalized d-deriva-
tion.

Proof. For all a ∈ A and m ∈M , we have

h2(ma)− h2(m)a−mdA(a) = ah2(m) + dA(a)m− h2(am).

Then, using the hypothesis and (1) of Lemma 2.16, we get

h2(ma)− h2(m)a−mdA(a)

= a(fA(e)m+ eS(m)) + dA(a)m− fA(a)m− aS(m)

= afA(e)m+ dA(a)m− (fA(e′a) + fA(ea))m

= afA(e)m+ dA(a)m− (fA(e′)e′a+ e′dA(e′a)

+ fA(e)a+ edA(a))m.
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Then, using the second assertion of Lemma 2.16, we get

h2(ma)− h2(m)a−mdA(a) = afA(e)m− amfA(e′)

= afA(e)m− afA(e)m = 0.

As desired. �

Lemma 2.18. Assume that the algebra A and the A-bimodule M are 2-torsion
free. Suppose there exists a nontrivial idempotent e in A such that eme′ = m for
all m ∈M , where e′ = 1−e. If eAe′Ae = {0} = e′AeAe′ and e′r.AnnA(M)e′ =
{0} = el.AnnA(M)e, then D (defined by (2.6)) is a generalized derivation.

Proof. One can show easily that D is a Jordan generalized derivation of type ∆.
Then, by Lemmas 2.16 and 2.17, it suffices to prove that the map f ′ : A→ A,
defined by f ′(a) = efA(eae)e+ efA(eae′)e′ + e′fA(e′ae)e+ e′fA(e′ae′)e′ for all
a ∈ A, is a generalized derivation.

By the hypothesis and the assertion (3) of Lemma 2.16, we have

efA(eaebe)e = efA(eae)ebe+ eaedA(ebe)e,

efA(eae′be)e = efA(eae′)e′be+ eae′dA(e′be)e = 0 (since eAe′Ae = {0}),
e′fA(e′ae′be′)e′ = e′fA(e′ae′)e′be′ + e′ae′dA(e′be′)e′, and

e′fA(e′aebe′)e′ = e′fA(e′ae)ebe′ + e′aedA(ebe′)e′ = 0 (since e′AeAe′ = {0}).
And, since fA is a Jordan generalized d-derivation, we get, as done in Lemma
2.12, the following equalities:

efA(eaebe′)e′ = efA(eae)ebe′ + eaedA(ebe′)e′,

efA(eae′be′)e′ = efA(eae′)e′be′ + eae′dA(e′be′)e′,

e′fA(e′aebe)e = e′fA(e′ae)ebe+ e′aedA(ebe)e, and

e′fA(e′ae′be)e = e′fA(e′ae′)e′be+ e′ae′dA(e′be)e.

These relations with the assumption eAe′Ae = {0} = e′AeAe′ give us that
f ′(ab) = f ′(a)b+ad′(b) for all a, b ∈ A, where d′(b) = edA(ebe)e+e′dA(e′be′)e′+
edA(ebe′)e′ + e′dA(e′be)e′. That is, f ′ is a generalized derivation. �

Finally, combining the above results we get our second main result which
generalizes both [12, Theorem 2.5] and [11, Theorem 3.1]. Notice that, if AnM
has a triangular matrix representation, then using [5, Proposition 2.1], the
antiderivation f1 in Lemma 2.9, the antihomomorphism δ in Lemma 2.10 and
the antiderivation J (defined in (2.5)) are zero.

Theorem 2.19. Assume that the algebra A and the A-bimodule M are 2-
torsion free. Suppose there exists a nontrivial idempotent e in A such that
eme′ = m for all m ∈ M, where e′ = 1 − e. If eAe′Ae = {0} = e′AeAe′

and e′r.AnnA(M)e′ = {0} = el.AnnA(M)e, then every Jordan generalized
derivation on AnM can be written as the sum of a generalized derivation and
an antiderivation.
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Remark 2.20. Assume that the algebra A and the A-bimodule M are 2-torsion
free and there exists a nontrivial idempotent e in A such that eme′ = m for all
m ∈M, where e′ = 1− e. The following two situations present two particular
cases of the trivial extension algebras which satisfy conditions of Theorem 2.19.

