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PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND
BANACH ALGEBRAS

Feng Wei and Zhankui Xiao

Abstract. Let n be a fixed positive integer, R be a 2n!-torsion free
prime ring and µ, ν be a pair of generalized derivations on R. If 〈µ2(x)+
ν(x), xn〉 = 0 for all x ∈ R, then µ and ν are either left multipliers or right
multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-
torsion free prime ring with the center CR and d, g be a pair of derivations
on R. If 〈d2(x) + g(x), xn〉 ∈ CR for all x ∈ R, then d = g = 0. Then we
apply these purely algebraic techniques to obtain several range inclusion
results of pair of (generalized-)derivations on a Banach algebra.

1. Introduction

Let R be a ring with the center CR. A mapping f : R −→ R is said to
be centralizing if [f(x), x] ∈ CR for all x ∈ R. In the special case of when
[f(x), x] = 0 for all x ∈ R, the mapping f is called commuting. A mapping
f : R −→ R is said to be central if f(x) ∈ CR for all x ∈ R. Obviously,
every central mapping is commuting, but not conversely in general. A map-
ping f of a ring R is said to be skew-centralizing if f(x)x + xf(x) ∈ CR for all
x ∈ R. In particular, if f(x)x + xf(x) = 0 for all x ∈ R, then it is called skew-
commuting. The study of (skew-)centralizing and (skew-)commuting mappings
was initiated by a well known theorem of Posner which states that the existence
of a nonzero centralizing derivation on a prime ringR implies thatR is commu-
tative [14]. This theorem has been extended by many people in different ways.
One interesting topic of all related works is to study the skew-centralizing map-
pings or skew-commuting mappings involving pair of (generalized-)derivations
on (semi-)prime rings and Banach algebras. Various results with respect to
pair of (generalized-)derivations are obtained, see [1], [4], [10], [13], [20], [21],
[22].
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Let A be an associative algebra, a linear mapping µ : A −→ A is called a
generalized derivation of A if there exists a derivation d of A such that

µ(xy) = µ(x)y + xd(y)

for all x, y ∈ A. d is called an associated derivation of the generalized derivation
µ. Obviously, the following mapping

µ : R −→ R, x 7−→ ax− xb

is a generalized derivation of R, where a and b are fixed elements in R. Indeed,
for all x, y ∈ R,

µ(xy) = axy − xyb = (ax− xb)y + x(by − yb) = µ(x)y + xd(y),

where d is an inner derivation of R induced by the element b. Such generalized
derivations are called generalized inner derivations. It is easy to check that if
the associated derivation d of a generalized derivation µ is inner, then µ is also
inner. Moreover, all derivations of R and all right or left multipliers mappings
of R are also generalized derivations of R.

The main objective of this paper is to consider some special skew-centralizing
mappings and some special skew-commuting mappings, which are involved a
pair of (generalized-)derivations on (semi-)prime rings. In addition, we use
purely algebraic techniques to study the range inclusion problem of pair of
(generalized-)derivations on a Banach algebra.

2. Preliminaries

Throughout this paper R always denotes an associative ring with the center
CR and A always denotes a Banach algebra which is a complex normed algebra
and its underlying vector space is a Banach space. The Jacobson radical of A
is the intersection of all primitive ideals of A and is denoted by rad(A). Let I
be any closed ideal of the Banach algebra A. Then QI denotes the canonical
quotient mapping from A onto A/I. A ring R is said to be n-torsion free if
nx = 0 implies that x = 0 for all x ∈ R. As usual, we denote the commutator
xy − yx by [x, y] and denote the skew commutator xy + yx by 〈x, y〉. Recall
that a ring R is said to be prime if the product of any two nonzero ideals of R
is nonzero. Equivalently, aRb = 0 with a, b ∈ R implies that a = 0 or b = 0. A
ring R is called semiprime if it has no nonzero nilpotent ideals. Equivalently,
aRa = 0 with a ∈ R implies that a = 0.

3. Generalized derivations on (semi-)prime rings

In this section we will consider pair of (generalized-)derivations on a (semi-)
prime ring. These results will play important roles when we discuss the range
inclusion problem of pair of (generalized-)derivations on a Banach algebra in
the next section.

