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ON GENERALIZED DERIVATIONS OF PRIME RINGS

Kyung Ho Kim

Abstract. In this paper, we extend the notion of a generalized
derivation F associated with derivation d to two generalized deriva-
tions F and G associated with the same derivation d, as a new idea,
to obtain the commutativity of prime rings under certain conditions.

1. Introduction

Over the last few decades, several authors have investigated the re-
lationship between the commutativity of the ring R and certain specific
types of derivations of R. The first result in this direction is due to E.
C. Posner [9] who proved that if a ring R admits a nonzero derivation
d such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative.
This result was subsequently, refined and extended by a number of au-
thors. In [6], Bresar and Vuckman showed that a prime ring must be
commutative if it admits a nonzero left derivation. Recently, many au-
thors have obtained commutativity theorems for prime and semiprime
rings admitting derivation, generalized derivation. Furthermore, Bre-
sar and Vukman [5] studied the notions of a ∗-derivation and a Jordan
∗-derivation of R. In this paper, we extend the notion of a generalized
derivation F associated with derivation d to two generalized derivations
F and G associated with the same derivation d, as a new idea, to obtain
the commutativity of prime rings under certain conditions.
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2. Preliminaries

Throughout R will represent an associative ring with center Z(R). For
all x, y ∈ R, as usual the commutator, we shall write [x, y] = xy − yx,
and x ◦ y = xy + yx.

Also, we make use of the following two basic identities without any
specific mention:

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z].

Recall that R is prime if aRb = {0} implies a = 0 or b = 0. An additive
mapping f : R → R is called a derivation if f(xy) = f(x)y + xf(y)
holds for all x, y ∈ R. An additive mapping F : R → R is called a
generalized derivation if there exists a derivation d : R → R such that
F (xy) = F (x)y + xd(y) for all x, y ∈ R.

3. Generalized derivations associated with same derivation
on prime rings

Throughout the paper, F denotes an onto map on a prime ring R.

Theorem 3.1. Let R be a semiprime ring. If R admits nonzero
generalized derivations F and G associated with the same derivation d
such that [F (x), y] = [x,G(y)] for all x, y ∈ R, then d(R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.1) [F (x), y] = [x,G(y)], ∀ x, y ∈ R.

Replacing y by yx in the relation (1), we obtain

[F (x), yx] = [x,G(yx)], ∀ x, y ∈ R.

This implies that

y[F (x), x] + [F (x), y]x = [x,G(y)x + yd(x)]

for every x, y ∈ R, and hence

(3.2) y[F (x), x] = [x, y]d(x) + y[x, d(x)], ∀ x, y ∈ R.

Again, replacing y by zy in the relation (2) and using (2), we get
[x, z]yd(x) = 0 for all x, y, z ∈ R. Replacing z by d(x)z, we have
[x, d(x)]zR[x, d(x)]z = (0), for all x, z ∈ R, and hence, by semiprime-
ness, we get [x, d(x)]z = 0 for all x, z ∈ R. This can be written as
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[x, d(x)]R[x, d(x)] = (0) for all x ∈ R, and hence by semiprimeness,
[x, d(x)] = 0 for all x ∈ R. Thus d(R) ⊆ Z(R).

Theorem 3.2. Let R be a semiprime ring. If R admits nonzero
generalized derivations F and G associated with the same derivation d
such that F (x)x = xG(x) for all x ∈ R. Then d(R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.3) F (x)x = xG(x)

for all x ∈ R. On linearizing the above relation (3), we obtain

(3.4) F (x)y + F (y)x = xG(y) + yG(x), ∀ x, y ∈ R.

Again, replacing x by xy in the relation (4) and using (4), we get

F (x)yy + xd(y)y + F (y)xy = xyG(y) + yG(x)y + yxd(y) ∀x, y ∈ R.

Multiplying by y on the right side of the relation (4), we get

(3.5) F (x)y2 + F (y)xy = xG(y)y + yG(x)y ∀ x, y ∈ R.

Combining (6) with (5), we have

(3.6) xd(y)y = yxd(y) + x[y,G(y)] ∀ x, y ∈ R.

