PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS

Feng Wei and Zhankui Xiao

ABSTRACT. Let *n* be a fixed positive integer, \mathcal{R} be a 2n!-torsion free prime ring and μ, ν be a pair of generalized derivations on \mathcal{R} . If $\langle \mu^2(x) + \nu(x), x^n \rangle = 0$ for all $x \in \mathcal{R}$, then μ and ν are either left multipliers or right multipliers. Let *n* be a fixed positive integer, \mathcal{R} be a noncommutative 2n!-torsion free prime ring with the center $\mathcal{C}_{\mathcal{R}}$ and d, g be a pair of derivations on \mathcal{R} . If $\langle d^2(x) + g(x), x^n \rangle \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.

1. Introduction

Let \mathcal{R} be a ring with the center $\mathcal{C}_{\mathcal{R}}$. A mapping $f : \mathcal{R} \longrightarrow \mathcal{R}$ is said to be centralizing if $[f(x), x] \in C_{\mathcal{R}}$ for all $x \in \mathcal{R}$. In the special case of when [f(x), x] = 0 for all $x \in \mathcal{R}$, the mapping f is called *commuting*. A mapping $f: \mathcal{R} \longrightarrow \mathcal{R}$ is said to be *central* if $f(x) \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$. Obviously, every central mapping is commuting, but not conversely in general. A mapping f of a ring \mathcal{R} is said to be *skew-centralizing* if $f(x)x + xf(x) \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$. In particular, if f(x)x + xf(x) = 0 for all $x \in \mathcal{R}$, then it is called *skewcommuting.* The study of (skew-)centralizing and (skew-)commuting mappings was initiated by a well known theorem of Posner which states that the existence of a nonzero centralizing derivation on a prime ring \mathcal{R} implies that \mathcal{R} is commutative [14]. This theorem has been extended by many people in different ways. One interesting topic of all related works is to study the skew-centralizing mappings or skew-commuting mappings involving pair of (generalized-)derivations on (semi-)prime rings and Banach algebras. Various results with respect to pair of (generalized-)derivations are obtained, see [1], [4], [10], [13], [20], [21], [22].

O2009 The Korean Mathematical Society

Received July 10, 2008; Revised September 12, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 16W25, 16N60, 47B47.

Key words and phrases. (generalized-)derivation, (semi-)prime ring, Banach algebra.

This work is partially supported by the National Natural Science Foundation of China (Grant No. 10871023).

Let \mathcal{A} be an associative algebra, a linear mapping $\mu : \mathcal{A} \longrightarrow \mathcal{A}$ is called a *generalized derivation* of \mathcal{A} if there exists a derivation d of \mathcal{A} such that

$$\mu(xy) = \mu(x)y + xd(y)$$

for all $x, y \in \mathcal{A}$. *d* is called an *associated derivation* of the generalized derivation μ . Obviously, the following mapping

$$\mu: \mathcal{R} \longrightarrow \mathcal{R}, \quad x \longmapsto ax - xb$$

is a generalized derivation of \mathcal{R} , where a and b are fixed elements in \mathcal{R} . Indeed, for all $x, y \in \mathcal{R}$,

$$\mu(xy) = axy - xyb = (ax - xb)y + x(by - yb) = \mu(x)y + xd(y)$$

where d is an inner derivation of \mathcal{R} induced by the element b. Such generalized derivations are called *generalized inner derivations*. It is easy to check that if the associated derivation d of a generalized derivation μ is inner, then μ is also inner. Moreover, all derivations of \mathcal{R} and all right or left multipliers mappings of \mathcal{R} are also generalized derivations of \mathcal{R} .

The main objective of this paper is to consider some special skew-centralizing mappings and some special skew-commuting mappings, which are involved a pair of (generalized-)derivations on (semi-)prime rings. In addition, we use purely algebraic techniques to study the range inclusion problem of pair of (generalized-)derivations on a Banach algebra.