(1) When r.AnnA(M) ∩ l.AnnA(M) = {0}. In fact, all of the sets

eAe′Ae, e′AeAe′, e′r.AnnA(M)e′ and el.AnnA(M)e

are in r.AnnA(M) ∩ l.AnnA(M).
(2) When M is a loyal (eAe, e′Ae′)-bimodule. Recall that an (A,B)-

bimodule M , where A and B are algebras, is said to be loyal if, for
every (a, b) ∈ A × B, aMb = {0} implies a = 0 or b = 0 (see for
instance [4, Definition 2.1]).

Lemmas 2.16 and 2.17 show that if we assume that every Jordan generalized
derivation on A is a generalized derivation (as for the case of prime algebras),
we get a new other context where Jordan generalized derivations on A nM
can be written as the sum of a generalized derivation and an antiderivation. In
fact, we show that under this condition we do not need the condition that A is
2-torsion free.

Theorem 2.21. Assume that the A-bimodule M is 2-torsion free and that
every Jordan generalized derivation on A is a generalized derivation. Suppose
there exists a nontrivial idempotent e in A such that eme′ = m for all m ∈M,
then every Jordan generalized derivation on AnM can be written as the sum
of a generalized derivation and an antiderivation.

Proof. Lemmas 2.9 and 2.10 show that we only need to prove the result for the
mapping (a,m) 7−→ (fA(a), h2(m)). From the prove of Lemmas 2.16 and 2.17,
we can deduce that we need only to prove that h2(am) = fA(a)m+ aS(m) for
all a ∈ A and m ∈M .

Note that dA(e)m = mdA(e′) = 0. Indeed, by the hypothesis, fA is a
generalized derivation and, by [12, Proposition 2.1], dA is a derivation. Then,
for all m ∈ M , dA(e)m = dA(e)em + edA(e)m = dA(e)m + dA(e)m. Then,
dA(e)m = 0. Similarly, we prove that mdA(e′) = 0. Now,

h2(am) = h2(ae ◦m)

= fA(ae) ◦m+ ae ◦ S(m)

= fA(a)m+ adA(e) ◦m+ aS(m)

= fA(a)m+ aS(m).

As desired. �

LetMn(R) (resp., Tn(R)) denotes the algebra of all matrix (resp., of all upper
triangular matrix) on R. As a consequence of Theorem 2.21 and [12, Theorem
2.5] we get the following result.
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Corollary 2.22. Let M be a 2-torsion free Mn(R)-bimodule (resp., Tn(R) -
bimodule). Suppose there exists a nontrivial idempotent e in Mn(R) (resp.,
e ∈ Tn(R)) such that eme′ = m for all m ∈M . Then every Jordan generalized
derivation on Mn(R) nM (resp., Tn(R) nM) can be written as the sum of a
generalized derivation and an antiderivation.

3. f-generalized derivations

In a recent paper [2], Benkovič introduced the notion of f -derivations which
unifies several kind of derivations including the classical derivations as follows:
Consider a fixed nonzero multilinear polynomial f in noncommuting indeter-
minates xi over R:

(3.1) f(x1, . . . , xn) =
∑
π∈Sn

απxπ(1)xπ(2) . . . xπ(n) (απ ∈ R),

where Sn denotes the symmetric group of order an integer n ≥ 2. An R-linear
map D : A −→M is called an f -derivation if it satisfies

(3.2) D(f(x1, . . . , xn)) =

n∑
i=1

f(x1, . . . , xi−1,D(xi), xi+1, . . . , xn)

for all x1, . . . , xn ∈ A. Thus, a derivation is an f -derivation for the polynomial
f(x1, x2) = x1x2, a Jordan derivation is an f -derivation for the polynomial
f(x1, x2) = x1 ◦ x2 = x1x2 + x2x1, a Jordan triple derivation (see for example
[10]) is an f -derivation for the polynomial f(x1, x2, x3) = x1x2x3 + x3x2x1,
a Lie derivation (see [8]) is an f -derivation for the polynomial f(x1, x2) =
[x1, x2] = x1x2−x1x2, and a Lie triple derivation (see for example [3] and [13])
is an f -derivation for the polynomial f(x1, x2, x3) = [[x1, x2], x3].