Now, replacing x by rx in (7), we have

(3.7) rxd(y)y = yrxd(y) + rx[y,G(y)] ∀ x, y ∈ R.

Multiplying the left side of the relation (7) by r, we get

(3.8) rxd(y)y = ryxd(y) + rx[y,G(y)] ∀ r, x, y ∈ R.

From (7) and (8), we get [y, r]xd(y) = 0 for all r, x, y ∈ R, and hence
[y, d(y)]xd(y) = 0 for all x, y ∈ R. That is, [y, d(y)]R[y, d(y)] = (0) for
all y ∈ R. Then by the semiprimeness of R, we get [y, d(y)] = 0 for all
y ∈ R. This implies that d(R) ⊆ Z(R).

Theorem 3.3. Let R be a prime ring. If R admits nonzero general-
ized derivations F and G associated with the same derivation d such that
F (x)◦G(y) = ±x◦y for all x, y ∈ R, then either d = 0 or F (R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.9) F (x) ◦G(y) = x ◦ y,∀ x, y ∈ R.

Replacing y by yz in (9), we have F (x) ◦ G(yz) = x ◦ yz for every
x, y, z ∈ R. This means that

F (x) ◦ (G(y)z + yd(z)) = (x ◦ y)z − y[x, z],∀ x, y, z ∈ R,
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and hence
(3.10)
(F (x)◦G(y)z−G(y)[F (x), z]+(F (x)◦y)d(z)−y[F (x), d(z)] = (x◦y)z−y[x, z]

for all x, y, z ∈ R. Combining (9) and (10), we get
(3.11)
−G(y)[F (x), z] + (F (x) ◦ y)d(z)− y[F (x), d(z)] + y[x, z] = 0,∀ x, y ∈ R.

Replacing z by F (x) in (11), we get

(3.12) (F (x)◦y)d(F (x))−y[F (x), d(F (x))]+y[x, F (x)] = 0,∀ x, y ∈ R.

Again, replacing y by ry in (12), we obtain
(3.13)
(r(F (x)◦y)+[F (x), r]y)d(F (x))−ry[F (x), d(F (x))]+ry[x, F (x)] = 0, ∀ x, y, r ∈ R.

Multiplying by r on left side of (13), we get
(3.14)
r(F (x) ◦ y)d(F (x))− ry[F (x), d(F (x))] + ry[x, F (x)] = 0,∀ x, y, r ∈ R.

From (13) and (14), we obtain

(3.15) [F (x), r]yd(F (x)) = 0, ∀ x, y, r ∈ R.

Since R is prime, we get either F (R) ⊆ Z(R) or d(F (x)) = 0 for every
x ∈ R. Since F is onto, we get d = 0.

Using the similar techniques, when F (x) ◦ G(y) = −x ◦ y, for every
x, y ∈ R, the following Corollary 3.4 can be proved.

Corollary 3.4. Let R be a prime ring. If R admits nonzero general-
ized derivations F and G associated with the same derivation d such that
F (x) ◦G(y) = ±x ◦ y for all x, y ∈ R. If d 6= 0, then R is commutative.

Theorem 3.5. Let R be a prime ring. If R admits nonzero gener-
alized derivations F and G associated with the same derivation d such
that (F (x)y+F (y)x)±(xG(y)+yG(x)) = 0 for all x, y ∈ R. Then either
d = 0 or F (R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.16) F (x)y + F (y)x = xG(y) + yG(x),∀ x, y ∈ R.

Replacing x by xy in the relation (16), we get

F (xy)y + F (y)xy = xyG(y) + yG(xy), ∀ x, y ∈ R.
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This implies that
(3.17)
(F (x)y + xd(y))y + F (y)xy = xyG(y) + y(G(x)y + yxd(y)), ∀ x, y ∈ R.

Multiplying (16) with y from the right side, we get

(3.18) F (x)y2 + F (y)xy = xG(y)y + yG(x)y,∀ x, y ∈ R.

Combining (17) and (18), we get

(3.19) xd(y)y = yxd(y) + x[y,G(y)],∀ x, y ∈ R.