2. Preliminaries

Throughout this paper \mathcal{R} always denotes an associative ring with the center $\mathcal{C}_{\mathcal{R}}$ and \mathcal{A} always denotes a Banach algebra which is a complex normed algebra and its underlying vector space is a Banach space. The Jacobson radical of \mathcal{A} is the intersection of all primitive ideals of \mathcal{A} and is denoted by $rad(\mathcal{A})$. Let \mathcal{I} be any closed ideal of the Banach algebra \mathcal{A} . Then $Q_{\mathcal{I}}$ denotes the canonical quotient mapping from \mathcal{A} onto \mathcal{A}/\mathcal{I} . A ring \mathcal{R} is said to be *n*-torsion free if nx = 0 implies that x = 0 for all $x \in \mathcal{R}$. As usual, we denote the commutator xy - yx by [x, y] and denote the skew commutator xy + yx by $\langle x, y \rangle$. Recall that a ring \mathcal{R} is said to be prime if the product of any two nonzero ideals of \mathcal{R} is nonzero. Equivalently, $a\mathcal{R}b = 0$ with $a, b \in \mathcal{R}$ implies that a = 0 or b = 0. A ring \mathcal{R} is called semiprime if it has no nonzero nilpotent ideals. Equivalently, $a\mathcal{R}a = 0$ with $a \in \mathcal{R}$ implies that a = 0.

3. Generalized derivations on (semi-)prime rings

In this section we will consider pair of (generalized-)derivations on a (semi-) prime ring. These results will play important roles when we discuss the range inclusion problem of pair of (generalized-)derivations on a Banach algebra in the next section.

For the proof of our main result of this section, we need some basic facts. From now on \mathcal{R} always denotes a (semi-)prime ring and \mathcal{U} always denotes the

left Utumi quotient ring of \mathcal{R} . \mathcal{U} can be characterized as a ring satisfying the following properties:

- (1) \mathcal{R} is a subring of \mathcal{U} .
- (2) For each $q \in \mathcal{U}$, there exists a dense left ideal \mathcal{I}_q of \mathcal{R} such that $\mathcal{I}_q q \subseteq \mathcal{R}$.
- (3) If $q \in \mathcal{U}$ and $\mathcal{I}q = 0$ for some dense left ideal \mathcal{I} of \mathcal{R} , then q = 0.

(4) If $\phi : \mathcal{I} \to \mathcal{R}$ is a left \mathcal{R} -module mapping from a dense left ideal \mathcal{I} of \mathcal{R} into \mathcal{R} , then there exists an element $q \in \mathcal{U}$ such that $\phi(i) = iq$ for all $i \in \mathcal{I}$.

Up to isomorphisms, \mathcal{U} is uniquely determined by the above four properties. If \mathcal{R} is a (semi-)prime ring, then \mathcal{U} is also a (semi-)prime ring. The center of \mathcal{U} is called the *extended centroid* of \mathcal{R} and is denoted by \mathcal{C} . It is well known that \mathcal{C} is a von Neumann regular ring. It turns out that \mathcal{C} is a field if and only if \mathcal{R} is a prime ring. The set of all idempotents of \mathcal{C} is denoted by \mathcal{E} . The element of \mathcal{E} are called *central idempotents*.

Another related object we have to mention is the generalized differential identities on (semi-)prime rings. A generalized differential polynomial over \mathcal{U} means a generalized polynomial with coefficients in \mathcal{U} and with noncommutative variables involving generalized derivations. A generalized differential identity for some subset of \mathcal{U} is a generalized differential polynomial satisfied by the given subset. Obviously, the definition of a generalized differential polynomial (or identity) is a common generalization of the definition of a differential polynomial (or identity). We are ready to state the first main result of this paper.

Theorem 3.1. Let n be a fixed positive integer, \mathcal{R} be a 2n!-torsion free prime ring and μ, ν be a pair of generalized derivations on \mathcal{R} . If $\langle \mu^2(x) + \nu(x), x^n \rangle = 0$ for all $x \in \mathcal{R}$, then μ and ν are either left multipliers or right multipliers.

Proof. By assumption we have

(1)
$$\langle \mu^2(x) + \nu(x), x^n \rangle = 0$$

for all $x \in \mathcal{R}$. Substituting $x + \lambda y$ for x in (1) yields that

$$\lambda P_1(x,y) + \lambda^2 P_2(x,y) + \dots + \lambda^n P_n(x,y) = 0,$$

where $\lambda \in \mathbb{Z}$, $x, y \in \mathcal{R}$, $P_i(x, y)$ denotes the sum of terms involving *i* factors of *y* in the expansion of $\langle \mu^2(x + \lambda y) + \nu(x + \lambda y), (x + \lambda y)^n \rangle = 0$. It follows from [5, Lemma 1] that

$$P_1(x,y) = \langle \mu^2(y) + \nu(y), x^n \rangle + \langle \mu^2(x) + \nu(x), x^{n-1}y + x^{n-2}yx + x^{n-3}yx^2 + \dots + yx^{n-1} \rangle = 0$$