For the proof of our main result of this section, we need some basic facts.
From now on R always denotes a (semi-)prime ring and U always denotes the
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left Utumi quotient ring of R. U can be characterized as a ring satisfying the
following properties:

(1) R is a subring of U .
(2) For each q ∈ U , there exists a dense left ideal Iq of R such that Iqq ⊆ R.
(3) If q ∈ U and Iq = 0 for some dense left ideal I of R, then q = 0.
(4) If φ : I → R is a left R-module mapping from a dense left ideal I of R

into R, then there exists an element q ∈ U such that φ(i) = iq for all i ∈ I.

Up to isomorphisms, U is uniquely determined by the above four properties. If
R is a (semi-)prime ring, then U is also a (semi-)prime ring. The center of U
is called the extended centroid of R and is denoted by C. It is well known that
C is a von Neumann regular ring. It turns out that C is a field if and only if R
is a prime ring. The set of all idempotents of C is denoted by E . The element
of E are called central idempotents.

Another related object we have to mention is the generalized differential
identities on (semi-)prime rings. A generalized differential polynomial over U
means a generalized polynomial with coefficients in U and with noncommu-
tative variables involving generalized derivations. A generalized differential
identity for some subset of U is a generalized differential polynomial satisfied
by the given subset. Obviously, the definition of a generalized differential poly-
nomial (or identity) is a common generalization of the definition of a differential
polynomial (or identity). We are ready to state the first main result of this
paper.

Theorem 3.1. Let n be a fixed positive integer, R be a 2n!-torsion free prime
ring and µ, ν be a pair of generalized derivations on R. If 〈µ2(x)+ν(x), xn〉 = 0
for all x ∈ R, then µ and ν are either left multipliers or right multipliers.

Proof. By assumption we have

(1) 〈µ2(x) + ν(x), xn〉 = 0

for all x ∈ R. Substituting x + λy for x in (1) yields that

λP1(x, y) + λ2P2(x, y) + · · ·+ λnPn(x, y) = 0,

where λ ∈ Z, x, y ∈ R, Pi(x, y) denotes the sum of terms involving i factors of
y in the expansion of 〈µ2(x + λy) + ν(x + λy), (x + λy)n〉 = 0. It follows from
[5, Lemma 1] that

P1(x, y) = 〈µ2(y) + ν(y), xn〉
+ 〈µ2(x) + ν(x), xn−1y + xn−2yx + xn−3yx2 + · · ·+ yxn−1〉 = 0

for all x, y ∈ R. It is well known that R and U satisfy the same differential
identities [11, Theorem 2] and hence satisfy the same generalized differential
identities. Thus
(2)
〈µ2(y)+ν(y), xn〉+〈µ2(x)+ν(x), xn−1y+xn−2yx+xn−3yx2+ · · ·+yxn−1〉 = 0
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for all x, y ∈ U . Note that U has the identity element e. Taking x = e in (1),
we obtain

µ2(e) + ν(e) = 0,

since U is also 2n!-torsion free. Taking y = e in (2) and using the relation
µ2(e) + ν(e) = 0, we have

n〈µ2(x) + ν(x), xn−1〉 = 0

for all x ∈ U . Since U is also 2n!-torsion free,

〈µ2(x) + ν(x), xn−1〉 = 0

for all x ∈ U . Continuing this process, we assert that

〈µ2(x) + ν(x), x〉 = 0

for all x ∈ U . Applying [3, Theorem 1] yields that

(3) µ2(x) + ν(x) = 0

for all x ∈ U . The relation (3) implies that µ2 is a generalized derivation on U
and hence

(4) µ2(xy) = µ2(x)y + xd1(y)

for all x, y ∈ U , where d1 is the associated derivation of µ2. On the other hand

(5) µ2(xy) = µ(µ(x)y + xd2(y)) = µ2(x)y + 2µ(x)d2(y) + xd2
2(y)

for all x, y ∈ U , where d2 is the associated derivation of µ. It follows from (4)
and (5) that

(6) xd1(y) = 2µ(x)d2(y) + xd2
2(y)

for all x, y ∈ U . Taking x = e in (6), we get

(7) d1(y) = 2µ(e)d2(y) + d2
2(y)

for all y ∈ U . Substituting yx for y in (7) produces

d1(y)x + yd1(x) = 2µ(e)d2(y)x + 2µ(e)yd2(x) + d2
2(y)x + 2d2(y)d2(x) + yd2

2(x)

for all x, y ∈ U . Right multiplication of (7) by x leads to

(8) d1(y)x = 2µ(e)d2(y)x + d2
2(y)x

for all x, y ∈ U . Subtracting (8) from (7) we have

(9) yd1(x) = 2µ(e)yd2(x) + 2d2(y)d2(x) + yd2
2(x)

for all x, y ∈ U . Combining (9) with (7) it is easy to see that

µ(e)xd2(y) + d2(x)d2(y)− xµ(e)d2(y) = 0

for all x, y ∈ U . By [14, Lemma 1], we obtain

d2(y) = 0 or d2(x) = [x, µ(e)]
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for all x, y ∈ U . If d2(y) = 0, then µ, µ2 and ν are both left multipliers by the
relation (5) and (3). If d2(x) = [x, µ(e)], then