Replacing x by rx, where r ∈ R, in (19) and combining with the ex-
pression obtained by multiplying (19) with r from the left side, we get

(3.20) [y, r]xd(y) = 0,∀ x, y, r ∈ R.

Now, replacing y by F (y) in (20), we obtain

(3.21) [F (y), r]xd(F (y) = 0,∀ x, y, r ∈ R,

and thus [F (y), r]Rd(F (y)) = (0)) for every y, r ∈ R. Since R is prime,
we get either F (R) ⊆ Z(R) or d(F (y)) = 0 for every y ∈ R. Since F is
onto, we get d = 0.

Theorem 3.6. Let R be a prime ring. If R admits nonzero general-
ized derivations F and G associated with the same derivation d such that
[F (x), G(y)] = ±xy for all x, y ∈ R. Then either d = 0 or F (R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.22) [F (x), G(y)] = ±xy,∀x, y ∈ R.

Replacing y by yz, where z ∈ R, in the relation (22), we get [F (x), G(yz)] =
±xyz for every x, y, z ∈ R. This implies that

[F (x), G(y)z + yd(z)] = ±xyz
for every x, y, z ∈ R, and hence

[F (x), G(y)z] + [F (x), yd(z)] = ±xyz
for every x, y, z ∈ R, and so we get, by hypothesis,
(3.23)
G(y)[F (x), z]+[F (x), G(y)]z+y[F (x), d(z)]+[F (x), y]d(z) = ±xyz,∀ x, y, z ∈ R.

This implies that

(3.24) G(y)[F (x), z] + y[F (x), d(z)] + [F (x), y]d(z) = 0,∀ x, y, z ∈ R.

Replacing z by F (x) in (24), we obtain

(3.25) y[F (x), d(F (x))] + [F (x), y]d(F (x)) = 0,∀ x, y ∈ R.
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Now, replacing y by ty, where t ∈ R, in the equation (25), we get
(3.26)
ty[F (x), d(F (x))]+t[F (x), y]d(F (x))+[F (x), t]yd(F (x)) = 0,∀ x, y, t ∈ R.

Multiplying the equation (25) by t on left side, we get

(3.27) ty[F (x), d(F (x))] + t[F (x), y]d(F (x)) = 0, ∀ x, y t ∈ R.

Combining (26) with (27), we obtain

(3.28) [F (x), t]yd(F (x)) = 0, ∀ x, y, t ∈ R.

That is, [F (x), t]Rd(F (x)) = (0). Since R is prime, we get either F (R) ⊆
Z(R) or d(F (y)) = 0 for every y ∈ R. Since F is onto, we get d = 0.

Theorem 3.7. Let R be a prime ring. If R admits nonzero gener-
alized derivations F and G associated with the same derivation d such
that [F (x), G(y)] = ±d(x) ◦ y for all x, y ∈ R. Then either d = 0 or
F (R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.29) [F (x), G(y)] = d(x) ◦ y,∀x, y ∈ R.

Replacing y by yz, where z ∈ R, in the relation (29), we get [F (x), G(yz)] =
d(x) ◦ yz for every x, y, z ∈ R. This implies that

[F (x), G(y)z + yd(z)] = d(x) ◦ yz

for every x, y, z ∈ R, and hence

[F (x), G(y)z] + [F (x), yd(z)] = d(x) ◦ yz

for every x, y, z ∈ R, and so we get
(3.30)
G(y)[F (x), z]+[F (x), G(y)]z+y[F (x), d(z)]+[F (x), y]d(z) = (d(x)◦y)z−y[d(x), z]

for every x, y, z ∈ R. Combining (29) with (30), we get
(3.31)
G(y)[F (x), z]+y[F (x), d(z)]+[F (x), y]d(z)+y[d(x), z] = 0, ∀x, y, z ∈ R.

