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REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN

SEMIPRIME RINGS

Motoshi Hongan and Nadeem ur Rehman

Abstract. Let R be an associative ring and α, β : R → R ring homo-
morphisms. An additive mapping d : R → R is called an (α, β)-derivation
of R if d(xy) = d(x)α(y) + β(x)d(y) is fulfilled for any x, y ∈ R, and an
additive mapping D : R → R is called a generalized (α, β)-derivation of
R associated with an (α, β)-derivation d if D(xy) = D(x)α(y) + β(x)d(y)
is fulfilled for all x, y ∈ R. In this note, we intend to generalize a theorem
of Vukman [5], and a theorem of Daif and El-Sayiad [2].

1. Introduction

Throughout this paper, R will represent an associative ring with center Z(R)
and α, β : R → R ring homomorphisms. Given an integer n ≥ 2, a ring R is said
to be n-torsion free, if for x ∈ R, nx = 0 implies x = 0. An additive mapping
d : R → R is called an (α, β)-derivation of R if d(xy) = d(x)α(y) + β(x)d(y)
is fulfilled for any x, y ∈ R, and an additive mapping D : R → R is called
a generalized (α, β)-derivation of R associated with an (α, β)-derivation d if
D(xy) = D(x)α(y) + β(x)d(y) is fulfilled for all x, y ∈ R, we denote this
generalized (α, β)-derivation as (D, d). Now we call an additive mapping F :
R → R an (α, β)-G-mapping of R if F (xy) = F (x)α(y) + β(x)D(y) is fulfilled
for all x, y ∈ R and for some generalized (α, β)-derivation (D, d). If α = β is
an identity map of R, then we call a (1, 1)-derivation d a derivation, we call a
generalized (1, 1)-derivation D a generalized derivation associated a derivation
d, and we call a (1, 1)-G-mapping F a G-mapping.

Example 1.1. Let S be a semiprime ring, and let R =
{(

0 x y
0 0 0
0 0 z

)

|x, y, z ∈ S
}

.

Now, we define maps F,D, d : R → R by

F





0 x y

0 0 0
0 0 z



 =





0 0 y

0 0 0
0 0 z



 , D





0 x y

0 0 0
0 0 z



 =





0 x 0
0 0 0
0 0 z




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and

d





0 x y

0 0 0
0 0 z



 =





0 x 0
0 0 0
0 0 0



 .

Then, it can be verified that R is a ring which is not semiprime, d is a derivation
of R, (D, d) is a generalized derivation and (F,D) is a G-mapping which is not
a generalized derivation.

An additive mapping D : R → R is called a Jordan (α, β)-derivation if
D(x2) = D(x)α(x) + β(x)D(x) is fulfilled for all x ∈ R. An additive map-
ping D : R → R is called a generalized (α, β)-Jordan derivation if D(x2) =
D(x)α(x) + β(x)d(x) for all x ∈ R and for some (α, β)-derivation d. We call a
generalized (1, 1)-Jordan derivation a generalized Jordan derivation.

In [5], J. Vukman introduced additive mappings F : R → R such that
F (xyx) = F (xy)x + xyF (x) for all x, y ∈ R, and G : R → R such that
G(xyx) = G(x)yx + xG(yx) for all x, y ∈ R. We call this additive mappings
F (resp. G) a left (resp. right) V -derivation. In [5], Vukman obtained the
following result:

Theorem A. Let R be a 2-torsion free semiprime ring and let D : R → R

be an additive mapping. Suppose that either D(xyx) = D(xy)x + xyD(x) or

D(xyx) = D(x)yx + xD(xy) holds for all pairs x, y ∈ R. In both cases D is a

derivation.

Further, in [2], M. N. Daif and M. N. Tammam El-Sayiad introduced an
additive mapping G : R → R such that G(xyx) = G(x)yx+ xD(yx) is fulfilled
for all x, y ∈ R and for some derivation D, and we call this additive mapping G

a DS-derivation. And, Daif and Tammam El-Sayiad [2] proved the following
result.

Theorem B. Let R be a 2-torsion free semiprime ring and let G : R → R be

an additive mapping. If G(xyx) = F (x)yx + xD(yx) for all x, y ∈ R for some

derivation D of R, then G is a generalized Jordan derivation.

