PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS

Feng Wei and Zhankui Xiao

Abstract

Let n be a fixed positive integer, \mathcal{R} be a $2 n!$-torsion free prime ring and μ, ν be a pair of generalized derivations on \mathcal{R}. If $\left\langle\mu^{2}(x)+\right.$ $\left.\nu(x), x^{n}\right\rangle=0$ for all $x \in \mathcal{R}$, then μ and ν are either left multipliers or right multipliers. Let n be a fixed positive integer, \mathcal{R} be a noncommutative $2 n$!torsion free prime ring with the center $\mathcal{C}_{\mathcal{R}}$ and d, g be a pair of derivations on \mathcal{R}. If $\left\langle d^{2}(x)+g(x), x^{n}\right\rangle \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$, then $d=g=0$. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.

1. Introduction

Let \mathcal{R} be a ring with the center $\mathcal{C}_{\mathcal{R}}$. A mapping $f: \mathcal{R} \longrightarrow \mathcal{R}$ is said to be centralizing if $[f(x), x] \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$. In the special case of when $[f(x), x]=0$ for all $x \in \mathcal{R}$, the mapping f is called commuting. A mapping $f: \mathcal{R} \longrightarrow \mathcal{R}$ is said to be central if $f(x) \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$. Obviously, every central mapping is commuting, but not conversely in general. A mapping f of a ring \mathcal{R} is said to be skew-centralizing if $f(x) x+x f(x) \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$. In particular, if $f(x) x+x f(x)=0$ for all $x \in \mathcal{R}$, then it is called skewcommuting. The study of (skew-)centralizing and (skew-)commuting mappings was initiated by a well known theorem of Posner which states that the existence of a nonzero centralizing derivation on a prime ring \mathcal{R} implies that \mathcal{R} is commutative [14]. This theorem has been extended by many people in different ways. One interesting topic of all related works is to study the skew-centralizing mappings or skew-commuting mappings involving pair of (generalized-)derivations on (semi-)prime rings and Banach algebras. Various results with respect to pair of (generalized-)derivations are obtained, see [1], [4], [10], [13], [20], [21], [22].

[^0]Let \mathcal{A} be an associative algebra, a linear mapping $\mu: \mathcal{A} \longrightarrow \mathcal{A}$ is called a generalized derivation of \mathcal{A} if there exists a derivation d of \mathcal{A} such that

$$
\mu(x y)=\mu(x) y+x d(y)
$$

for all $x, y \in \mathcal{A} . d$ is called an associated derivation of the generalized derivation μ. Obviously, the following mapping

$$
\mu: \mathcal{R} \longrightarrow \mathcal{R}, \quad x \longmapsto a x-x b
$$

is a generalized derivation of \mathcal{R}, where a and b are fixed elements in \mathcal{R}. Indeed, for all $x, y \in \mathcal{R}$,

$$
\mu(x y)=a x y-x y b=(a x-x b) y+x(b y-y b)=\mu(x) y+x d(y),
$$

where d is an inner derivation of \mathcal{R} induced by the element b. Such generalized derivations are called generalized inner derivations. It is easy to check that if the associated derivation d of a generalized derivation μ is inner, then μ is also inner. Moreover, all derivations of \mathcal{R} and all right or left multipliers mappings of \mathcal{R} are also generalized derivations of \mathcal{R}.

The main objective of this paper is to consider some special skew-centralizing mappings and some special skew-commuting mappings, which are involved a pair of (generalized-)derivations on (semi-)prime rings. In addition, we use purely algebraic techniques to study the range inclusion problem of pair of (generalized-)derivations on a Banach algebra.

2. Preliminaries

Throughout this paper \mathcal{R} always denotes an associative ring with the center $\mathcal{C}_{\mathcal{R}}$ and \mathcal{A} always denotes a Banach algebra which is a complex normed algebra and its underlying vector space is a Banach space. The Jacobson radical of \mathcal{A} is the intersection of all primitive ideals of \mathcal{A} and is denoted by $\operatorname{rad}(\mathcal{A})$. Let \mathcal{I} be any closed ideal of the Banach algebra \mathcal{A}. Then $Q_{\mathcal{I}}$ denotes the canonical quotient mapping from \mathcal{A} onto $\mathcal{A} / \mathcal{I}$. A ring \mathcal{R} is said to be n-torsion free if $n x=0$ implies that $x=0$ for all $x \in \mathcal{R}$. As usual, we denote the commutator $x y-y x$ by $[x, y]$ and denote the skew commutator $x y+y x$ by $\langle x, y\rangle$. Recall that a ring \mathcal{R} is said to be prime if the product of any two nonzero ideals of \mathcal{R} is nonzero. Equivalently, $a \mathcal{R} b=0$ with $a, b \in \mathcal{R}$ implies that $a=0$ or $b=0$. A ring \mathcal{R} is called semiprime if it has no nonzero nilpotent ideals. Equivalently, $a \mathcal{R} a=0$ with $a \in \mathcal{R}$ implies that $a=0$.