for all $x, y \in \mathcal{R}$. It is well known that \mathcal{R} and \mathcal{U} satisfy the same differential identities [11, Theorem 2] and hence satisfy the same generalized differential identities. Thus (2)

$$\langle \mu^{2}(y) + \nu(y), x^{n} \rangle + \langle \mu^{2}(x) + \nu(x), x^{n-1}y + x^{n-2}yx + x^{n-3}yx^{2} + \dots + yx^{n-1} \rangle = 0$$

for all $x, y \in \mathcal{U}$. Note that \mathcal{U} has the identity element e. Taking x = e in (1), we obtain

$$\mu^2(e) + \nu(e) = 0$$

since \mathcal{U} is also 2*n*!-torsion free. Taking y = e in (2) and using the relation $\mu^2(e) + \nu(e) = 0$, we have

$$n\langle \mu^2(x) + \nu(x), x^{n-1} \rangle = 0$$

for all $x \in \mathcal{U}$. Since \mathcal{U} is also 2n!-torsion free,

$$\langle \mu^2(x) + \nu(x), x^{n-1} \rangle = 0$$

for all $x \in \mathcal{U}$. Continuing this process, we assert that

$$\langle \mu^2(x) + \nu(x), x \rangle = 0$$

for all $x \in \mathcal{U}$. Applying [3, Theorem 1] yields that

(3)
$$\mu^2(x) + \nu(x) = 0$$

for all $x \in \mathcal{U}$. The relation (3) implies that μ^2 is a generalized derivation on \mathcal{U} and hence

(4)
$$\mu^2(xy) = \mu^2(x)y + xd_1(y)$$

for all $x, y \in \mathcal{U}$, where d_1 is the associated derivation of μ^2 . On the other hand

(5)
$$\mu^2(xy) = \mu(\mu(x)y + xd_2(y)) = \mu^2(x)y + 2\mu(x)d_2(y) + xd_2^2(y)$$

for all $x, y \in \mathcal{U}$, where d_2 is the associated derivation of μ . It follows from (4) and (5) that

(6)
$$xd_1(y) = 2\mu(x)d_2(y) + xd_2^2(y)$$

for all $x, y \in \mathcal{U}$. Taking x = e in (6), we get

(7)
$$d_1(y) = 2\mu(e)d_2(y) + d_2^2(y)$$

for all $y \in \mathcal{U}$. Substituting yx for y in (7) produces

$$d_1(y)x + yd_1(x) = 2\mu(e)d_2(y)x + 2\mu(e)yd_2(x) + d_2^2(y)x + 2d_2(y)d_2(x) + yd_2^2(x) + yd_2^2(x)$$

for all $x, y \in \mathcal{U}$. Right multiplication of (7) by x leads to

(8)
$$d_1(y)x = 2\mu(e)d_2(y)x + d_2^2(y)x$$

for all $x, y \in \mathcal{U}$. Subtracting (8) from (7) we have

(9)
$$yd_1(x) = 2\mu(e)yd_2(x) + 2d_2(y)d_2(x) + yd_2^2(x)$$

for all $x, y \in \mathcal{U}$. Combining (9) with (7) it is easy to see that

$$\mu(e)xd_2(y) + d_2(x)d_2(y) - x\mu(e)d_2(y) = 0$$

for all $x, y \in \mathcal{U}$. By [14, Lemma 1], we obtain

$$d_2(y) = 0$$
 or $d_2(x) = [x, \mu(e)]$

for all $x, y \in \mathcal{U}$. If $d_2(y) = 0$, then μ, μ^2 and ν are both left multipliers by the relation (5) and (3). If $d_2(x) = [x, \mu(e)]$, then

$$\mu(x) = \mu(e)x + d_2(x) = x\mu(e)$$

for all $x \in \mathcal{U}$. It is easy to check that μ, μ^2 and ν are both right multipliers. This theorem is completed.

As consequences of Theorem 3.1, we immediately get.

Corollary 3.2. Let n be a fixed positive integer, \mathcal{R} be a 2n!-torsion free prime ring and μ be a generalized derivation on \mathcal{R} . If $\mu(x)x^n + x^n\mu(x) = 0$ for all $x \in \mathcal{R}$, then $\mu = 0$.

Corollary 3.3. Let n be a fixed positive integer, \mathcal{R} be a 2n!-torsion free prime ring and d, g be a pair of derivations on \mathcal{R} . If $\langle d^2(x) + g(x), x^n \rangle = 0$ for all $x \in \mathcal{R}$, then d = g = 0.