We call an additive mapping F : R → R a left (resp. right) Vukman-
(α, β)-derivation if F (xyx) = F (xy)α(x) + β(xy)F (x) (resp. F (x)α(yx) +
β(x)F (yx)) for all x, y ∈ R (abbreviated as V -(α, β)-derivation). And we call
an additive mapping F a generalized left (resp. right) Vukman-(α, β)-derivation
(abbreviated as GV -(α, β)-derivation) if F (xyx) = F (xy)α(x) + β(xy)D(x)
(resp. F (x)α(yx) + β(x)D(yx)) for all x, y ∈ R and for some left (resp. right)
Vukman-(α, β)-derivation D.

Now, we denote the relationships of above various derivations as follows:
V-(α, β)-derivations (α, β)-derivations Jordan (α, β)-derivation

GV-(α, β)-derivations generalized (α, β)-derivations generalized Jordan (α, β)-derivations

(α, β) G-mappings
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In this note, we intend to generalize above theorem of Vukman [5], and a
theorem of Daif and El-Sayiad [2].

2. Results

We will prepare a few lemmas which are essential for developing the proof
of our main result.

Lemma 2.1 ([3] Corollary 2.1(1)). Let R be a 2-torsion free semiprime ring,

L be a square-closed Lie ideal of R such that L * Z(R) and let a ∈ L. If

aLa = 0, then a = 0.

Lemma 2.2 ([4] Theorem 2). Let R be a 2-torsion-free semiprime ring and D

a Jordan (α, β)-derivation of R with α or β an automorphism of R. Then D

is an (α, β)-derivation of R.

Lemma 2.3 ([1] Theorem 3.1). Let R be a 2-torsion free semiprime ring, α an

automorphism of R and β an endmorphism of R. If F is a generalized Jordan

(α, β)-derivation with some Jordan (α, β)-derivation D, then F is a generalized

(α, β)-derivation associated with D.

We shall start our investigations with the following proposition concerning
(α, β)-G-mappings.

Proposition 2.1. Let R be a semiprime ring, and β an epimorphism. If

F is an (α, β)-G-mapping of R associated with a generalized (α, β)-derivation
(D, d), then D = d, and so F is a generalized (α, β)-derivation of R associated

with an (α, β)-derivation d.

Proof. By our hypothesis on F ,

F (xyx) = F (x)α(yx) + β(x)D(yx) = F (x)α(yx) + β(x)D(y)α(x) + β(xy)d(x)

for all x, y ∈ R. While, we have

F (xyx) = F (xy)α(x) + β(xy)D(x) = F (x)α(yx) + β(x)D(y)α(x) + β(xy)D(x)

for all x, y ∈ R. Comparing above two equations, we get

(2.1) β(xy)(D − d)(x) = 0 for all x, y ∈ R.

Hence, we obtain that (D − d)(x)β(x)β(y)(D − d)(x)β(x) = 0 for all y ∈ R.
Since β is an epimorphism and R is semiprime, we have (D − d)(x)β(x) = 0.
While,

β(x)(D − d)(x)β(y)β(x)(D − d)(x) = 0 for all y ∈ R

by (2.1). So, we have β(x)(D − d)(x) = 0. By linearizing,

β(x)(D − d)(z) + β(z)(D − d)(x) = 0 for all x, z ∈ R.

Multiplying (D − d)(x) from the left, we have

0 = (D − x)(x)β(x)(D − d)(z) + (D − d)(x)β(z)(D − d)(x)

= (D − d)(x)β(z)(D − d)(x)
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for all z ∈ R. By semiprimeness of R, we have (D − d)(x) = 0 for all x ∈ R.
And so, D = d, that is, F is a generalized derivation associated with d. �

Now, we prove our main theorem.

Theorem 2.1. Let R be a 2-torsion free semiprime ring and L * Z(R) be a

square-closed Lie ideal of R. Let F,D : R → R be additive mappings such that

F (L) ⊆ L and D(L) ⊆ L, and let α, β be ring homomorphisms of R such that

α(L) ⊆ L and β(L) ⊆ L.

(i) If F (xyx) = F (xy)α(x)+β(xy)D(x) holds for all x, y ∈ L and β(L) =
L, then D is a Jordan (α, β)-derivation on L.

(ii) If F (xyx) = F (x)α(yx) + β(x)D(yx) and D(xyx) = D(x)α(yx) +
β(x)D(yx) hold for all x, y ∈ L and α(L) = L, then F is a generalized

Jordan (α, β)-derivation associated with a Jordan (α, β)-derivation D

on L.