3. Generalized derivations on (semi-)prime rings

In this section we will consider pair of (generalized-)derivations on a (semi-) prime ring. These results will play important roles when we discuss the range inclusion problem of pair of (generalized-)derivations on a Banach algebra in the next section.

For the proof of our main result of this section, we need some basic facts. From now on \mathcal{R} always denotes a (semi-)prime ring and \mathcal{U} always denotes the
left Utumi quotient ring of \mathcal{R}. \mathcal{U} can be characterized as a ring satisfying the following properties:
(1) \mathcal{R} is a subring of \mathcal{U}.
(2) For each $q \in \mathcal{U}$, there exists a dense left ideal \mathcal{I}_{q} of \mathcal{R} such that $\mathcal{I}_{q} q \subseteq \mathcal{R}$.
(3) If $q \in \mathcal{U}$ and $\mathcal{I} q=0$ for some dense left ideal \mathcal{I} of \mathcal{R}, then $q=0$.
(4) If $\phi: \mathcal{I} \rightarrow \mathcal{R}$ is a left \mathcal{R}-module mapping from a dense left ideal \mathcal{I} of \mathcal{R} into \mathcal{R}, then there exists an element $q \in \mathcal{U}$ such that $\phi(i)=i q$ for all $i \in \mathcal{I}$.
Up to isomorphisms, \mathcal{U} is uniquely determined by the above four properties. If \mathcal{R} is a (semi-)prime ring, then \mathcal{U} is also a (semi-)prime ring. The center of \mathcal{U} is called the extended centroid of \mathcal{R} and is denoted by \mathcal{C}. It is well known that \mathcal{C} is a von Neumann regular ring. It turns out that \mathcal{C} is a field if and only if \mathcal{R} is a prime ring. The set of all idempotents of \mathcal{C} is denoted by \mathcal{E}. The element of \mathcal{E} are called central idempotents.

Another related object we have to mention is the generalized differential identities on (semi-)prime rings. A generalized differential polynomial over \mathcal{U} means a generalized polynomial with coefficients in \mathcal{U} and with noncommutative variables involving generalized derivations. A generalized differential identity for some subset of \mathcal{U} is a generalized differential polynomial satisfied by the given subset. Obviously, the definition of a generalized differential polynomial (or identity) is a common generalization of the definition of a differential polynomial (or identity). We are ready to state the first main result of this paper.
Theorem 3.1. Let n be a fixed positive integer, \mathcal{R} be a $2 n!$-torsion free prime ring and μ, ν be a pair of generalized derivations on \mathcal{R}. If $\left\langle\mu^{2}(x)+\nu(x), x^{n}\right\rangle=0$ for all $x \in \mathcal{R}$, then μ and ν are either left multipliers or right multipliers.

Proof. By assumption we have

$$
\begin{equation*}
\left\langle\mu^{2}(x)+\nu(x), x^{n}\right\rangle=0 \tag{1}
\end{equation*}
$$

for all $x \in \mathcal{R}$. Substituting $x+\lambda y$ for x in (1) yields that

$$
\lambda P_{1}(x, y)+\lambda^{2} P_{2}(x, y)+\cdots+\lambda^{n} P_{n}(x, y)=0
$$

where $\lambda \in \mathbb{Z}, x, y \in \mathcal{R}, P_{i}(x, y)$ denotes the sum of terms involving i factors of y in the expansion of $\left\langle\mu^{2}(x+\lambda y)+\nu(x+\lambda y),(x+\lambda y)^{n}\right\rangle=0$. It follows from [5, Lemma 1] that

$$
\begin{aligned}
P_{1}(x, y)= & \left\langle\mu^{2}(y)+\nu(y), x^{n}\right\rangle \\
& +\left\langle\mu^{2}(x)+\nu(x), x^{n-1} y+x^{n-2} y x+x^{n-3} y x^{2}+\cdots+y x^{n-1}\right\rangle=0
\end{aligned}
$$

for all $x, y \in \mathcal{R}$. It is well known that \mathcal{R} and \mathcal{U} satisfy the same differential identities [11, Theorem 2] and hence satisfy the same generalized differential identities. Thus
(2)

$$
\left\langle\mu^{2}(y)+\nu(y), x^{n}\right\rangle+\left\langle\mu^{2}(x)+\nu(x), x^{n-1} y+x^{n-2} y x+x^{n-3} y x^{2}+\cdots+y x^{n-1}\right\rangle=0
$$

