LINEAR θ-DERIVATIONS ON $J B^{*}$-TRIPLES

Chunkil Bak*

Abstract

In [1], the concept of generalized (θ, ϕ)-derivations on rings was introduced. We introduce the concept of linear θ-derivations on $J B^{*}$ triples, and prove the Cauchy-Rassias stability of linear θ-derivations on $J B^{*}$-triples.

1. Introduction

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [24]). Let \mathcal{H} be a complex Hilbert space, regarded as the "state space" of a quantum mechanical system. Let $\mathcal{L}(\mathcal{H})$ be the real vector space of all bounded selfadjoint linear operators on \mathcal{H}, interpreted as the (bounded) observables of the system. In 1932, Jordan observed that $\mathcal{L}(\mathcal{H})$ is a (nonassociative) algebra via the anticommutator product $x \circ y:=\frac{x y+y x}{2}$. A commutative algebra X with product $x \circ y$ (not necessarily given by an anticommutator) is called a Jordan algebra if $x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right)$ holds.

A complex Jordan algebra \mathcal{B} with product $x \circ y$, unit element e and involution $x \mapsto x^{*}$ is called a $J B^{*}$-algebra if \mathcal{B} carries a Banach space norm $\|\cdot\|$ satisfying $\|x \circ y\| \leq\|x\| \cdot\|y\|$ and $\left\|\left\{x x^{*} x\right\}\right\|=\|x\|^{3}$. Here $\left\{x y^{*} z\right\}:=x \circ\left(y^{*} \circ z\right)-y^{*} \circ(z \circ x)+z \circ\left(x \circ y^{*}\right)$ denotes the Jordan triple product of $x, y, z \in \mathcal{B}$.

The Jordan triple product of a $J B^{*}$-algebra leads to a more general algebraic structure, which turns out to be appropriate for most applications to analysis: the so-called Jordan triple systems. Suppose \mathcal{J} is a complex vector space endowed with a real trilinear composition

$$
\mathcal{J} \times \mathcal{J} \times \mathcal{J} \ni(x, y, z) \mapsto\left\{x y^{*} z\right\} \in \mathcal{J}
$$

Received by the editors on January 17, 2006.
2000 Mathematics Subject Classifications: Primary 17Cxx, 47B48, 39B52.
Key words and phrases: Cauchy-Rassias stability, linear θ-derivation on $J B^{*}$-triple.
which is complex bilinear in (x, z) and conjugate linear in y. Then \mathcal{J} is called a Jordan triple system if $\left\{x y^{*} z\right\}=\left\{z y^{*} x\right\}$ and

$$
\left\{\left\{x y^{*} z\right\} u^{*} v\right\}+\left\{\left\{x y^{*} v\right\} u^{*} z\right\}-\left\{x y^{*}\left\{z u^{*} v\right\}\right\}=\left\{z\left\{y x^{*} u\right\}^{*} v\right\}
$$

hold.
We are interested in Jordan triple systems having a Banach space structure. A complex Jordan triple system \mathcal{J} with a Banach space norm $\|\cdot\|$ is called a J^{*}-triple if, for every $x \in \mathcal{J}$, the operator $x \square x^{*}$ is hermitian in the sense of Banach algebra theory. Here the operator $x \square x^{*}$ on \mathcal{J} is defined by $\left(x \square x^{*}\right) y:=\left\{x x^{*} y\right\}$. This implies that $x \square x^{*}$ has real spectrum $\sigma\left(x \square x^{*}\right) \subset \mathbb{R}$. A J^{*}-triple \mathcal{J} is called a $J B^{*}$-triple if every $x \in \mathcal{J}$ satisfies $\sigma\left(x \square x^{*}\right) \geq 0$ and $\left\|x \square x^{*}\right\|=\|x\|^{2}$.

Our knowledge concerning the continuity properties of epimorphisms on Banach algebras, Jordan-Banach algebras, and, more generally, nonassociative complete normed algebras, is now fairly complete and satisfactory (see [6], [25]). A basic continuity problem consists in determining algebraic conditions on a Banach algebra A which ensure that derivations on A are continuous. In 1996, Villena [25] proved that derivations on semisimple Jordan-Banach algebras are continuous.