Furthermore, Corollary 3.3 can be also extended to the following more general form.

Theorem 3.4. Let n be a fixed positive integer, \mathcal{R} be a noncommutative 2n!torsion free prime ring and d, g be a pair of derivations on \mathcal{R} . If $\langle d^2(x) + g(x), x^n \rangle \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$, then d = g = 0.

Proof. By assumption we have

(10)
$$[\langle d^2(x) + g(x), x^n \rangle, z] = 0$$

for all $x, z \in \mathcal{R}$. Substituting $x + \lambda y$ for x in (10) yields that

$$\lambda P_1(x, y, z) + \lambda^2 P_2(x, y, z) + \dots + \lambda^n P_n(x, y, z) = 0,$$

where $\lambda \in \mathbb{Z}$, $x, y, z \in \mathcal{R}$, $P_i(x, y, z)$ denotes the sum of terms involving *i* factors of *y* in the expansion of $[\langle d^2(x + \lambda y) + g(x + \lambda y), (x + \lambda y)^n \rangle, z] = 0$. It follows from [5, Lemma 1] that

$$P_1(x, y, z) = [\langle d^2(y) + g(y), x^n \rangle + \langle d^2(x) + g(x), x^{n-1}y + x^{n-2}yx + x^{n-3}yx^2 + \dots + yx^{n-1} \rangle, z] = 0$$

for all $x, y, z \in \mathcal{R}$. This shows that

$$\langle d^{2}(y) + g(y), x^{n} \rangle + \langle d^{2}(x) + g(x), x^{n-1}y + x^{n-2}yx + x^{n-3}yx^{2} + \dots + yx^{n-1} \rangle \in \mathcal{C}_{\mathcal{R}}$$

for all $x, y \in \mathcal{R}$. It is well known that \mathcal{R} and \mathcal{U} satisfy the same differential identities [11, Theorem 2]. Therefore (11)

$$\langle d^2(y) + g(y), x^n \rangle + \langle d^2(x) + g(x), x^{n-1}y + x^{n-2}yx + x^{n-3}yx^2 + \dots + yx^{n-1} \rangle \in \mathcal{C}_{\mathcal{R}}$$

for all $x, y \in \mathcal{U}$. Note that \mathcal{U} has the identity element e. Taking y = e in (11) and considering the fact that d(e) = g(e) = 0 immediately get

$$n\langle d^2(x) + g(x), x^{n-1} \rangle \in \mathcal{C}_{\mathcal{R}}$$

for all $x \in \mathcal{U}$. Thus

$$n\langle d^2(x) + g(x), x^{n-1} \rangle \in \mathcal{C}_{\mathcal{R}}$$

for all $x \in \mathcal{R}$. Since \mathcal{U} is also 2n!-torsion free,

$$\langle d^2(x) + g(x), x^{n-1} \rangle \in \mathcal{C}_{\mathcal{R}}$$

for all $x \in \mathcal{R}$. Continuing this process, we ultimately get that

$$2(d^2(x) + g(x)) \in \mathcal{C}_{\mathcal{R}}$$

for all $x \in \mathcal{R}$. This implies that

$$[d^2(x) + g(x), x] = 0$$

for all $x \in \mathcal{R}$. Applying [20, Theorem 1] yields that d = g = 0.

We next use the orthogonal completeness method to extend Theorem 3.4 to the case of semiprime rings.

Theorem 3.5. Let n be a fixed positive integer, \mathcal{R} be a noncommutative 2n!-torsion free semiprime ring and d, g be a pair of derivations on \mathcal{R} . If $\langle d^2(x) + g(x), x^n \rangle \in C_{\mathcal{R}}$ for all $x \in \mathcal{R}$, then d and g both map \mathcal{R} into $C_{\mathcal{R}}$.

Proof. Let \mathcal{B} be the complete Boolean algebra of \mathcal{E} . We choose a maximal ideal \mathcal{M} of \mathcal{B} . According to [2], $\mathcal{M}\mathcal{U}$ is a prime ideal of \mathcal{U} , which is invariant under any derivation of \mathcal{U} . It was well known that the pair of derivations d, g on \mathcal{R} can be uniquely extended to be a pair of derivations on \mathcal{U} . Let $\overline{d}, \overline{g}$ be the canonical pair of derivations on $\overline{\mathcal{U}} = \mathcal{U}/\mathcal{M}\mathcal{U}$ induced by d, g, respectively. The assumption implies that