for all $x, y \in \mathcal{U}$. Note that \mathcal{U} has the identity element e. Taking $x=e$ in (1), we obtain

$$
\mu^{2}(e)+\nu(e)=0
$$

since \mathcal{U} is also $2 n$!-torsion free. Taking $y=e$ in (2) and using the relation $\mu^{2}(e)+\nu(e)=0$, we have

$$
n\left\langle\mu^{2}(x)+\nu(x), x^{n-1}\right\rangle=0
$$

for all $x \in \mathcal{U}$. Since \mathcal{U} is also $2 n$!-torsion free,

$$
\left\langle\mu^{2}(x)+\nu(x), x^{n-1}\right\rangle=0
$$

for all $x \in \mathcal{U}$. Continuing this process, we assert that

$$
\left\langle\mu^{2}(x)+\nu(x), x\right\rangle=0
$$

for all $x \in \mathcal{U}$. Applying [3, Theorem 1] yields that

$$
\begin{equation*}
\mu^{2}(x)+\nu(x)=0 \tag{3}
\end{equation*}
$$

for all $x \in \mathcal{U}$. The relation (3) implies that μ^{2} is a generalized derivation on \mathcal{U} and hence

$$
\begin{equation*}
\mu^{2}(x y)=\mu^{2}(x) y+x d_{1}(y) \tag{4}
\end{equation*}
$$

for all $x, y \in \mathcal{U}$, where d_{1} is the associated derivation of μ^{2}. On the other hand

$$
\begin{equation*}
\mu^{2}(x y)=\mu\left(\mu(x) y+x d_{2}(y)\right)=\mu^{2}(x) y+2 \mu(x) d_{2}(y)+x d_{2}^{2}(y) \tag{5}
\end{equation*}
$$

for all $x, y \in \mathcal{U}$, where d_{2} is the associated derivation of μ. It follows from (4) and (5) that

$$
\begin{equation*}
x d_{1}(y)=2 \mu(x) d_{2}(y)+x d_{2}^{2}(y) \tag{6}
\end{equation*}
$$

for all $x, y \in \mathcal{U}$. Taking $x=e$ in (6), we get

$$
\begin{equation*}
d_{1}(y)=2 \mu(e) d_{2}(y)+d_{2}^{2}(y) \tag{7}
\end{equation*}
$$

for all $y \in \mathcal{U}$. Substituting $y x$ for y in (7) produces
$d_{1}(y) x+y d_{1}(x)=2 \mu(e) d_{2}(y) x+2 \mu(e) y d_{2}(x)+d_{2}^{2}(y) x+2 d_{2}(y) d_{2}(x)+y d_{2}^{2}(x)$
for all $x, y \in \mathcal{U}$. Right multiplication of (7) by x leads to

$$
\begin{equation*}
d_{1}(y) x=2 \mu(e) d_{2}(y) x+d_{2}^{2}(y) x \tag{8}
\end{equation*}
$$

for all $x, y \in \mathcal{U}$. Subtracting (8) from (7) we have

$$
\begin{equation*}
y d_{1}(x)=2 \mu(e) y d_{2}(x)+2 d_{2}(y) d_{2}(x)+y d_{2}^{2}(x) \tag{9}
\end{equation*}
$$

for all $x, y \in \mathcal{U}$. Combining (9) with (7) it is easy to see that

$$
\mu(e) x d_{2}(y)+d_{2}(x) d_{2}(y)-x \mu(e) d_{2}(y)=0
$$

for all $x, y \in \mathcal{U}$. By [14, Lemma 1], we obtain

$$
d_{2}(y)=0 \text { or } d_{2}(x)=[x, \mu(e)]
$$

for all $x, y \in \mathcal{U}$. If $d_{2}(y)=0$, then μ, μ^{2} and ν are both left multipliers by the relation (5) and (3). If $d_{2}(x)=[x, \mu(e)]$, then

$$
\mu(x)=\mu(e) x+d_{2}(x)=x \mu(e)
$$

for all $x \in \mathcal{U}$. It is easy to check that μ, μ^{2} and ν are both right multipliers. This theorem is completed.

As consequences of Theorem 3.1, we immediately get.
Corollary 3.2. Let n be a fixed positive integer, \mathcal{R} be a $2 n!$-torsion free prime ring and μ be a generalized derivation on \mathcal{R}. If $\mu(x) x^{n}+x^{n} \mu(x)=0$ for all $x \in \mathcal{R}$, then $\mu=0$.

Corollary 3.3. Let n be a fixed positive integer, \mathcal{R} be a $2 n!$-torsion free prime ring and d, g be a pair of derivations on \mathcal{R}. If $\left\langle d^{2}(x)+g(x), x^{n}\right\rangle=0$ for all $x \in \mathcal{R}$, then $d=g=0$.