µ(x) = µ(e)x + d2(x) = xµ(e)

for all x ∈ U . It is easy to check that µ, µ2 and ν are both right multipliers.
This theorem is completed. �

As consequences of Theorem 3.1, we immediately get.

Corollary 3.2. Let n be a fixed positive integer, R be a 2n!-torsion free prime
ring and µ be a generalized derivation on R. If µ(x)xn + xnµ(x) = 0 for all
x ∈ R, then µ = 0.

Corollary 3.3. Let n be a fixed positive integer, R be a 2n!-torsion free prime
ring and d, g be a pair of derivations on R. If 〈d2(x) + g(x), xn〉 = 0 for all
x ∈ R, then d = g = 0.

Furthermore, Corollary 3.3 can be also extended to the following more gen-
eral form.

Theorem 3.4. Let n be a fixed positive integer, R be a noncommutative 2n!-
torsion free prime ring and d, g be a pair of derivations on R. If 〈d2(x) +
g(x), xn〉 ∈ CR for all x ∈ R, then d = g = 0.

Proof. By assumption we have

(10) [〈d2(x) + g(x), xn〉, z] = 0

for all x, z ∈ R. Substituting x + λy for x in (10) yields that

λP1(x, y, z) + λ2P2(x, y, z) + · · ·+ λnPn(x, y, z) = 0,

where λ ∈ Z, x, y, z ∈ R, Pi(x, y, z) denotes the sum of terms involving i factors
of y in the expansion of [〈d2(x + λy) + g(x + λy), (x + λy)n〉, z] = 0. It follows
from [5, Lemma 1] that

P1(x, y, z)

= [〈d2(y) + g(y), xn〉+ 〈d2(x) + g(x), xn−1y + xn−2yx + xn−3yx2 + · · ·+ yxn−1〉, z ] = 0

for all x, y, z ∈ R. This shows that

〈d2(y)+g(y), xn〉+〈d2(x)+g(x), xn−1y+xn−2yx+xn−3yx2+· · ·+yxn−1〉 ∈ CR
for all x, y ∈ R. It is well known that R and U satisfy the same differential
identities [11, Theorem 2]. Therefore
(11)
〈d2(y)+g(y), xn〉+〈d2(x)+g(x), xn−1y+xn−2yx+xn−3yx2+· · ·+yxn−1〉 ∈ CR
for all x, y ∈ U . Note that U has the identity element e. Taking y = e in (11)
and considering the fact that d(e) = g(e) = 0 immediately get

n〈d2(x) + g(x), xn−1〉 ∈ CR
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for all x ∈ U . Thus
n〈d2(x) + g(x), xn−1〉 ∈ CR

for all x ∈ R. Since U is also 2n!-torsion free,

〈d2(x) + g(x), xn−1〉 ∈ CR
for all x ∈ R. Continuing this process, we ultimately get that

2(d2(x) + g(x)) ∈ CR
for all x ∈ R. This implies that

[d2(x) + g(x), x] = 0

for all x ∈ R. Applying [20, Theorem 1] yields that d = g = 0. �

We next use the orthogonal completeness method to extend Theorem 3.4 to
the case of semiprime rings.

Theorem 3.5. Let n be a fixed positive integer, R be a noncommutative 2n!-
torsion free semiprime ring and d, g be a pair of derivations on R. If 〈d2(x) +
g(x), xn〉 ∈ CR for all x ∈ R, then d and g both map R into CR.