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Th.M. Rassias [19] introduced the following inequality, that we call Cauchy-Rassias inequality: Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Th.M. Rassias [19] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was
studied by a number of mathematicians. Găvruta [3] generalized the Rassias' result in the following form: Let G be an abelian group and X a Banach space. Denote by $\varphi: G \times G \rightarrow[0, \infty)$ a function such that

$$
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \varphi\left(2^{k} x, 2^{k} y\right)<\infty
$$

for all $x, y \in G$. Suppose that $f: G \rightarrow X$ is a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$

for all $x, y \in G$. Then there exists a unique additive mapping $T: G \rightarrow X$ such that

$$
\|f(x)-T(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x)
$$

for all $x \in G$.
Jun and Lee [5] proved the following: Denote by $\varphi: X \backslash\{0\} \times X \backslash\{0\} \rightarrow$ $[0, \infty)$ a function such that

$$
\widetilde{\varphi}(x, y)=\sum_{j=0}^{\infty} \frac{1}{3^{j}} \varphi\left(3^{j} x, 3^{j} y\right)<\infty
$$

for all $x, y \in X \backslash\{0\}$. Suppose that $f: X \rightarrow Y$ is a mapping satisfying

$$
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leq \varphi(x, y)
$$

for all $x, y \in X \backslash\{0\}$. Then there exists a unique additive mapping $T: X \rightarrow$ Y such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x))
$$

for all $x \in X \backslash\{0\}$. The stability problem of functional equations has been investigated in several papers (see [7]-[23]).

Let θ, ϕ be endomorphisms of a ring R. An additive mapping $D: R \rightarrow R$ is called a (θ, ϕ)-derivation on R if $D(x y)=D(x) \theta(y)+\phi(x) D(y)$ holds for all $x, y \in R$. An additive mapping $U: R \rightarrow R$ is called a generalized (θ, ϕ)-derivation on R if there exists a (θ, ϕ)-derivation $D: R \rightarrow R$ such that $U(x y)=U(x) \theta(y)+\phi(x) D(y)$ holds for all $x, y \in R$ (see [1], [2], [4]).

In this paper, we introduce the concept of linear θ-derivations on $J B^{*}$ triples, and prove the Cauchy-Rassias stability of linear θ-derivations on $J B^{*}$-triples.

2. Linear θ-derivations on $J B^{*}$-triples

Throughout this section, let B be a complex $J B^{*}$-triple with norm $\|\cdot\|$.
Definition 2.1. Let $\theta: B \rightarrow B$ be an involutive \mathbb{C}-linear mapping. An involutive \mathbb{C}-linear mapping $D: B \rightarrow B$ is called a linear θ-derivation on B if

$$
D\left(\left\{x y^{*} z\right\}\right)=\left\{D(x) \theta(y)^{*} \theta(z)\right\}+\left\{\theta(x) D(y)^{*} \theta(z)\right\}+\left\{\theta(x) \theta(y)^{*} D(z)\right\}
$$

holds for all $x, y, z \in B$.
Theorem 2.1. Let $f, h: B \rightarrow B$ be mappings with $f(0)=h(0)=0$ for which there exists a function $\varphi: B^{3} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\widetilde{\varphi}(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f\left(\mu x+\mu y+z^{*}\right)-\mu f(x)-\mu f(y)-f(z)^{*}\right\| \leq \varphi(x, y, z), \tag{2.2}
\end{equation*}
$$

$$
\begin{align*}
&\left\|h\left(\mu x+\mu y+z^{*}\right)-\mu h(x)-\mu h(y)-h(z)^{*}\right\| \leq \varphi(x, y, z), \tag{2.3}\\
& \| f\left(\left\{x y^{*} z\right\}\right)-\left\{f(x) h(y)^{*} h(z)\right\}-\left\{h(x) f(y)^{*} h(z)\right\} \\
&-\left\{h(x) h(y)^{*} f(z)\right\} \| \leq \varphi(x, y, z), \tag{2.4}
\end{align*}
$$