Furthermore, Corollary 3.3 can be also extended to the following more general form.

Theorem 3.4. Let n be a fixed positive integer, \mathcal{R} be a noncommutative $2 n!$ torsion free prime ring and d, g be a pair of derivations on \mathcal{R}. If $\left\langle d^{2}(x)+\right.$ $\left.g(x), x^{n}\right\rangle \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$, then $d=g=0$.
Proof. By assumption we have

$$
\begin{equation*}
\left[\left\langle d^{2}(x)+g(x), x^{n}\right\rangle, z\right]=0 \tag{10}
\end{equation*}
$$

for all $x, z \in \mathcal{R}$. Substituting $x+\lambda y$ for x in (10) yields that

$$
\lambda P_{1}(x, y, z)+\lambda^{2} P_{2}(x, y, z)+\cdots+\lambda^{n} P_{n}(x, y, z)=0
$$

where $\lambda \in \mathbb{Z}, x, y, z \in \mathcal{R}, P_{i}(x, y, z)$ denotes the sum of terms involving i factors of y in the expansion of $\left[\left\langle d^{2}(x+\lambda y)+g(x+\lambda y),(x+\lambda y)^{n}\right\rangle, z\right]=0$. It follows from [5, Lemma 1] that

$$
\begin{aligned}
& P_{1}(x, y, z) \\
= & {\left[\left\langle d^{2}(y)+g(y), x^{n}\right\rangle+\left\langle d^{2}(x)+g(x), x^{n-1} y+x^{n-2} y x+x^{n-3} y x^{2}+\cdots+y x^{n-1}\right\rangle, z\right]=0 }
\end{aligned}
$$

for all $x, y, z \in \mathcal{R}$. This shows that
$\left\langle d^{2}(y)+g(y), x^{n}\right\rangle+\left\langle d^{2}(x)+g(x), x^{n-1} y+x^{n-2} y x+x^{n-3} y x^{2}+\cdots+y x^{n-1}\right\rangle \in \mathcal{C}_{\mathcal{R}}$ for all $x, y \in \mathcal{R}$. It is well known that \mathcal{R} and \mathcal{U} satisfy the same differential identities [11, Theorem 2]. Therefore
(11)
$\left\langle d^{2}(y)+g(y), x^{n}\right\rangle+\left\langle d^{2}(x)+g(x), x^{n-1} y+x^{n-2} y x+x^{n-3} y x^{2}+\cdots+y x^{n-1}\right\rangle \in \mathcal{C}_{\mathcal{R}}$
for all $x, y \in \mathcal{U}$. Note that \mathcal{U} has the identity element e. Taking $y=e$ in (11) and considering the fact that $d(e)=g(e)=0$ immediately get

$$
n\left\langle d^{2}(x)+g(x), x^{n-1}\right\rangle \in \mathcal{C}_{\mathcal{R}}
$$

for all $x \in \mathcal{U}$. Thus

$$
n\left\langle d^{2}(x)+g(x), x^{n-1}\right\rangle \in \mathcal{C}_{\mathcal{R}}
$$

for all $x \in \mathcal{R}$. Since \mathcal{U} is also $2 n$!-torsion free,

$$
\left\langle d^{2}(x)+g(x), x^{n-1}\right\rangle \in \mathcal{C}_{\mathcal{R}}
$$

for all $x \in \mathcal{R}$. Continuing this process, we ultimately get that

$$
2\left(d^{2}(x)+g(x)\right) \in \mathcal{C}_{\mathcal{R}}
$$

for all $x \in \mathcal{R}$. This implies that

$$
\left[d^{2}(x)+g(x), x\right]=0
$$

for all $x \in \mathcal{R}$. Applying [20, Theorem 1] yields that $d=g=0$.
We next use the orthogonal completeness method to extend Theorem 3.4 to the case of semiprime rings.
Theorem 3.5. Let n be a fixed positive integer, \mathcal{R} be a noncommutative $2 n!-$ torsion free semiprime ring and d, g be a pair of derivations on \mathcal{R}. If $\left\langle d^{2}(x)+\right.$ $\left.g(x), x^{n}\right\rangle \in \mathcal{C}_{\mathcal{R}}$ for all $x \in \mathcal{R}$, then d and g both map \mathcal{R} into $\mathcal{C}_{\mathcal{R}}$.