Proof. Let B be the complete Boolean algebra of E . We choose a maximal
ideal M of B. According to [2], MU is a prime ideal of U , which is invariant
under any derivation of U . It was well known that the pair of derivations d, g
on R can be uniquely extended to be a pair of derivations on U . Let d, g be
the canonical pair of derivations on U = U/MU induced by d, g, respectively.
The assumption implies that

[〈d2(x) + g(x), xn〉, z] = 0

for all x, z ∈ R. It follows from [11, Theorem 2] that R and U satisfy the same
differential identities. Thus

[〈d2(x) + g(x), xn〉, z] = 0

for all x, z ∈ U . Furthermore,

[〈d2
(x) + g(x), xn〉, z] = 0

for all x, z ∈ U . By Theorem 3.4, we know that either d(x) = 0 and g(x) = 0
or [U ,U ] = 0. In any case we both have

d(U)[U ,U ] ∈MU
and

g(U)[U ,U ] ∈MU
for all M. Note that

⋂{MU | M is any maximal ideal of B} = 0. Hence
d(U)[U ,U ] = 0 and g(U)[U ,U ] = 0. In particular, d(R)[R,R] = 0 and
g(R)[R,R] = 0. These imply that

0 = d(R)[R2,R] = d(R)R[R,R] + d(R)[R,R]R = d(R)R[R,R]
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and

0 = g(R)[R2,R] = g(R)R[R,R] + g(R)[R,R]R = g(R)R[R,R].

Therefore [R, d(R)]R[R, d(R)] = 0 and [R, g(R)]R[R, g(R)] = 0. By semi-
primeness of R we obtain that [R, d(R)] = 0 and [R, g(R)] = 0. These show
that d(R) ∈ CR and g(R) ∈ CR. �

4. Pair of (generalized-)derivations on Banach algebras

In this section we will study the images of pair of (generalized-, Jordan-)
derivations on Banach algebras and discuss some open problems with related
to the well known noncommutative Singer-Wermer conjecture from the point
of view of ring theory.

Theorem 4.1. Let n be a fixed positive integer, A be a unital Banach algebra
and µ be a continuous generalized derivations on A. If µ(x)xn + xnµ(x) ∈
rad(A) for all x ∈ A, then µ(A) ⊆ rad(A).

Proof. Let P be any primitive ideal of A. Since µ is continuous, µ(P) ⊆ P
by the similar argument of [15, Lemma 3.2]. Thus µ can be induced to a
generalized derivation of quotient Banach algebra A/P as follows

µ̃(x̃) = µ(x) + P
for all x̃ ∈ A/P and x ∈ A. Since P is a primitive ideal, the quotient Banach
algebra A/P is prime and semisimple. The assumption of the theorem implies
that

µ̃(x̃)x̃n + x̃nµ̃(x̃) = 0̃

for all x̃ ∈ A/P and x ∈ A. Note that Corollary 3.2 holds for both the case of
commutative and the case of noncommutative. In any case µ̃ = 0 and hence
µ(A) ⊆ P. Since P is arbitrary, µ(A) ⊆ rad(A). �

Corollary 4.2. Let n be a fixed positive integer, A be a semisimple Banach
algebra and µ be a generalized derivation on A. If µ(x)xn + xnµ(x) ∈ rad(A)
for all x ∈ A, then µ = 0.

Lemma 4.3 ([19, Lemma 1.2]). Let d be a derivation on Banach algebra A
and J be a primitive ideal of A. If there exists a real constant k > 0 such that
‖QJ dn‖ ≤ kn for all n ∈ N, then d(J ) ⊆ J .

Now we give the main result of this section.

Theorem 4.4. Let n be a fixed positive integer, A be a Banach algebra and
d, g be a pair of derivations on A. If 〈d2(x) + g(x), xn〉 ∈ CA for all x ∈ A,
then d(A) ⊆ rad(A) and g(A) ⊆ rad(A).

Proof. Let J be any primitive ideal of A. By Zorn’s lemma, there exists a
minimal prime ideal P of A contained in J such that d(P) ⊆ P and g(P) ⊆ P
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by [12, Lemma 1]. If P is closed, then the pair of derivations d and g can be
induced to a pair of derivations on the Banach algebra A/P as follows

d̃(x̃) = d(x) + P, g̃(x̃) = g(x) + P
for all x̃ ∈ A/P and x ∈ A. If A/P is commutative, both d̃(A/P) and g̃(A/P)
are contained in the Jacobson radical of A/P by [18, Theorem 4.4]. If A/P is
noncommutative, by the assumption we have