for all $x, y, z \in B$ and all $\mu \in S^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$. Then there exist unique involutive \mathbb{C}-linear mappings $D, \theta: B \rightarrow B$ such that

$$
\begin{align*}
\|f(x)-D(x)\| & \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0) \tag{2.5}\\
\|h(x)-\theta(x)\| & \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0) \tag{2.6}
\end{align*}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a linear θ-derivation on B.
Proof. Let $\mu=1 \in S^{1}$ and $z=0$ in (2.2) and (2.3). It follows from the Găvruta's theorem [3] that there exist unique additive mappings $D, \theta: B \rightarrow$ B satisfying (2.5) and (2.6). The additive mappings $D, \theta: B \rightarrow B$ are given by

$$
\begin{align*}
D(x) & =\lim _{l \rightarrow \infty} \frac{1}{2^{l}} f\left(2^{l} x\right), \tag{2.7}\\
\theta(x) & =\lim _{l \rightarrow \infty} \frac{1}{2^{l}} h\left(2^{l} x\right) \tag{2.8}
\end{align*}
$$

for all $x \in B$.
By the same reasoning as in the proof of Theorem 2.1 in [12], the additive mappings $D, \theta: B \rightarrow B$ are \mathbb{C}-linear.

Letting $x=y=0$ in (2.2), we get

$$
D\left(x^{*}\right)=\lim _{l \rightarrow \infty} \frac{f\left(2^{l} x^{*}\right)}{2^{l}}=\lim _{l \rightarrow \infty} \frac{\left(f\left(2^{l} x\right)\right)^{*}}{2^{l}}=\left(\lim _{l \rightarrow \infty} \frac{f\left(2^{l} x\right)}{2^{l}}\right)^{*}=D(x)^{*}
$$

for all $x \in B$.
Similarly, one can show that $\theta: B \rightarrow B$ is an involutive mapping.
It follows from (2.4) that

$$
\begin{aligned}
& \frac{1}{2^{3 l}} \| f\left(2^{3 l}\left\{x y^{*} z\right\}\right)-\left\{f\left(2^{l} x\right) h\left(2^{l} y\right)^{*} h\left(2^{l} z\right)\right\}-\left\{h\left(2^{l} x\right) f\left(2^{l} y\right)^{*} h\left(2^{l} z\right)\right\} \\
& \quad-\left\{h\left(2^{l} x\right) h\left(2^{l} y\right)^{*} f\left(2^{l} z\right)\right\} \| \leq \frac{1}{2^{3 l}} \varphi\left(2^{l} x, 2^{l} y, 2^{l} z\right) \leq \frac{1}{2^{l}} \varphi\left(2^{l} x, 2^{l} y, 2^{l} z\right),
\end{aligned}
$$

which tends to zero as $l \rightarrow \infty$ for all $x, y, z \in B$ by (2.1). By (2.7) and (2.8),

$$
D\left(\left\{x y^{*} z\right\}\right)=\left\{D(x) \theta(y)^{*} \theta(z)\right\}+\left\{\theta(x) D(y)^{*} \theta(z)\right\}+\left\{\theta(x) \theta(y)^{*} D(z)\right\}
$$

for all $x, y, z \in B$. So the additive mapping $D: B \rightarrow B$ is a linear θ derivation on B, as desired.

Corollary 2.2. Let $f, h: B \rightarrow B$ be mappings with $f(0)=h(0)=0$ for which there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
&\left\|f\left(\mu x+\mu y+z^{*}\right)-\mu f(x)-\mu f(y)-f(z)^{*}\right\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right), \\
&\left\|h\left(\mu x+\mu y+z^{*}\right)-\mu h(x)-\mu h(y)-h(z)^{*}\right\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right), \\
& \| f\left(\left\{x y^{*} z\right\}\right)-\left\{f(x) h(y)^{*} h(z)\right\}-\left\{h(x) f(y)^{*} h(z)\right\} \\
&-\left\{h(x) h(y)^{*} f(z)\right\} \| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in B$ and all $\mu \in S^{1}$. Then there exist unique involutive \mathbb{C}-linear mappings $D, \theta: B \rightarrow B$ such that

$$
\begin{aligned}
\|f(x)-D(x)\| & \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \\
\|h(x)-\theta(x)\| & \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
\end{aligned}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a linear θ-derivation on B.
Proof. Define $\varphi(x, y, z)=\epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ to be Th.M. Rassias upper bound in the Cauchy-Rassias inequality, and apply Theorem 2.1.