(iii) If F (xyx) = α(x)F (yx)+D(x)β(yx) holds for all x, y ∈ L and β(L) =
L, then D is a Jordan (β, α)-derivation on L.

(iv) If F (xyx) = α(xy)F (x) + D(xy)β(x) and D(xyx) = α(xy)D(x) +
D(xy)β(x) hold for all x, y ∈ L and α(L) = L, then F is a generalized

Jordan (β, α)-derivation associated with a Jordan (β, α)-derivation D

on L.

Proof. (i) We have

(2.2) F (xyx) = F (xy)α(x) + β(xy)D(x)

for all x, y ∈ L. Linearizing above relation, we have

(2.3) F (xyz + zyx) = F (xy)α(z) + F (zy)α(x) + β(xy)D(z) + β(zy)D(x)

for all x, y ∈ L. Replacing z by x2 in (2.3), we get

(2.4) F (xyx2+x2yx) = F (xy)α(x2)+F (x2y)α(x)+β(xy)D(x2)+β(x2y)D(x).

On the other hand, in (2.2), substituting xy + yx for y, we obtain that

(2.5)

F (x2yx+ xyx2) = F (x2y + xyx)α(x) + β(x2y + xyx)D(x)

= F (x2y)α(x) + F (xy)α(x2) + β(xy)D(x)α(x)

+ β(x2y + xyx)D(x).

Comparing (2.4) with (2.5), we have

β(x)β(y){D(x2)−D(x)α(x) − β(x)D(x)} = 0

for all x, y ∈ L. Since β is a ring homomorphism and β(L) = L, we find that

β(x)z{D(x2)−D(x)α(x) − β(x)D(x)} = 0

for all x, z ∈ L. Now, we set A(x) = D(x2) − D(x)α(x) − β(x)D(x). Since
D(L) ⊆ L, α(L) ⊆ L and β(L) ⊆ L, we find that

β(x)A(x)zβ(x)A(x) = 0
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and

A(x)β(x)zA(x)β(x) = 0.

Since R is semiprime, we have

(2.6) A(x)β(x) = 0

and

(2.7) β(x)A(x) = 0

by Lemma 2.1. In (2.6), substituting x+ z for x, we have

(2.8) A(x)β(z) +A(z)β(x) +B(x, z)β(x) +B(x, z)β(z) = 0,

where

B(x, z) = D(xz + zx)−D(x)α(z) −D(z)α(x) − β(x)D(z) − β(z)D(x).

In (2.8), substituting −x for x, we get

(2.9) A(x)β(z) −A(z)β(x) +B(x, z)β(x) −B(x, z)β(z) = 0.

By comparing (2.8) and (2.9), we get

2{A(x)β(z) +B(x, z)β(x)} = 0.

Since R is 2-torsion free, we have

A(x)β(z) +B(x, z)β(x) = 0.

And so we have

0 = A(x)β(z)A(x) +B(x, z)β(x)A(x) = A(x)β(z)A(x)

by (2.7). Since β(L) = L, we get

A(x)yA(x) = 0 for all x, y ∈ L.

By semiprimeness of R, we obtain that A(x) = 0 for all x ∈ L by Lemma 2.1
and hence, D is a Jordan (α, β)-derivation on L.

(ii) Now, assume that

(2.10) F (xyx) = F (x)α(yx) + β(x)D(yx)

and

(2.11) D(xyx) = D(x)α(yx) + β(x)D(yx)

for all x, y ∈ L. In (2.10), by linearizing, we have

F (xyz + zyx) = F (x)α(yz) + F (z)α(yx) + β(x)D(yz) + β(z)D(yx).

Now, substituting x2 for z, we have
(2.12)
F (xyx2 + x2yx) = F (x)α(yx2) + F (x2)α(yx) + β(x)D(yx2) + β(x2)D(yx).
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In (2.10), substituting xy + yx for y, we have

(2.13)

F (x2yx+ xyx2) = F (x)α(xyx + yx2) + β(x)D(xyx + yx2)

= F (x)α(xyx) + F (x)α(yx2)

+ β(x){D(x)α(yx) + β(x)D(yx) +D(yx2)}.

By comparing (2.12) with (2.13), we get

{F (x2)− F (x)α(x) − β(x)D(x)}α(y)α(x) = 0

for all x ∈ L. Now, we set

E(x) = F (x2)− F (x)α(x) − β(x)D(x).

