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LINEAR θ–DERIVATIONS ON JB∗–TRIPLES

Chunkil Bak*

Abstract. In [1], the concept of generalized (θ, φ)-derivations on rings
was introduced. We introduce the concept of linear θ-derivations on JB∗-
triples, and prove the Cauchy–Rassias stability of linear θ-derivations on
JB∗-triples.

1. Introduction

The original motivation to introduce the class of nonassociative algebras

known as Jordan algebras came from quantum mechanics (see [24]). Let

H be a complex Hilbert space, regarded as the “state space” of a quantum

mechanical system. Let L(H) be the real vector space of all bounded self-

adjoint linear operators on H, interpreted as the (bounded) observables of

the system. In 1932, Jordan observed that L(H) is a (nonassociative) algebra

via the anticommutator product x ◦ y := xy+yx
2 . A commutative algebra X

with product x ◦ y (not necessarily given by an anticommutator) is called a

Jordan algebra if x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) holds.

A complex Jordan algebra B with product x ◦ y, unit element e and

involution x 7→ x∗ is called a JB∗-algebra if B carries a Banach space

norm ‖ · ‖ satisfying ‖x ◦ y‖ ≤ ‖x‖ · ‖y‖ and ‖{xx∗x}|| = ‖x‖3. Here

{xy∗z} := x ◦ (y∗ ◦ z)− y∗ ◦ (z ◦ x) + z ◦ (x ◦ y∗) denotes the Jordan triple

product of x, y, z ∈ B.

The Jordan triple product of a JB∗-algebra leads to a more general al-

gebraic structure, which turns out to be appropriate for most applications

to analysis: the so-called Jordan triple systems. Suppose J is a complex

vector space endowed with a real trilinear composition

J × J × J 3 (x, y, z) 7→ {xy∗z} ∈ J
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which is complex bilinear in (x, z) and conjugate linear in y. Then J is

called a Jordan triple system if {xy∗z} = {zy∗x} and

{{xy∗z}u∗v}+ {{xy∗v}u∗z} − {xy∗{zu∗v}} = {z{yx∗u}∗v}

hold.

We are interested in Jordan triple systems having a Banach space struc-

ture. A complex Jordan triple system J with a Banach space norm ‖ · ‖
is called a J∗-triple if, for every x ∈ J , the operator x¤x∗ is hermitian

in the sense of Banach algebra theory. Here the operator x¤x∗ on J is

defined by (x¤x∗)y := {xx∗y}. This implies that x¤x∗ has real spectrum

σ(x¤x∗) ⊂ R. A J∗-triple J is called a JB∗-triple if every x ∈ J satisfies

σ(x¤x∗) ≥ 0 and ‖x¤x∗‖ = ‖x‖2.
Our knowledge concerning the continuity properties of epimorphisms on

Banach algebras, Jordan-Banach algebras, and, more generally, nonasso-

ciative complete normed algebras, is now fairly complete and satisfactory

(see [6], [25]). A basic continuity problem consists in determining algebraic

conditions on a Banach algebra A which ensure that derivations on A are

continuous. In 1996, Villena [25] proved that derivations on semisimple

Jordan-Banach algebras are continuous.

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively.

Consider f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R
for each fixed x ∈ X. Th.M. Rassias [19] introduced the following inequality,

that we call Cauchy–Rassias inequality : Assume that there exist constants

ε ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(||x||p + ||y||p)

for all x, y ∈ X. Th.M. Rassias [19] showed that there exists a unique

R-linear mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
||x||p

for all x ∈ X. Beginning around the year 1980 the topic of approximate

homomorphisms, or the stability of the equation of homomorphism, was
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studied by a number of mathematicians. Găvruta [3] generalized the Rassias’

result in the following form: Let G be an abelian group and X a Banach

space. Denote by ϕ : G×G → [0,∞) a function such that

ϕ̃(x, y) =
∞∑

k=0

1
2k

ϕ(2kx, 2ky) < ∞

for all x, y ∈ G. Suppose that f : G → X is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → X

such that

‖f(x)− T (x)‖ ≤ 1
2
ϕ̃(x, x)

for all x ∈ G.