Theorem 2.3. Let $f, h: B \rightarrow B$ be mappings with $f(0)=h(0)=0$ for which there exists a function $\varphi: B^{3} \rightarrow[0, \infty)$ satisfying (2.4) such that

$$
\begin{equation*}
\widetilde{\varphi}(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{3^{j}} \varphi\left(3^{j} x, 3^{j} y, 3^{j} z\right)<\infty \tag{2.9}
\end{equation*}
$$

$$
\begin{align*}
& \left\|2 f\left(\frac{\mu x+\mu y+z^{*}}{2}\right)-\mu f(x)-\mu f(y)-f(z)^{*}\right\| \leq \varphi(x, y, z) \tag{2.10}\\
& \left\|2 h\left(\frac{\mu x+\mu y+z^{*}}{2}\right)-\mu h(x)-\mu h(y)-h(z)^{*}\right\| \leq \varphi(x, y, z) \tag{2.11}
\end{align*}
$$

for all $x, y, z \in B$ and all $\mu \in S^{1}$. Then there exist unique involutive \mathbb{C}-linear mappings $D, \theta: B \rightarrow B$ such that

$$
\begin{align*}
\|f(x)-D(x)\| & \leq \frac{1}{3}(\widetilde{\varphi}(x,-x, 0)+\widetilde{\varphi}(-x, 3 x, 0)) \tag{2.12}\\
\|h(x)-\theta(x)\| & \leq \frac{1}{3}(\widetilde{\varphi}(x,-x, 0)+\widetilde{\varphi}(-x, 3 x, 0)) \tag{2.13}
\end{align*}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a linear θ-derivation on B.
Proof. Let $z=0$ in (2.10) and (2.11). It follows from the Jun and Lee's theorem [5, Theorem 1] that there exist unique additive mappings D, θ : $B \rightarrow B$ satisfying (2.12) and (2.13). The additive mappings $D, \theta: B \rightarrow B$ are given by

$$
\begin{align*}
D(x) & =\lim _{l \rightarrow \infty} \frac{1}{3^{l}} f\left(3^{l} x\right) \tag{2.14}\\
\theta(x) & =\lim _{l \rightarrow \infty} \frac{1}{3^{l}} h\left(3^{l} x\right) \tag{2.15}
\end{align*}
$$

for all $x \in B$.
The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 2.4. Let $f, h: B \rightarrow B$ be mappings with $f(0)=h(0)=0$ for which there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\left\|2 f\left(\frac{\mu x+\mu y+z^{*}}{2}\right)-\mu f(x)-\mu f(y)-f(z)^{*}\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \\
\left\|2 h\left(\frac{\mu x+\mu y+z^{*}}{2}\right)-\mu h(x)-\mu h(y)-h(z)^{*}\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \\
\| f\left(\left\{x y^{*} z\right\}\right)-\left\{f(x) h(y)^{*} h(z)\right\} & -\left\{h(x) f(y)^{*} h(z)\right\} \\
-\left\{h(x) h(y)^{*} f(z)\right\} \| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in B$ and all $\mu \in S^{1}$. Then there exist unique involutive \mathbb{C}-linear mappings $D, \theta: B \rightarrow B$ such that

$$
\begin{aligned}
\|f(x)-D(x)\| & \leq \frac{3+3^{p}}{3-3^{p}} \epsilon\|x\|^{p} \\
\|h(x)-\theta(x)\| & \leq \frac{3+3^{p}}{3-3^{p}} \epsilon\|x\|^{p}
\end{aligned}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a linear θ-derivation on B.
Proof. Define $\varphi(x, y, z)=\epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 2.3, as desired.