In [2, Theorem 1.3], Benkovič proved (under some conditions) that every
f-derivation is a Jordan derivation. Then, he used this result to show that
(under some conditions) that every f-derivation on a triangular algebra is a
derivation [2, Theorem 1.1]. Then, naturally one can ask whether there exists
a “generalized” counterpart of Benkovič’s results. In this section we answer
this natural question positively.

In what follows, we consider a fixed nonzero multilinear polynomial f as
defined in 3.1. An R-linear map F : A −→ M is called an f -generalized d-
derivation (or simply, an f -generalized derivation), where d : A −→ M is an
R-linear map, if

F (f(x1, . . . , xn)) = f(F (x1), x2, . . . , xn)

+

n∑
i=2

f(x1, . . . , xi−1, d(xi), xi+1, . . . , xn)

for all x1, . . . , xn ∈ A. Then, obviously every f -derivation F is an f -generalized
F -derivation. Also, note that the f -generalized F -derivation unifies various
kind of generalized derivations including the generalized derivations and the
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Jordan generalized derivations (see, for instance, [15] for the notion of d-Lie
derivations (a generalized counterpart of Lie derivations), [13] for the notion of
generalized Lie triple derivations, and [16] for the notion of generalized Jordan
triple derivations).

We say that an element r ∈ R is M -regular if, for every m ∈ M , rm = 0
implies that m = 0. Let

α =
∑
π∈Sn

απ ∈ R

be the sum of coefficients of the polynomial f from (3.1). We start with the
generalized counterpart of [2, Theorem 1.3] which needs a similar argument
with some suitable modifications.

Theorem 3.1. Let F : A −→ M be an f -generalized derivation, with α 6= 0.
If M is (n−1)-torsion free and α is M -regular, then F is a Jordan generalized
derivation.

Consequently, as done in [2], Theorem 3.1 together with Theorems 2.7 and
2.19 lead to a characterization of a particular case of f -generalized derivation
on some trivial extension algebras.

Corollary 3.2. Assume that A is a 2-torsion free prime algebra. Let F :
A n A −→ A n A be an f -generalized derivation, where with α 6= 0. If A is
2(n− 1)-torsion free and α is A-regular, then F is a generalized derivation.

Note that the generalized derivation F has the form F (x) = F (1)x + d(x)
for all x ∈ AnA (by [12, Proposition 2.1]).

Corollary 3.3. Let F : A nM −→ A nM be an f -generalized derivation,
where f ∈ R〈x1, x2, . . .〉 is a multilinear polynomial of degree n ≥ 2 with α 6= 0.
Consider the following conditions:

(i) A and M are both 2(n− 1)-torsion free.
(ii) α is A-regular and M -regular.
(iii) There exists a nontrivial idempotent e in A such that eme′ = m for

all m ∈ M, where e′ = 1 − e, and eAe′Ae = {0} = e′AeAe′ and
e′r.AnnA(M)e′ = {0} = el.AnnA(M)e.

If (i), (ii) and (iii) hold, then F can be written as the sum of a generalized
derivation and an antiderivation.

Also as a generalization of [2, Theorem 1.1], we obtain the following result
which characterizes a particular case of f -generalized derivation on triangular
algebras.

Corollary 3.4. Let A and B be unital algebras over a 2-torsion free commu-
tative ring R, and M be a unital (A,B)-bimodule that is faithful as both a left
A-module and a right B-module. Let A = Tri(A,M,B) be the triangular alge-
bra. Let F : A −→ A be an f -generalized derivation, where with α 6= 0. If A
is 2(n − 1)-torsion free and α is A-regular, then F is a generalized derivation
of the form F (x) = F (1)x+ d(x) for all x ∈ A.
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It is worth noting that there are interesting f -generalized derivations with
α = 0 which deserve investigating. However, even in the case of f -derivations
the situation is much more unpredictable as mentioned in [2, Problem 1.2].
Thus the question for this case remains an open interesting question.
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