Jun and Lee [5] proved the following: Denote by ϕ : X \ {0}×X \ {0} →
[0,∞) a function such that

ϕ̃(x, y) =
∞∑

j=0

1
3j

ϕ(3jx, 3jy) < ∞

for all x, y ∈ X \ {0}. Suppose that f : X → Y is a mapping satisfying

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ X \{0}. Then there exists a unique additive mapping T : X →
Y such that

‖f(x)− f(0)− T (x)‖ ≤ 1
3
(
ϕ̃(x,−x) + ϕ̃(−x, 3x)

)

for all x ∈ X \ {0}. The stability problem of functional equations has been

investigated in several papers (see [7]–[23]).

Let θ, φ be endomorphisms of a ring R. An additive mapping D : R → R

is called a (θ, φ)-derivation on R if D(xy) = D(x)θ(y) + φ(x)D(y) holds

for all x, y ∈ R. An additive mapping U : R → R is called a generalized

(θ, φ)-derivation on R if there exists a (θ, φ)-derivation D : R → R such that

U(xy) = U(x)θ(y) + φ(x)D(y) holds for all x, y ∈ R (see [1], [2], [4]).

In this paper, we introduce the concept of linear θ-derivations on JB∗-

triples, and prove the Cauchy–Rassias stability of linear θ-derivations on

JB∗-triples.
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2. Linear θ-derivations on JB∗-triples

Throughout this section, let B be a complex JB∗-triple with norm ‖ · ‖.
Definition 2.1. Let θ : B → B be an involutive C-linear mapping. An

involutive C-linear mapping D : B → B is called a linear θ-derivation on B

if

D({xy∗z}) = {D(x)θ(y)∗θ(z)}+ {θ(x)D(y)∗θ(z)}+ {θ(x)θ(y)∗D(z)}
holds for all x, y, z ∈ B.

Theorem 2.1. Let f, h : B → B be mappings with f(0) = h(0) = 0 for

which there exists a function ϕ : B3 → [0,∞) such that

ϕ̃(x, y, z) :=
∞∑

j=0

1
2j

ϕ(2jx, 2jy, 2jz) < ∞,(2.1)

‖f(µx + µy + z∗)− µf(x)− µf(y)− f(z)∗‖ ≤ ϕ(x, y, z),
(2.2)

‖h(µx + µy + z∗)− µh(x)− µh(y)− h(z)∗‖ ≤ ϕ(x, y, z),
(2.3)

‖f({xy∗z})− {f(x)h(y)∗h(z)} − {h(x)f(y)∗h(z)}
−{h(x)h(y)∗f(z)}‖ ≤ ϕ(x, y, z),(2.4)

for all x, y, z ∈ B and all µ ∈ S1 := {λ ∈ C | |λ| = 1}. Then there exist

unique involutive C-linear mappings D, θ : B → B such that

‖f(x)−D(x)‖ ≤ 1
2
ϕ̃(x, x, 0),(2.5)

‖h(x)− θ(x)‖ ≤ 1
2
ϕ̃(x, x, 0)(2.6)

for all x ∈ B. Moreover, D : B → B is a linear θ-derivation on B.

Proof. Let µ = 1 ∈ S1 and z = 0 in (2.2) and (2.3). It follows from the

Găvruta’s theorem [3] that there exist unique additive mappings D, θ : B →
B satisfying (2.5) and (2.6). The additive mappings D, θ : B → B are given

by

D(x) = lim
l→∞

1
2l

f(2lx),(2.7)

θ(x) = lim
l→∞

1
2l

h(2lx)(2.8)
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for all x ∈ B.

By the same reasoning as in the proof of Theorem 2.1 in [12], the additive

mappings D, θ : B → B are C-linear.

Letting x = y = 0 in (2.2), we get

D(x∗) = lim
l→∞

f(2lx∗)
2l

= lim
l→∞

(f(2lx))∗

2l
= ( lim

l→∞
f(2lx)

2l
)∗ = D(x)∗

for all x ∈ B.

Similarly, one can show that θ : B → B is an involutive mapping.