$$[\langle d^2(x) + g(x), x^n \rangle, z] = 0$$

for all $x, z \in \mathcal{R}$. It follows from [11, Theorem 2] that \mathcal{R} and \mathcal{U} satisfy the same differential identities. Thus

$$[\langle d^2(x) + g(x), x^n \rangle, z] = 0$$

for all $x, z \in \mathcal{U}$. Furthermore,

$$[\langle \overline{d}^{2}(\overline{x}) + \overline{g}(\overline{x}), \overline{x}^{n} \rangle, \overline{z}] = 0$$

for all $\overline{x}, \overline{z} \in \overline{\mathcal{U}}$. By Theorem 3.4, we know that either $\overline{d}(\overline{x}) = 0$ and $\overline{g}(\overline{x}) = 0$ or $[\overline{\mathcal{U}}, \overline{\mathcal{U}}] = 0$. In any case we both have

$$d(\mathcal{U})[\mathcal{U},\mathcal{U}] \in \mathcal{MU}$$

and

$g(\mathcal{U})[\mathcal{U},\mathcal{U}] \in \mathcal{MU}$

for all \mathcal{M} . Note that $\bigcap \{\mathcal{M}\mathcal{U} \mid \mathcal{M} \text{ is any maximal ideal of } \mathcal{B}\} = 0$. Hence $d(\mathcal{U})[\mathcal{U},\mathcal{U}] = 0$ and $g(\mathcal{U})[\mathcal{U},\mathcal{U}] = 0$. In particular, $d(\mathcal{R})[\mathcal{R},\mathcal{R}] = 0$ and $g(\mathcal{R})[\mathcal{R},\mathcal{R}] = 0$. These imply that

$$0 = d(\mathcal{R})[\mathcal{R}^2, \mathcal{R}] = d(\mathcal{R})\mathcal{R}[\mathcal{R}, \mathcal{R}] + d(\mathcal{R})[\mathcal{R}, \mathcal{R}]\mathcal{R} = d(\mathcal{R})\mathcal{R}[\mathcal{R}, \mathcal{R}]$$

862

and

$$0 = g(\mathcal{R})[\mathcal{R}^2, \mathcal{R}] = g(\mathcal{R})\mathcal{R}[\mathcal{R}, \mathcal{R}] + g(\mathcal{R})[\mathcal{R}, \mathcal{R}]\mathcal{R} = g(\mathcal{R})\mathcal{R}[\mathcal{R}, \mathcal{R}].$$

Therefore $[\mathcal{R}, d(\mathcal{R})]\mathcal{R}[\mathcal{R}, d(\mathcal{R})] = 0$ and $[\mathcal{R}, g(\mathcal{R})]\mathcal{R}[\mathcal{R}, g(\mathcal{R})] = 0$. By semiprimeness of \mathcal{R} we obtain that $[\mathcal{R}, d(\mathcal{R})] = 0$ and $[\mathcal{R}, g(\mathcal{R})] = 0$. These show that $d(\mathcal{R}) \in \mathcal{C}_{\mathcal{R}}$ and $g(\mathcal{R}) \in \mathcal{C}_{\mathcal{R}}$.

4. Pair of (generalized-)derivations on Banach algebras

In this section we will study the images of pair of (generalized-, Jordan-) derivations on Banach algebras and discuss some open problems with related to the well known noncommutative Singer-Wermer conjecture from the point of view of ring theory.

Theorem 4.1. Let n be a fixed positive integer, \mathcal{A} be a unital Banach algebra and μ be a continuous generalized derivations on \mathcal{A} . If $\mu(x)x^n + x^n\mu(x) \in rad(\mathcal{A})$ for all $x \in \mathcal{A}$, then $\mu(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Proof. Let \mathcal{P} be any primitive ideal of \mathcal{A} . Since μ is continuous, $\mu(\mathcal{P}) \subseteq \mathcal{P}$ by the similar argument of [15, Lemma 3.2]. Thus μ can be induced to a generalized derivation of quotient Banach algebra \mathcal{A}/\mathcal{P} as follows

$$\tilde{\mu}(\tilde{x}) = \mu(x) + \mathcal{P}$$

for all $\tilde{x} \in \mathcal{A}/\mathcal{P}$ and $x \in \mathcal{A}$. Since \mathcal{P} is a primitive ideal, the quotient Banach algebra \mathcal{A}/\mathcal{P} is prime and semisimple. The assumption of the theorem implies that

$$\tilde{\mu}(\tilde{x})\tilde{x}^n + \tilde{x}^n\tilde{\mu}(\tilde{x}) = \tilde{0}$$