Proof. Let \mathcal{B} be the complete Boolean algebra of \mathcal{E}. We choose a maximal ideal \mathcal{M} of \mathcal{B}. According to [2], $\mathcal{M} \mathcal{U}$ is a prime ideal of \mathcal{U}, which is invariant under any derivation of \mathcal{U}. It was well known that the pair of derivations d, g on \mathcal{R} can be uniquely extended to be a pair of derivations on \mathcal{U}. Let \bar{d}, \bar{g} be the canonical pair of derivations on $\overline{\mathcal{U}}=\mathcal{U} / \mathcal{M} \mathcal{U}$ induced by d, g, respectively. The assumption implies that

$$
\left[\left\langle d^{2}(x)+g(x), x^{n}\right\rangle, z\right]=0
$$

for all $x, z \in \mathcal{R}$. It follows from [11, Theorem 2] that \mathcal{R} and \mathcal{U} satisfy the same differential identities. Thus

$$
\left[\left\langle d^{2}(x)+g(x), x^{n}\right\rangle, z\right]=0
$$

for all $x, z \in \mathcal{U}$. Furthermore,

$$
\left[\left\langle\bar{d}^{2}(\bar{x})+\bar{g}(\bar{x}), \bar{x}^{n}\right\rangle, \bar{z}\right]=0
$$

for all $\bar{x}, \bar{z} \in \overline{\mathcal{U}}$. By Theorem 3.4, we know that either $\bar{d}(\bar{x})=0$ and $\bar{g}(\bar{x})=0$ or $[\overline{\mathcal{U}}, \overline{\mathcal{U}}]=0$. In any case we both have

$$
d(\mathcal{U})[\mathcal{U}, \mathcal{U}] \in \mathcal{M} \mathcal{U}
$$

and

$$
g(\mathcal{U})[\mathcal{U}, \mathcal{U}] \in \mathcal{M U}
$$

for all \mathcal{M}. Note that $\bigcap\{\mathcal{M} \mathcal{U} \mid \mathcal{M}$ is any maximal ideal of $\mathcal{B}\}=0$. Hence $d(\mathcal{U})[\mathcal{U}, \mathcal{U}]=0$ and $g(\mathcal{U})[\mathcal{U}, \mathcal{U}]=0$. In particular, $d(\mathcal{R})[\mathcal{R}, \mathcal{R}]=0$ and $g(\mathcal{R})[\mathcal{R}, \mathcal{R}]=0$. These imply that

$$
0=d(\mathcal{R})\left[\mathcal{R}^{2}, \mathcal{R}\right]=d(\mathcal{R}) \mathcal{R}[\mathcal{R}, \mathcal{R}]+d(\mathcal{R})[\mathcal{R}, \mathcal{R}] \mathcal{R}=d(\mathcal{R}) \mathcal{R}[\mathcal{R}, \mathcal{R}]
$$

and

$$
0=g(\mathcal{R})\left[\mathcal{R}^{2}, \mathcal{R}\right]=g(\mathcal{R}) \mathcal{R}[\mathcal{R}, \mathcal{R}]+g(\mathcal{R})[\mathcal{R}, \mathcal{R}] \mathcal{R}=g(\mathcal{R}) \mathcal{R}[\mathcal{R}, \mathcal{R}]
$$

Therefore $[\mathcal{R}, d(\mathcal{R})] \mathcal{R}[\mathcal{R}, d(\mathcal{R})]=0$ and $[\mathcal{R}, g(\mathcal{R})] \mathcal{R}[\mathcal{R}, g(\mathcal{R})]=0$. By semiprimeness of \mathcal{R} we obtain that $[\mathcal{R}, d(\mathcal{R})]=0$ and $[\mathcal{R}, g(\mathcal{R})]=0$. These show that $d(\mathcal{R}) \in \mathcal{C}_{\mathcal{R}}$ and $g(\mathcal{R}) \in \mathcal{C}_{\mathcal{R}}$.

4. Pair of (generalized-)derivations on Banach algebras

In this section we will study the images of pair of (generalized-, Jordan-) derivations on Banach algebras and discuss some open problems with related to the well known noncommutative Singer-Wermer conjecture from the point of view of ring theory.

Theorem 4.1. Let n be a fixed positive integer, \mathcal{A} be a unital Banach algebra and μ be a continuous generalized derivations on \mathcal{A}. If $\mu(x) x^{n}+x^{n} \mu(x) \in$ $\operatorname{rad}(\mathcal{A})$ for all $x \in \mathcal{A}$, then $\mu(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Proof. Let \mathcal{P} be any primitive ideal of \mathcal{A}. Since μ is continuous, $\mu(\mathcal{P}) \subseteq \mathcal{P}$ by the similar argument of [15, Lemma 3.2]. Thus μ can be induced to a generalized derivation of quotient Banach algebra $\mathcal{A} / \mathcal{P}$ as follows