THEOREM 2.5. Let $f, h: B \rightarrow B$ be mappings with $f(0)=h(0)=0$ for which there exists a function $\varphi: B^{3} \rightarrow[0, \infty)$ satisfying (2.10), (2.11) and (2.4) such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} 3^{3 j} \varphi\left(\frac{x}{3^{j}}, \frac{y}{3^{j}}, \frac{z}{3^{j}}\right)<\infty \tag{2.16}
\end{equation*}
$$

for all $x, y, z \in B$. Then there exist unique involutive \mathbb{C}-linear mappings $D, \theta: B \rightarrow B$ such that

$$
\begin{align*}
\|f(x)-D(x)\| & \leq \widetilde{\varphi}\left(\frac{x}{3},-\frac{x}{3}, 0\right)+\widetilde{\varphi}\left(-\frac{x}{3}, x, 0\right) \tag{2.17}\\
\|h(x)-\theta(x)\| & \leq \widetilde{\varphi}\left(\frac{x}{3},-\frac{x}{3}, 0\right)+\widetilde{\varphi}\left(-\frac{x}{3}, x, 0\right) \tag{2.18}
\end{align*}
$$

for all $x \in B$, where

$$
\widetilde{\varphi}(x, y, z):=\sum_{j=0}^{\infty} 3^{j} \varphi\left(\frac{x}{3^{j}}, \frac{y}{3^{j}}, \frac{z}{3^{j}}\right)
$$

for all $x, y, z \in B$. Moreover, $D: B \rightarrow B$ is a linear θ-derivation on B.
Proof. By the Jun and Lee's theorem [5, Theorem 6], it follows from (2.16), (2.10) and (2.11) that there exist unique additive mappings D, θ : $B \rightarrow B$ satisfying (2.17) and (2.18). The additive mappings $D, \theta: B \rightarrow B$ are given by

$$
\begin{align*}
D(x) & =\lim _{l \rightarrow \infty} 3^{l} f\left(\frac{x}{3^{l}}\right), \tag{2.19}\\
\theta(x) & =\lim _{l \rightarrow \infty} 3^{l} h\left(\frac{x}{3^{l}}\right) \tag{2.20}
\end{align*}
$$

for all $x \in B$.
By a similar method to the proof of Theorem 2.1, one can show that $D, \theta: B \rightarrow B$ are involutive \mathbb{C}-linear mappings.

It follows from (2.4) that

$$
\begin{aligned}
& 3^{3 l} \| f\left(\frac{\left\{x y^{*} z\right\}}{3^{3 l}}\right)-\left\{f\left(\frac{x}{3^{l}}\right) h\left(\frac{y}{3^{l}}\right)^{*} h\left(\frac{z}{3^{l}}\right)\right\}-\left\{h\left(\frac{x}{3^{l}}\right) f\left(\frac{y}{3^{l}} *^{*} h\left(\frac{z}{3^{l}}\right)\right\}\right. \\
&-\left\{h\left(\frac{x}{3^{l}}\right) h\left(\frac{y}{3^{l}}\right)^{*} f\left(\frac{z}{3^{l}}\right)\right\} \| \leq 3^{3 l} \varphi\left(\frac{x}{3^{l}}, \frac{y}{3^{l}}, \frac{z}{3^{l}}\right),
\end{aligned}
$$

which tends to zero as $l \rightarrow \infty$ for all $x, y, z \in B$ by (2.16). By (2.19) and (2.20),

$$
D\left(\left\{x y^{*} z\right\}\right)=\left\{D(x) \theta(y)^{*} \theta(z)\right\}+\left\{\theta(x) D(y)^{*} \theta(z)\right\}+\left\{\theta(x) \theta(y)^{*} D(z)\right\}
$$

for all $x, y, z \in B$. So the additive mapping $D: B \rightarrow B$ is a linear θ derivation on B, as desired.