for all $\tilde{x} \in \mathcal{A}/\mathcal{P}$ and $x \in \mathcal{A}$. Note that Corollary 3.2 holds for both the case of commutative and the case of noncommutative. In any case $\tilde{\mu} = 0$ and hence $\mu(\mathcal{A}) \subseteq \mathcal{P}$. Since \mathcal{P} is arbitrary, $\mu(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Corollary 4.2. Let n be a fixed positive integer, \mathcal{A} be a semisimple Banach algebra and μ be a generalized derivation on \mathcal{A} . If $\mu(x)x^n + x^n\mu(x) \in rad(\mathcal{A})$ for all $x \in \mathcal{A}$, then $\mu = 0$.

Lemma 4.3 ([19, Lemma 1.2]). Let d be a derivation on Banach algebra \mathcal{A} and \mathcal{J} be a primitive ideal of \mathcal{A} . If there exists a real constant k > 0 such that $\|Q_{\mathcal{J}}d^n\| \leq k^n$ for all $n \in \mathbb{N}$, then $d(\mathcal{J}) \subseteq \mathcal{J}$.

Now we give the main result of this section.

Theorem 4.4. Let n be a fixed positive integer, \mathcal{A} be a Banach algebra and d, g be a pair of derivations on \mathcal{A} . If $\langle d^2(x) + g(x), x^n \rangle \in C_{\mathcal{A}}$ for all $x \in \mathcal{A}$, then $d(\mathcal{A}) \subseteq rad(\mathcal{A})$ and $g(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Proof. Let \mathcal{J} be any primitive ideal of \mathcal{A} . By Zorn's lemma, there exists a minimal prime ideal \mathcal{P} of \mathcal{A} contained in \mathcal{J} such that $d(\mathcal{P}) \subseteq \mathcal{P}$ and $g(\mathcal{P}) \subseteq \mathcal{P}$

by [12, Lemma 1]. If \mathcal{P} is closed, then the pair of derivations d and g can be induced to a pair of derivations on the Banach algebra \mathcal{A}/\mathcal{P} as follows

$$d(\tilde{x}) = d(x) + \mathcal{P}, \quad \tilde{g}(\tilde{x}) = g(x) + \mathcal{P}$$

for all $\tilde{x} \in \mathcal{A}/\mathcal{P}$ and $x \in \mathcal{A}$. If \mathcal{A}/\mathcal{P} is commutative, both $\tilde{d}(\mathcal{A}/\mathcal{P})$ and $\tilde{g}(\mathcal{A}/\mathcal{P})$ are contained in the Jacobson radical of \mathcal{A}/\mathcal{P} by [18, Theorem 4.4]. If \mathcal{A}/\mathcal{P} is noncommutative, by the assumption we have

$$[\langle \tilde{d}^2(\tilde{x}) + \tilde{g}(\tilde{x}), \tilde{x}^n \rangle, \tilde{z}] = \tilde{0}$$

for all $\tilde{x}, \tilde{z} \in \mathcal{A}/\mathcal{P}$ and $x, z \in \mathcal{A}$. By the primeness of \mathcal{A}/\mathcal{P} and Theorem 3.4, it follows that $\tilde{d} = \tilde{0}$ and $\tilde{g} = \tilde{0}$ on \mathcal{A}/\mathcal{P} . In any case, we get both $d(\mathcal{A}) \subseteq \mathcal{J}$ and $g(\mathcal{A}) \subseteq \mathcal{J}$. If \mathcal{P} is not closed, then $\mathcal{S}(d) \subseteq \mathcal{P}$ by [6, Lemma 2.3], where $\mathcal{S}(d)$ is the separating space of linear operator d. By [16, Lemma 1.3], we have $\mathcal{S}(Q_{\hat{\mathcal{P}}}d) = Q_{\hat{\mathcal{P}}}(\widehat{\mathcal{S}}(d)) = 0$ whence $Q_{\hat{\mathcal{P}}}d$ is continuous on \mathcal{A} . This implies that $Q_{\hat{\mathcal{P}}}d(\hat{\mathcal{P}}) = 0$ on \mathcal{A}/\mathcal{P} and hence $d(\hat{\mathcal{P}}) \subseteq \hat{\mathcal{P}}$. Thus d can be induced to a derivation on the Banach algebra $\mathcal{A}/\hat{\mathcal{P}}$ as follows

$$\tilde{d}(\tilde{x}) = d(x) + \hat{\mathcal{P}}$$

for all $\tilde{x} \in \mathcal{A}/\hat{\mathcal{P}}$ and $x \in \mathcal{A}$. Let us define the following mapping