$$
\tilde{\mu}(\tilde{x})=\mu(x)+\mathcal{P}
$$

for all $\tilde{x} \in \mathcal{A} / \mathcal{P}$ and $x \in \mathcal{A}$. Since \mathcal{P} is a primitive ideal, the quotient Banach algebra $\mathcal{A} / \mathcal{P}$ is prime and semisimple. The assumption of the theorem implies that

$$
\tilde{\mu}(\tilde{x}) \tilde{x}^{n}+\tilde{x}^{n} \tilde{\mu}(\tilde{x})=\tilde{0}
$$

for all $\tilde{x} \in \mathcal{A} / \mathcal{P}$ and $x \in \mathcal{A}$. Note that Corollary 3.2 holds for both the case of commutative and the case of noncommutative. In any case $\tilde{\mu}=0$ and hence $\mu(\mathcal{A}) \subseteq \mathcal{P}$. Since \mathcal{P} is arbitrary, $\mu(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Corollary 4.2. Let n be a fixed positive integer, \mathcal{A} be a semisimple Banach algebra and μ be a generalized derivation on \mathcal{A}. If $\mu(x) x^{n}+x^{n} \mu(x) \in \operatorname{rad}(\mathcal{A})$ for all $x \in \mathcal{A}$, then $\mu=0$.
Lemma 4.3 ([19, Lemma 1.2]). Let d be a derivation on Banach algebra \mathcal{A} and \mathcal{J} be a primitive ideal of \mathcal{A}. If there exists a real constant $k>0$ such that $\left\|Q_{\mathcal{J}} d^{n}\right\| \leq k^{n}$ for all $n \in \mathbb{N}$, then $d(\mathcal{J}) \subseteq \mathcal{J}$.

Now we give the main result of this section.
Theorem 4.4. Let n be a fixed positive integer, \mathcal{A} be a Banach algebra and d, g be a pair of derivations on \mathcal{A}. If $\left\langle d^{2}(x)+g(x), x^{n}\right\rangle \in \mathcal{C}_{\mathcal{A}}$ for all $x \in \mathcal{A}$, then $d(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ and $g(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Proof. Let \mathcal{J} be any primitive ideal of \mathcal{A}. By Zorn's lemma, there exists a minimal prime ideal \mathcal{P} of \mathcal{A} contained in \mathcal{J} such that $d(\mathcal{P}) \subseteq \mathcal{P}$ and $g(\mathcal{P}) \subseteq \mathcal{P}$
by [12, Lemma 1]. If \mathcal{P} is closed, then the pair of derivations d and g can be induced to a pair of derivations on the Banach algebra $\mathcal{A} / \mathcal{P}$ as follows

$$
\tilde{d}(\tilde{x})=d(x)+\mathcal{P}, \quad \tilde{g}(\tilde{x})=g(x)+\mathcal{P}
$$

for all $\tilde{x} \in \mathcal{A} / \mathcal{P}$ and $x \in \mathcal{A}$. If $\mathcal{A} / \mathcal{P}$ is commutative, both $\tilde{d}(\mathcal{A} / \mathcal{P})$ and $\tilde{g}(\mathcal{A} / \mathcal{P})$ are contained in the Jacobson radical of $\mathcal{A} / \mathcal{P}$ by [18, Theorem 4.4]. If $\mathcal{A} / \mathcal{P}$ is noncommutative, by the assumption we have

$$
\left[\left\langle\tilde{d}^{2}(\tilde{x})+\tilde{g}(\tilde{x}), \tilde{x}^{n}\right\rangle, \tilde{z}\right]=\tilde{0}
$$

for all $\tilde{x}, \tilde{z} \in \mathcal{A} / \mathcal{P}$ and $x, z \in \mathcal{A}$. By the primeness of $\mathcal{A} / \mathcal{P}$ and Theorem 3.4, it follows that $\tilde{d}=\tilde{0}$ and $\tilde{g}=\tilde{0}$ on $\mathcal{A} / \mathcal{P}$. In any case, we get both $d(\mathcal{A}) \subseteq \mathcal{J}$ and $g(\mathcal{A}) \subseteq \mathcal{J}$. If \mathcal{P} is not closed, then $\mathcal{S}(d) \subseteq \mathcal{P}$ by [6, Lemma 2.3], where $\mathcal{S}(d)$ is the separating space of linear operator d. By [16, Lemma 1.3], we have $\left.\mathcal{S}\left(Q_{\hat{\mathcal{P}}} d\right)=Q_{\hat{\mathcal{P}}} \widehat{\mathcal{S}(d)}\right)=0$ whence $Q_{\hat{\mathcal{P}}} d$ is continuous on \mathcal{A}. This implies that $Q_{\hat{\mathcal{P}}} d(\hat{\mathcal{P}})=0$ on $\mathcal{A} / \mathcal{P}$ and hence $d(\hat{\mathcal{P}}) \subseteq \hat{\mathcal{P}}$. Thus d can be induced to a derivation on the Banach algebra $\mathcal{A} / \hat{\mathcal{P}}$ as follows