Replacing z by zF (x) in the equation (31), we get

G(y)[F (x), z]F (x) + [F (x), y]d(z)F (x) + [F (x), y)]zd(F (x)) + y[F (x), d(z)]F (x)

+ yz[F (x), d(F (x))] + y[F (x), z]d(F (x)) + yz[d(x), F (x)] + y[d(x), z]F (x) = 0
(3.32)
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for every x, y, z ∈ R. Multiplying the equation (31) by F (x) on right
side, we get
(3.33)
G(y)[F (x), z]F (x)+[F (x), y]d(z)F (x)+y[F (x), d(z)]F (x)+y[d(x), z]F (x) = 0

for every x, y, z ∈ R. From (32) and (33), we obtain
(3.34)
[F (x), y]zd(F (x))+yz[F (x), d(F (x))]+y[F (x), z]d(F (x))+yz[d(x), F (x)] = 0

for every x, y, z ∈ R. Now, replacing y by ry, where r ∈ R, in (34), we
get

r[F (x), y]zd(F (x)) + [F (x), r]yzd(F (x)) + ryz[F (x), d(F (x))] + ry[F (x), z]d(F (x))

+ ryz[d(x), F (x)] = 0
(3.35)

for every x, y, z ∈ R. Multiplying the equation (34) by r on left side, we
get
(3.36)
r[F (x), y]zd(F (x))+ryz[F (x), d(F (x))]+ry[F (x), z]d(F (x))+ryz[d(x), F (x)] = 0

for every x, y, z ∈ R. From (35) and (36), we obtain

(3.37) [F (x), r]yzd(F (x)) = 0,∀x, y, z, r ∈ R.

This implies that [F (x), r]Rd(F (x)) = (0), for every x, r ∈ R. Since R
is prime, we get either F (R) ⊆ Z(R) or d(F (x)) = 0 for every x ∈ R.
Since F is onto, we get d = 0. By the same way, if [F (x), G(y)] = −x◦y,
for every x, y ∈ R, then also the result holds.

Theorem 3.8. Let R be a prime ring. If R admits nonzero general-
ized derivations F and G associated with the same derivation d such that
[F (x), G(y)] = ±x◦y for all x, y ∈ R. Then either d = 0 or F (R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.38) [F (x), G(y)] = x ◦ y,∀x, y ∈ R.

Replacing y by yz, where z ∈ R, in the relation (38), we get [F (x), G(yz)] =
x ◦ yz for every x, y, z ∈ R. This implies that

[F (x), G(y)z + yd(z)] = x ◦ yz

for every x, y, z ∈ R, and hence

[F (x), G(y)z] + [F (x), yd(z)] = x ◦ yz
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for every x, y, z ∈ R, and so we get
(3.39)
G(y)[F (x), z]+[F (x), G(y)]z+y[F (x), d(z)]+[F (x), y]d(z) = (x◦y)z−y[x, z]

for every x, y, z ∈ R. Combining (38) with (39), we get
(3.40)
G(y)[F (x), z] + y[F (x), d(z)] + [F (x), y]d(z) + y[x, z] = 0, ∀x, y, z ∈ R.

Replacing z by zF (x) in the equation (40), we get

G(y)[F (x), z]F (x) + [F (x), y]d(z)F (x) + [F (x), y)]zd(F (x)) + y[F (x), d(z)]F (x)

+ yz[F (x), d(F (x))] + y[F (x), z]d(F (x)) + yz[x, F (x)] + y[x, z]F (x) = 0
(3.41)

for every x, y, z ∈ R. Multiplying the equation (40) by F (x) on right
side, we get
(3.42)
G(y)[F (x), z]F (x)+[F (x), y]d(z)F (x)+y[F (x), d(z)]F (x)+y[x, z]F (x) = 0

for every x, y, z ∈ R. From (41) and (42, we obtain
(3.43)
[F (x), y]zd(F (x))+yz[F (x), d(F (x))]+y[F (x), z]d(F (x))+yz[x, F (x)] = 0

for every x, y, z ∈ R. Now, replacing y by ry, where r ∈ R, in (43), we
get

r[F (x), y]zd(F (x)) + [F (x), r]yzd(F (x)) + ryz[F (x), d(F (x))] + ry[F (x), z]d(F (x))

+ ryz[x, F (x)] = 0
(3.44)

for every x, y, z ∈ R. Multiplying the equation (43) by r on left side, we
get
(3.45)
r[F (x), y]zd(F (x))+ryz[F (x), d(F (x))]+ry[F (x), z]d(F (x))+ryz[x, F (x)] = 0

for every x, y, z ∈ R. From (44) and (45), we obtain

(3.46) [F (x), r]yzd(F (x)) = 0, ∀x, y, z, r ∈ R.