It follows from (2.4) that
1

23l
‖f(23l{xy∗z})− {f(2lx)h(2ly)∗h(2lz)} − {h(2lx)f(2ly)∗h(2lz)}

−{h(2lx)h(2ly)∗f(2lz)}‖ ≤ 1
23l

ϕ(2lx,2ly, 2lz) ≤ 1
2l

ϕ(2lx, 2ly, 2lz),

which tends to zero as l →∞ for all x, y, z ∈ B by (2.1). By (2.7) and (2.8),

D({xy∗z}) = {D(x)θ(y)∗θ(z)}+ {θ(x)D(y)∗θ(z)}+ {θ(x)θ(y)∗D(z)}
for all x, y, z ∈ B. So the additive mapping D : B → B is a linear θ-

derivation on B, as desired. ¤

Corollary 2.2. Let f, h : B → B be mappings with f(0) = h(0) = 0

for which there exist constants ε ≥ 0 and p ∈ [0, 1) such that

‖f(µx + µy + z∗)− µf(x)− µf(y)− f(z)∗‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p),

‖h(µx + µy + z∗)− µh(x)− µh(y)− h(z)∗‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p),

‖f({xy∗z})− {f(x)h(y)∗h(z)} − {h(x)f(y)∗h(z)}
−{h(x)h(y)∗f(z)}‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ B and all µ ∈ S1. Then there exist unique involutive C-linear

mappings D, θ : B → B such that

‖f(x)−D(x)‖ ≤ 2ε

2− 2p
‖x‖p,

‖h(x)− θ(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ B. Moreover, D : B → B is a linear θ-derivation on B.

Proof. Define ϕ(x, y, z) = ε(‖x‖p + ‖y‖p + ‖z‖p) to be Th.M. Rassias

upper bound in the Cauchy–Rassias inequality, and apply Theorem 2.1. ¤
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Theorem 2.3. Let f, h : B → B be mappings with f(0) = h(0) = 0 for

which there exists a function ϕ : B3 → [0,∞) satisfying (2.4) such that

ϕ̃(x, y, z) :=
∞∑

j=0

1
3j

ϕ(3jx, 3jy, 3jz) < ∞,(2.9)

‖2f(
µx + µy + z∗

2
)− µf(x)− µf(y)− f(z)∗‖ ≤ ϕ(x, y, z),

(2.10)

‖2h(
µx + µy + z∗

2
)− µh(x)− µh(y)− h(z)∗‖ ≤ ϕ(x, y, z)

(2.11)

for all x, y, z ∈ B and all µ ∈ S1. Then there exist unique involutive C-linear

mappings D, θ : B → B such that

‖f(x)−D(x)‖ ≤ 1
3
(
ϕ̃(x,−x, 0) + ϕ̃(−x, 3x, 0)

)
,(2.12)

‖h(x)− θ(x)‖ ≤ 1
3
(
ϕ̃(x,−x, 0) + ϕ̃(−x, 3x, 0)

)
(2.13)

for all x ∈ B. Moreover, D : B → B is a linear θ-derivation on B.

Proof. Let z = 0 in (2.10) and (2.11). It follows from the Jun and Lee’s

theorem [5, Theorem 1] that there exist unique additive mappings D, θ :

B → B satisfying (2.12) and (2.13). The additive mappings D, θ : B → B

are given by

D(x) = lim
l→∞

1
3l

f(3lx),(2.14)

θ(x) = lim
l→∞

1
3l

h(3lx)(2.15)

for all x ∈ B.

The rest of the proof is similar to the proof of Theorem 2.1. ¤

Corollary 2.4. Let f, h : B → B be mappings with f(0) = h(0) = 0

for which there exist constants ε ≥ 0 and p ∈ [0, 1) such that

‖2f(
µx + µy + z∗

2
)− µf(x)− µf(y)− f(z)∗‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p),

‖2h(
µx + µy + z∗

2
)− µh(x)− µh(y)− h(z)∗‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p),

‖f({xy∗z})− {f(x)h(y)∗h(z)} − {h(x)f(y)∗h(z)}
−{h(x)h(y)∗f(z)}‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p)
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for all x, y, z ∈ B and all µ ∈ S1. Then there exist unique involutive C-linear

mappings D, θ : B → B such that

‖f(x)−D(x)‖ ≤ 3 + 3p

3− 3p
ε‖x‖p,

‖h(x)− θ(x)‖ ≤ 3 + 3p

3− 3p
ε‖x‖p

for all x ∈ B. Moreover, D : B → B is a linear θ-derivation on B.