$$
\tilde{d}(\tilde{x})=d(x)+\hat{\mathcal{P}}
$$

for all $\tilde{x} \in \mathcal{A} / \hat{\mathcal{P}}$ and $x \in \mathcal{A}$. Let us define the following mapping

$$
\xi \tilde{d}^{n} Q_{\hat{\mathcal{P}}}: \mathcal{A} \longrightarrow \mathcal{A} / \hat{\mathcal{P}} \longrightarrow \mathcal{A} / \hat{\mathcal{P}} \longrightarrow \mathcal{A} / \mathcal{J}
$$

through $\xi \tilde{d}^{n} Q_{\hat{\mathcal{P}}}(x)=Q_{\mathcal{J}} d^{n}(x)$ for all $x \in \mathcal{A}$ and $n \in \mathbb{N}$, where ξ is the canonical inclusion mapping from $\mathcal{A} / \hat{\mathcal{P}}$ onto $\mathcal{A} / \mathcal{J}$ and ξ indeed exists since $\hat{\mathcal{P}} \subseteq \mathcal{J}$. By [16, Lemma 1.4], we assert that \tilde{d} is continuous on $\mathcal{A} / \hat{\mathcal{P}}$ and hence that $\left\|Q_{\mathcal{J}} d^{n}\right\| \leq\|\tilde{d}\|^{n}$ for all $n \in \mathbb{N}$. Applying Lemma 4.3 yields that $d(\mathcal{J}) \subseteq \mathcal{J}$. Using the same argument with g, we also get that $g(\mathcal{J}) \subseteq \mathcal{J}$. Then the pair of derivations d and g can be induced to a pair of derivations on the Banach algebra $\mathcal{A} / \mathcal{J}$ as follows

$$
\tilde{d}(\tilde{x})=d(x)+\mathcal{J}, \quad \tilde{g}(\tilde{x})=g(x)+\mathcal{J}
$$

for all $\tilde{x} \in \mathcal{A} / \mathcal{J}$ and $x \in \mathcal{A}$. The remainder follows the similar argument to the case of when \mathcal{P} is closed since the primitive algebra $\mathcal{A} / \mathcal{J}$ is prime. Therefore we show that $d(\mathcal{A}) \subseteq \mathcal{J}$ and $g(\mathcal{A}) \subseteq \mathcal{J}$. So $d(\mathcal{A}) \subseteq \mathcal{J}$ and $g(\mathcal{A}) \subseteq \mathcal{J}$ for every primitive ideal \mathcal{J}. These imply that $d(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ and $g(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

As a consequence of Theorem 4.4, we immediately get.
Corollary 4.5. Let n be a fixed positive integer, \mathcal{A} be a semisimple Banach algebra and d, g be a pair of derivations on A. If $\left\langle d^{2}(x)+g(x), x^{n}\right\rangle \in \mathcal{C}_{\mathcal{A}}$ for all $x \in \mathcal{A}$, then $d=0$ and $g=0$.

Let us see the pair of Jordan derivations on a Banach algebra.
Theorem 4.6. Let n be a fixed positive integer, \mathcal{A} be a Banach algebra and d, g be a pair of continuous Jordan derivations on \mathcal{A}. If $\left\langle d^{2}(x)+g(x), x^{n}\right\rangle \in \operatorname{rad}(\mathcal{A})$ for all $x \in \mathcal{A}$, then $d(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ and $g(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Proof. Let \mathcal{P} be any primitive ideal of \mathcal{A}. Since d and g are both continuous, $d(\mathcal{P}) \subseteq \mathcal{P}$ and $g(\mathcal{P}) \subseteq \mathcal{P}$ by [15, Lemma 3.2]. Then d and g can be induced to a pair of Jordan derivations on the Banach algebra $\mathcal{A} / \mathcal{P}$ as follows

$$
\tilde{d}(\tilde{x})=d(x)+\mathcal{P}, \quad \tilde{g}(\tilde{x})=g(x)+\mathcal{P}
$$

for all $\tilde{x} \in \mathcal{A} / \mathcal{P}$ and $x \in \mathcal{A}$. Since \mathcal{P} is a primitive ideal of \mathcal{A}, the quotient algebra $\mathcal{A} / \mathcal{P}$ is prime and semisimple. On the other hand, we should remark that the pair of Jordan derivations \tilde{d} and \tilde{g} on $\mathcal{A} / \mathcal{P}$ are also a pair of derivations on $\mathcal{A} / \mathcal{P}$ by Brešar's theorem. It is well known that every derivation on a semisimple Banach algebra is continuous. Combing this result with the well known Singer-Wermer theorem, we know that there are no nonzero derivations on a commutative semisimple Banach algebra. Hence we have $\tilde{d}=0$ and $\tilde{g}=0$ when $\mathcal{A} / \mathcal{P}$ is commutative. It remains to show that $\tilde{d}=0$ and $\tilde{g}=0$ in the case of when $\mathcal{A} / \mathcal{P}$ is noncommutative. The assumption of the theorem leads to