$$\xi \tilde{d}^n Q_{\hat{\mathcal{P}}} : \mathcal{A} \longrightarrow \mathcal{A}/\hat{\mathcal{P}} \longrightarrow \mathcal{A}/\hat{\mathcal{P}} \longrightarrow \mathcal{A}/\mathcal{J}$$

through $\xi \tilde{d}^n Q_{\hat{\mathcal{P}}}(x) = Q_{\mathcal{J}} d^n(x)$ for all $x \in \mathcal{A}$ and $n \in \mathbb{N}$, where ξ is the canonical inclusion mapping from $\mathcal{A}/\hat{\mathcal{P}}$ onto \mathcal{A}/\mathcal{J} and ξ indeed exists since $\hat{\mathcal{P}} \subseteq \mathcal{J}$. By [16, Lemma 1.4], we assert that \tilde{d} is continuous on $\mathcal{A}/\hat{\mathcal{P}}$ and hence that $\|Q_{\mathcal{J}}d^n\| \leq \|\tilde{d}\|^n$ for all $n \in \mathbb{N}$. Applying Lemma 4.3 yields that $d(\mathcal{J}) \subseteq \mathcal{J}$. Using the same argument with g, we also get that $g(\mathcal{J}) \subseteq \mathcal{J}$. Then the pair of derivations d and g can be induced to a pair of derivations on the Banach algebra \mathcal{A}/\mathcal{J} as follows

$$d(\tilde{x}) = d(x) + \mathcal{J}, \quad \tilde{g}(\tilde{x}) = g(x) + \mathcal{J}$$

for all $\tilde{x} \in \mathcal{A}/\mathcal{J}$ and $x \in \mathcal{A}$. The remainder follows the similar argument to the case of when \mathcal{P} is closed since the primitive algebra \mathcal{A}/\mathcal{J} is prime. Therefore we show that $d(\mathcal{A}) \subseteq \mathcal{J}$ and $g(\mathcal{A}) \subseteq \mathcal{J}$. So $d(\mathcal{A}) \subseteq \mathcal{J}$ and $g(\mathcal{A}) \subseteq \mathcal{J}$ for every primitive ideal \mathcal{J} . These imply that $d(\mathcal{A}) \subseteq rad(\mathcal{A})$ and $g(\mathcal{A}) \subseteq rad(\mathcal{A})$. \Box

As a consequence of Theorem 4.4, we immediately get.

Corollary 4.5. Let n be a fixed positive integer, \mathcal{A} be a semisimple Banach algebra and d, g be a pair of derivations on A. If $\langle d^2(x) + g(x), x^n \rangle \in C_{\mathcal{A}}$ for all $x \in \mathcal{A}$, then d = 0 and g = 0.

Let us see the pair of Jordan derivations on a Banach algebra.

Theorem 4.6. Let n be a fixed positive integer, \mathcal{A} be a Banach algebra and d, g be a pair of continuous Jordan derivations on \mathcal{A} . If $\langle d^2(x) + g(x), x^n \rangle \in rad(\mathcal{A})$ for all $x \in \mathcal{A}$, then $d(\mathcal{A}) \subseteq rad(\mathcal{A})$ and $g(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Proof. Let \mathcal{P} be any primitive ideal of \mathcal{A} . Since d and g are both continuous, $d(\mathcal{P}) \subseteq \mathcal{P}$ and $g(\mathcal{P}) \subseteq \mathcal{P}$ by [15, Lemma 3.2]. Then d and g can be induced to a pair of Jordan derivations on the Banach algebra \mathcal{A}/\mathcal{P} as follows

$$\tilde{d}(\tilde{x}) = d(x) + \mathcal{P}, \ \ \tilde{g}(\tilde{x}) = g(x) + \mathcal{P}$$

for all $\tilde{x} \in \mathcal{A}/\mathcal{P}$ and $x \in \mathcal{A}$. Since \mathcal{P} is a primitive ideal of \mathcal{A} , the quotient algebra \mathcal{A}/\mathcal{P} is prime and semisimple. On the other hand, we should remark that the pair of Jordan derivations \tilde{d} and \tilde{g} on \mathcal{A}/\mathcal{P} are also a pair of derivations on \mathcal{A}/\mathcal{P} by Brešar's theorem. It is well known that every derivation on a semisimple Banach algebra is continuous. Combing this result with the well known Singer-Wermer theorem, we know that there are no nonzero derivations on a commutative semisimple Banach algebra. Hence we have $\tilde{d} = 0$ and $\tilde{g} = 0$ when \mathcal{A}/\mathcal{P} is commutative. It remains to show that $\tilde{d} = 0$ and $\tilde{g} = 0$ in the case of when \mathcal{A}/\mathcal{P} is noncommutative. The assumption of the theorem leads to