Corollary 2.6. Let $f, h: B \rightarrow B$ be mappings with $f(0)=h(0)=0$ for which there exist constants $\epsilon \geq 0$ and $p \in(3, \infty)$ such that

$$
\begin{aligned}
&\left\|2 f\left(\frac{\mu x+\mu y+z^{*}}{2}\right)-\mu f(x)-\mu f(y)-f(z)^{*}\right\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right), \\
&\left\|2 h\left(\frac{\mu x+\mu y+z^{*}}{2}\right)-\mu h(x)-\mu h(y)-h(z)^{*}\right\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right), \\
& \| f\left(\left\{x y^{*} z\right\}\right)-\left\{f(x) h(y)^{*} h(z)\right\}-\left\{h(x) f(y)^{*} h(z)\right\} \\
&-\left\{h(x) h(y)^{*} f(z)\right\} \| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in B$ and all $\mu \in S^{1}$. Then there exist unique involutive \mathbb{C}-linear mappings $D, \theta: B \rightarrow B$ such that

$$
\begin{aligned}
\|f(x)-D(x)\| & \leq \frac{3^{p}+3}{3^{p}-3} \epsilon\|x\|^{p} \\
\|h(x)-\theta(x)\| & \leq \frac{3^{p}+3}{3^{p}-3} \epsilon\|x\|^{p}
\end{aligned}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a linear θ-derivation on B.
Proof. Define $\varphi(x, y, z)=\epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 2.5, as desired.

Definition 2.2. Let $\theta: B \rightarrow B$ be an involutive \mathbb{C}-linear mapping. An involutive \mathbb{C}-linear mapping $D: B \rightarrow B$ is called a Jordan linear θ-derivation on B if

$$
D\left(\left\{x x^{*} x\right\}\right)=\left\{D(x) \theta(x)^{*} \theta(x)\right\}+\left\{\theta(x) D(x)^{*} \theta(x)\right\}+\left\{\theta(x) \theta(x)^{*} D(x)\right\}
$$

holds for all $x \in B$.
Problem 2.1. Is every Jordan linear θ-derivation a linear θ-derivation?

References

1. M. Ashraf, A. Ali, and S. Ali, On Lie ideals and generalized (θ, ϕ)-derivations in prime rings, Commun. Algebra 32 (2004), 2977-2985.
2. M. Ashraf, S.M. Wafa, and A. AlShammakh, On generalized (θ, ϕ)-derivations in rings, Internat. J. Math. Game Theo. Algebra 12 (2002), 295-300.
3. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
4. B. Hvala, Generalized derivations in rings, Commun. Algebra 26 (1998), 1147-1166.
5. K. Jun, and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
6. A.F. López, H. Marhnine and C. Zarhouti, Derivations on Banach-Jordan pairs, Quart. J. Math. 52 (2001), 269-283.
7. M. Noor and Th.M. Rassias, Resolvent equations for set-valued mixed variational inequalities, Nonlinear Analysis-TMA 42 (2000), 71-83.
8. C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
9. C. Park, Linear functional equations in Banach modules over a C^{*}-algebra, Acta Appl. Math. 77 (2003), 125-161.
10. C. Park, Generalized quadratic mappings in several variables, Nonlinear Analysis-TMA 57 (2004), 713-722.
11. C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie *-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl. 293 (2004), 419-434.
12. C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005), 393-414.
13. C. Park, Generalized Hyers-Ulam-Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over C^{*}-algebras, J. Comput. Appl. Math. 180 (2005), 279-291.
14. C. Park, Approximate homomorphisms on $J B^{*}$-triples, J. Math. Anal. Appl. 306 (2005), 375-381.
15. C. Park, Homomorphisms between Poisson JC ${ }^{*}$-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
16. C. Park and J. Hou, Homomorphisms between C^{*}-algebras associated with the Trif functional equation and linear derivations on C^{*}-algebras, J. Korean Math. Soc. 41 (2004), 461-477.
17. C. Park, J. Hou and S. Oh, Homomorphisms between JC*-algebras and between Lie C^{*}-algebras, Acta Math. Sinica 21 (2005), 1391-1398.
18. C. Park and W. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), 523-532.
19. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
20. Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
21. Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
22. Th.M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hy-ers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
23. Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
24. H. Upmeier, Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, Regional Conference Series in Mathematics No. 67, Amer. Math. Soc., Providence, 1987.
25. A.R. Villena, Derivations on Jordan-Banach algebras, Studia Math. 118 (1996), 205-229.

*

Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: cbak@math.cnu.ac.kr