Since α(L) = L, we have E(x)zα(x) = 0 for all x, z ∈ L. As a similar way to
the proof of (i), we obtain E(x) = 0, that is,

F (x2) = F (x)α(x) + β(x)D(x) for all x ∈ L.

In the case of D(xyx) = D(x)α(yx) + β(x)D(yx), D is a Jordan (α, β)-
derivation on L by the similar arguments to the above arguments, and so F

is a generalized Jordan (α, β)-derivation on L associated with a Jordan (α, β)-
derivation D on L.

(iii) The proof is similar to that of (i).
(iv) The proof is similar to that of (ii). �

In the following there are some immediate consequences of the above theo-
rem.

Corollary 2.1. Let R be a 2-torsion free semiprime ring, α, β endomorphisms

of R, and let F,D : R → R be additive mappings.

(i) If F (xyx) = F (xy)α(x) + β(xy)D(x) holds for all x, y ∈ R, and β is

an automorphism of R, then D is an (α, β)-derivation.
(ii) If F (xyx) = F (x)α(yx) + β(x)D(yx) and D(xyx) = D(x)α(yx) +

β(x)D(yx) hold for all x, y ∈ R and α is an automorphism of R, then

F is a generalized (α, β)-derivation associated with an (α, β)-derivation
D.

(iii) If F (xyx) = α(x)F (yx) +D(x)β(yx) holds for all x, y ∈ R, and β is

an automorphism of R, then D is a (β, α)-derivation.
(iv) If F (xyx) = α(xy)F (x) + D(xy)β(x) and D(xyx) = α(xy)D(x) +

D(xy)β(x) hold for all x, y ∈ R, and α is an automorphism of R, then

F is a generalized (β, α)-derivation associated with a (β, α)-derivation
D.

Corollary 2.2. Let R be a 2-torsion free semiprime ring, D : R → R an

additive mapping. Then the followings are equivalent:

(1) D(xyx) = D(xy)x+ xy(D(x) for all x, y ∈ R.

(2) D(xyx) = D(x)yx+ xD(yx) for all x, y ∈ R.
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(3) D(xyx) = D(xy)x + xyD(x) or D(xyx) = D(x)yx + xyD(x) for all

x, y ∈ R.

(4) D is a derivation.

Proof. (1) ⇒ (4). In Corollary 1, by putting F = D, D is a derivation.
Similarly, (2) ⇒ (4) is proved.
(3) ⇒ (4). We put Rx = {y ∈ R |D(xyx) = D(xy)x+ xD(x) for all x ∈ R}

and R∗

x = {y ∈ R |D(xyx) = D(x)yx + xD(yx) for all x ∈ R}. Then we have
R = Rx ∪ R∗

x. Since Rx and R∗

x are additive groups, R = Rx or R = R∗

x

by Brauer’s Trick. By the same method, we have R = {x ∈ R |R = Rx} or
R = {R = R∗

x}. Therefore, by (1) and (2), D is a derivation.
(4) ⇒ (1), (4) ⇒ (2) and (4) ⇒ (3) are clear. �

Corollary 2.3. Let R be a 2-torsion free semiprime ring, and let F,D : R → R

be additive mappings.

(i) If one of the following conditions is fulfilled, then F is a generalized

derivation associated with a derivation D.

(1) F (xyx) = F (x)yx+ xD(yx) and D(xyx) = D(x)yx+ xD(yx) for
all x, y ∈ R.

(2) F (xyx) = xyF (x) +D(xy)x and D(xyx) = xyD(x) +D(xy)x for

all x, y ∈ R.

(3) F (xyx) = F (x)yx+ xD(yx) and D(xyx) = D(x)yx+ xD(yx), or
F (xyx) = xyF (x) +D(xy)x and D(xyx) = xyD(x) +D(xy)x for

all x, y ∈ R.

(ii) If one of the following conditions is fulfilled, then D is a derivation.

(4) F (xyx) = F (xy)x+ xyD(x) for all x, y ∈ R.

(5) F (xyx) = xF (yx) +D(x)yx for all x, y ∈ R.

(6) F (xyx) = F (xy)x + xyD(x) or F (xyx) = xF (yx) + D(x)yx for

all x, y ∈ R.

Proof. By the similar method of Corollary 2.2, this corollary is proved. �
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