[〈d̃2(x̃) + g̃(x̃), x̃n〉, z̃] = 0̃

for all x̃, z̃ ∈ A/P and x, z ∈ A. By the primeness of A/P and Theorem 3.4,
it follows that d̃ = 0̃ and g̃ = 0̃ on A/P. In any case, we get both d(A) ⊆ J
and g(A) ⊆ J . If P is not closed, then S(d) ⊆ P by [6, Lemma 2.3], where
S(d) is the separating space of linear operator d. By [16, Lemma 1.3], we
have S(QP̂d) = ̂QP̂(S(d)) = 0 whence QP̂d is continuous on A. This implies
that QP̂d(P̂) = 0 on A/P and hence d(P̂) ⊆ P̂. Thus d can be induced to a
derivation on the Banach algebra A/P̂ as follows

d̃(x̃) = d(x) + P̂
for all x̃ ∈ A/P̂ and x ∈ A. Let us define the following mapping

ξd̃nQP̂ : A −→ A/P̂ −→ A/P̂ −→ A/J
through ξd̃nQP̂(x) = QJ dn(x) for all x ∈ A and n ∈ N, where ξ is the
canonical inclusion mapping from A/P̂ onto A/J and ξ indeed exists since
P̂ ⊆ J . By [16, Lemma 1.4], we assert that d̃ is continuous on A/P̂ and hence
that ‖QJ dn‖ ≤ ‖d̃‖n for all n ∈ N. Applying Lemma 4.3 yields that d(J ) ⊆ J .
Using the same argument with g, we also get that g(J ) ⊆ J . Then the pair
of derivations d and g can be induced to a pair of derivations on the Banach
algebra A/J as follows

d̃(x̃) = d(x) + J , g̃(x̃) = g(x) + J
for all x̃ ∈ A/J and x ∈ A. The remainder follows the similar argument to the
case of when P is closed since the primitive algebra A/J is prime. Therefore
we show that d(A) ⊆ J and g(A) ⊆ J . So d(A) ⊆ J and g(A) ⊆ J for every
primitive ideal J . These imply that d(A) ⊆ rad(A) and g(A) ⊆ rad(A). �

As a consequence of Theorem 4.4, we immediately get.

Corollary 4.5. Let n be a fixed positive integer, A be a semisimple Banach
algebra and d, g be a pair of derivations on A. If 〈d2(x) + g(x), xn〉 ∈ CA for
all x ∈ A, then d = 0 and g = 0.

Let us see the pair of Jordan derivations on a Banach algebra.

Theorem 4.6. Let n be a fixed positive integer, A be a Banach algebra and d, g
be a pair of continuous Jordan derivations on A. If 〈d2(x)+g(x), xn〉 ∈ rad(A)
for all x ∈ A, then d(A) ⊆ rad(A) and g(A) ⊆ rad(A).
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Proof. Let P be any primitive ideal of A. Since d and g are both continuous,
d(P) ⊆ P and g(P) ⊆ P by [15, Lemma 3.2]. Then d and g can be induced to
a pair of Jordan derivations on the Banach algebra A/P as follows

d̃(x̃) = d(x) + P, g̃(x̃) = g(x) + P
for all x̃ ∈ A/P and x ∈ A. Since P is a primitive ideal of A, the quotient
algebra A/P is prime and semisimple. On the other hand, we should remark
that the pair of Jordan derivations d̃ and g̃ on A/P are also a pair of derivations
on A/P by Brešar’s theorem. It is well known that every derivation on a
semisimple Banach algebra is continuous. Combing this result with the well
known Singer-Wermer theorem, we know that there are no nonzero derivations
on a commutative semisimple Banach algebra. Hence we have d̃ = 0 and g̃ = 0
when A/P is commutative. It remains to show that d̃ = 0 and g̃ = 0 in the
case of when A/P is noncommutative. The assumption of the theorem leads
to

〈d̃2(x̃) + g̃(x̃), x̃n〉 = 0̃

for all x̃ ∈ A/P and x ∈ A. It follows from Theorem 3.4 that d̃ = 0 and
g̃ = 0. In any case both d̃ = 0 and g̃ = 0. These imply that d(A) ⊆ P and
g(A) ⊆ P for arbitrary primitive ideal P of A and hence d(A) ⊆ rad(A) and
g(A) ⊆ rad(A). �

Corollary 4.7. Let n be a fixed positive integer, A be a semisimple Banach
algebra and d, g be a pair of Jordan derivations on A. If 〈d2(x) + g(x), xn〉 ∈
rad(A) for all x ∈ A, then d = 0 and g = 0.
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