$$
\left\langle\tilde{d}^{2}(\tilde{x})+\tilde{g}(\tilde{x}), \tilde{x}^{n}\right\rangle=\tilde{0}
$$

for all $\tilde{x} \in \mathcal{A} / \mathcal{P}$ and $x \in \mathcal{A}$. It follows from Theorem 3.4 that $\tilde{d}=0$ and $\tilde{g}=0$. In any case both $\tilde{d}=0$ and $\tilde{g}=0$. These imply that $d(\mathcal{A}) \subseteq \mathcal{P}$ and $g(\mathcal{A}) \subseteq \mathcal{P}$ for arbitrary primitive ideal \mathcal{P} of \mathcal{A} and hence $d(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ and $g(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Corollary 4.7. Let n be a fixed positive integer, \mathcal{A} be a semisimple Banach algebra and d, g be a pair of Jordan derivations on \mathcal{A}. If $\left\langle d^{2}(x)+g(x), x^{n}\right\rangle \in$ $\operatorname{rad}(\mathcal{A})$ for all $x \in \mathcal{A}$, then $d=0$ and $g=0$.

Acknowledgements. The authors would like to express sincere gratitude to the referee for his or her careful reading and making several corrections.

References

[1] E. Albaş and N. Argaç, Generalized derivations of prime rings, Algebra Colloq. 11 (2004), no. 3, 399-410.
[2] K. I. Beidar, Quotient rings of semiprime rings, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1978), no. 5, 36-43.
[3] M. Brešar, On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47 (1993), no. 2, 291-296.
[4] I.-S. Chang, K.-W. Jun, and Y.-S. Jung, On derivations in Banach algebras, Bull. Korean Math. Soc. 39 (2002), no. 4, 635-643.
[5] L.-O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415-421
[6] J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. (2) 16 (1977), no. 3, 493-500.
[7] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166.
[8] Y.-S. Jung and K.-H. Park, On generalized (α, β)-derivations and commutativity in prime rings, Bull. Korean Math. Soc. 43 (2006), no. 1, 101-106.
[9] , On prime and semiprime rings with permuting 3-derivations, Bull. Korean Math. Soc. 44 (2007), no. 4, 789-794.
[10] E.-H. Lee, Y.-S. Jung, and I.-S. Chang, Derivations on prime and semi-prime rings, Bull. Korean Math. Soc. 39 (2002), no. 3, 485-494.
[11] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
[12] M. Mathieu and V. Runde, Derivations mapping into the radical. II, Bull. London Math. Soc. 24 (1992), no. 5, 485-487.
[13] K.-H. Park, Y.-S. Jung, and J.-H. Bae, Derivations in Banach algebras, Int. J. Math. Math. Sci. 29 (2002), no. 10, 579-583.
[14] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[15] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.
[16] , Automatic Continuity of Linear Operators, London Mathematical Society Lecture Note Series, No. 21. Cambridge University Press, Cambridge-New York-Melbourne, 1976.
[17] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
[18] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435-460.
[19] , Primitive ideals and derivations on noncommutative Banach algebras, Pacific J. Math. 159 (1993), no. 1, 139-152.
[20] J. Vukman, Identities with derivations on rings and Banach algebras, Glas. Mat. Ser. III 40(60) (2005), no. 2, 189-199.
[21] F. Wei, *-generalized differential identities of semiprime rings with involution, Houston J. Math. 32 (2006), no. 3, 665-681.
[22] F. Wei and Z.-K. Xiao, Pairs of derivations on rings and Banach algebras, Demonstratio Math. 41 (2008), no. 2, 297-308.

Feng Wei
Department of Mathematics
Beijing Institute of Technology
Beijing, 100081, P. R. China
E-mail address: daoshuo@bit.edu.cn
Zhankui Xiao
Department of Mathematics
Beijing Institute of Technology
Beijing, 100081, P. R. China
E-mail address: zhkxiao@bit.edu.cn

[^0]: Received July 10, 2008; Revised September 12, 2008.
 2000 Mathematics Subject Classification. 16W25, 16N60, 47B47.
 Key words and phrases. (generalized-)derivation, (semi-)prime ring, Banach algebra. This work is partially supported by the National Natural Science Foundation of China (Grant No. 10871023).