Proof. Define ϕ(x, y, z) = ε(‖x‖p +‖y‖p +‖z‖p), and apply Theorem 2.3,

as desired. ¤

Theorem 2.5. Let f, h : B → B be mappings with f(0) = h(0) = 0 for

which there exists a function ϕ : B3 → [0,∞) satisfying (2.10), (2.11) and

(2.4) such that

(2.16)
∞∑

j=0

33jϕ(
x

3j
,

y

3j
,

z

3j
) < ∞

for all x, y, z ∈ B. Then there exist unique involutive C-linear mappings

D, θ : B → B such that

‖f(x)−D(x)‖ ≤ ϕ̃(
x

3
,−x

3
, 0) + ϕ̃(−x

3
, x, 0),(2.17)

‖h(x)− θ(x)‖ ≤ ϕ̃(
x

3
,−x

3
, 0) + ϕ̃(−x

3
, x, 0)(2.18)

for all x ∈ B, where

ϕ̃(x, y, z) :=
∞∑

j=0

3jϕ(
x

3j
,

y

3j
,

z

3j
)

for all x, y, z ∈ B. Moreover, D : B → B is a linear θ-derivation on B.

Proof. By the Jun and Lee’s theorem [5, Theorem 6], it follows from

(2.16), (2.10) and (2.11) that there exist unique additive mappings D, θ :

B → B satisfying (2.17) and (2.18). The additive mappings D, θ : B → B

are given by

D(x) = lim
l→∞

3lf(
x

3l
),(2.19)

θ(x) = lim
l→∞

3lh(
x

3l
)(2.20)
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for all x ∈ B.

By a similar method to the proof of Theorem 2.1, one can show that

D, θ : B → B are involutive C-linear mappings.

It follows from (2.4) that

33l‖f(
{xy∗z}

33l
)− {f(

x

3l
)h(

y

3l
)∗h(

z

3l
)} − {h(

x

3l
)f(

y

3l
)∗h(

z

3l
)}

−{h(
x

3l
)h(

y

3l
)∗f(

z

3l
)}‖ ≤ 33lϕ(

x

3l
,

y

3l
,

z

3l
),

which tends to zero as l → ∞ for all x, y, z ∈ B by (2.16). By (2.19) and

(2.20),

D({xy∗z}) = {D(x)θ(y)∗θ(z)}+ {θ(x)D(y)∗θ(z)}+ {θ(x)θ(y)∗D(z)}

for all x, y, z ∈ B. So the additive mapping D : B → B is a linear θ-

derivation on B, as desired. ¤ ¤

Corollary 2.6. Let f, h : B → B be mappings with f(0) = h(0) = 0

for which there exist constants ε ≥ 0 and p ∈ (3,∞) such that

‖2f(
µx + µy + z∗

2
)− µf(x)− µf(y)− f(z)∗‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p),

‖2h(
µx + µy + z∗

2
)− µh(x)− µh(y)− h(z)∗‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p),

‖f({xy∗z})− {f(x)h(y)∗h(z)} − {h(x)f(y)∗h(z)}
−{h(x)h(y)∗f(z)}‖ ≤ ε(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ B and all µ ∈ S1. Then there exist unique involutive C-linear

mappings D, θ : B → B such that

‖f(x)−D(x)‖ ≤ 3p + 3
3p − 3

ε‖x‖p,

‖h(x)− θ(x)‖ ≤ 3p + 3
3p − 3

ε‖x‖p

for all x ∈ B. Moreover, D : B → B is a linear θ-derivation on B.

Proof. Define ϕ(x, y, z) = ε(‖x‖p +‖y‖p +‖z‖p), and apply Theorem 2.5,

as desired. ¤
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Definition 2.2. Let θ : B → B be an involutive C-linear mapping. An

involutive C-linear mapping D : B → B is called a Jordan linear θ-derivation

on B if

D({xx∗x}) = {D(x)θ(x)∗θ(x)}+ {θ(x)D(x)∗θ(x)}+ {θ(x)θ(x)∗D(x)}

holds for all x ∈ B.

Problem 2.1. Is every Jordan linear θ-derivation a linear θ-derivation?
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