$$\langle \tilde{d}^2(\tilde{x}) + \tilde{g}(\tilde{x}), \tilde{x}^n \rangle = \tilde{0}$$

for all $\tilde{x} \in \mathcal{A}/\mathcal{P}$ and $x \in \mathcal{A}$. It follows from Theorem 3.4 that $\tilde{d} = 0$ and $\tilde{g} = 0$. In any case both $\tilde{d} = 0$ and $\tilde{g} = 0$. These imply that $d(\mathcal{A}) \subseteq \mathcal{P}$ and $g(\mathcal{A}) \subseteq \mathcal{P}$ for arbitrary primitive ideal \mathcal{P} of \mathcal{A} and hence $d(\mathcal{A}) \subseteq rad(\mathcal{A})$ and $g(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Corollary 4.7. Let n be a fixed positive integer, \mathcal{A} be a semisimple Banach algebra and d, g be a pair of Jordan derivations on \mathcal{A} . If $\langle d^2(x) + g(x), x^n \rangle \in rad(\mathcal{A})$ for all $x \in \mathcal{A}$, then d = 0 and g = 0.

Acknowledgements. The authors would like to express sincere gratitude to the referee for his or her careful reading and making several corrections.

References

- E. Albaş and N. Argaç, Generalized derivations of prime rings, Algebra Colloq. 11 (2004), no. 3, 399–410.
- [2] K. I. Beidar, Quotient rings of semiprime rings, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1978), no. 5, 36–43.
- [3] M. Brešar, On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47 (1993), no. 2, 291–296.
- [4] I.-S. Chang, K.-W. Jun, and Y.-S. Jung, On derivations in Banach algebras, Bull. Korean Math. Soc. 39 (2002), no. 4, 635–643.
- [5] L.-O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415–421.
- [6] J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. (2) 16 (1977), no. 3, 493–500.
- [7] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166.
- [8] Y.-S. Jung and K.-H. Park, On generalized (α, β)-derivations and commutativity in prime rings, Bull. Korean Math. Soc. 43 (2006), no. 1, 101–106.
- [9] _____, On prime and semiprime rings with permuting 3-derivations, Bull. Korean Math. Soc. 44 (2007), no. 4, 789–794.

- [10] E.-H. Lee, Y.-S. Jung, and I.-S. Chang, Derivations on prime and semi-prime rings, Bull. Korean Math. Soc. 39 (2002), no. 3, 485–494.
- [11] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27–38.
- [12] M. Mathieu and V. Runde, Derivations mapping into the radical. II, Bull. London Math. Soc. 24 (1992), no. 5, 485–487.
- [13] K.-H. Park, Y.-S. Jung, and J.-H. Bae, Derivations in Banach algebras, Int. J. Math. Math. Sci. 29 (2002), no. 10, 579–583.
- [14] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [15] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209–214.
- [16] _____, Automatic Continuity of Linear Operators, London Mathematical Society Lecture Note Series, No. 21. Cambridge University Press, Cambridge-New York-Melbourne, 1976.
- [17] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264.
- [18] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435–460.
- [19] _____, Primitive ideals and derivations on noncommutative Banach algebras, Pacific J. Math. 159 (1993), no. 1, 139–152.
- [20] J. Vukman, Identities with derivations on rings and Banach algebras, Glas. Mat. Ser. III 40(60) (2005), no. 2, 189–199.
- F. Wei, *-generalized differential identities of semiprime rings with involution, Houston J. Math. 32 (2006), no. 3, 665–681.
- [22] F. Wei and Z.-K. Xiao, Pairs of derivations on rings and Banach algebras, Demonstratio Math. 41 (2008), no. 2, 297–308.

FENG WEI DEPARTMENT OF MATHEMATICS BEIJING INSTITUTE OF TECHNOLOGY BEIJING, 100081, P. R. CHINA *E-mail address*: daoshuo@bit.edu.cn

ZHANKUI XIAO DEPARTMENT OF MATHEMATICS BEIJING INSTITUTE OF TECHNOLOGY BEIJING, 100081, P. R. CHINA *E-mail address*: zhkxiao@bit.edu.cn