This implies that [F (x), r]Rd(F (x)) = (0), for every x, r ∈ R. Since R
is prime, we get either F (R) ⊆ Z(R) or d(F (x)) = 0 for every x ∈ R.
Since F is onto, we get d = 0. In the same way, if [F (x), G(y)] = −x ◦ y,
for every x, y ∈ R, then also the result holds.
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Theorem 3.9. Let R be a prime ring. If R admits nonzero gener-
alized derivations F and G associated with the same derivation d such
that [F (x), y)] ± x ◦ G(y) = 0 for all x, y ∈ R. Then either d = 0 or
F (R) ⊆ Z(R).

Proof. Firstly, by hypothesis, we have

(3.47) [F (x), y]− x ◦G(y) = 0,∀x, y ∈ R.

Replacing y by yx, where x ∈ r, in the relation (47) and using (47), we
get

(3.48) y[F (x), x]− (x ◦ yd(x)) = 0,∀x, y ∈ R,

and hence

(3.49) y[F (x), x]− (x ◦ y)d(x) + y[x, d(x)] = 0

for every x, y ∈ R. Replacing y by F (x)y in (49), we get

F (x)y[F (x), x]− (x ◦ F (x)y)d(x) + F (x)y[x, d(x)] = 0,∀ x, y ∈ R,

and so we obtain
(3.50)
F (x)y[F (x), x]−F (x)(x◦y)d(x)−[x, F (x)]yd(x)+F (x)y[x, d(x)] = 0, ∀x, y ∈ R.

Multiplying the equation (49) by F (x) on left side, we get

(3.51) F (x)y[F (x), x]−F (x)(x◦y)d(x)+F (x)y[x, d(x)] = 0, ∀ x, y ∈ R.

From (50) and (51), we get

(3.52) [x, F (x)]yd(x) = 0, ∀x, y ∈ R.

This means that [x, F (x)]Rd(x) = 0 for all x ∈ R. Since R is prime, we
have F (R) ⊆ Z(R) or d = 0. By the same way, if [F (x), y]+x◦G(y) = 0,
for every x, y ∈ R, then also the result holds.

Theorem 3.10. Let R be a prime ring. If R admits nonzero gener-
alized derivations F and G associated with the same derivation d such
that F (x) ◦ y ± x ◦ G(y) = 0 for all x, y ∈ R. Then either d = 0 or
F (R) ⊆ Z(R).

Proof. Firstly, by hypothesis, we have

(3.53) F (x) ◦ y − x ◦G(y) = 0,∀x, y ∈ R.

Replacing y by yx, where x ∈ R, in the relation (53) and using (53),
we get

(3.54) y[F (x), x]− x ◦ yd(x) = 0, ∀x, y ∈ R,
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and hence

(3.55) y[F (x), x] + (x ◦ y)d(x)− y[x, d(x)] = 0

for every x, y ∈ R. Replacing y by F (x)y in (55), we get

F (x)y[F (x), x] + (x ◦ F (x)y)d(x)− F (x)y[x, d(x)] = 0,∀ x, y ∈ R,

and so we obtain
(3.56)
F (x)y[F (x), x]+F (x)(x◦y)d(x)−[x, F (x)]yd(x)−F (x)y[x, d(x)] = 0, ∀x, y ∈ R.

Multiplying the equation (55) by F (x) on left side, we get

(3.57) F (x)y[F (x), x]+F (x)(x◦y)d(x)−F (x)y[x, d(x)] = 0,∀ x, y ∈ R.

From (56) and (57), we get

(3.58) [x, F (x)]yd(x) = 0, ∀x, y ∈ R.

This means that [x, F (x)]Rd(x) = 0 for all x ∈ R. Since R is prime, we
have F (R) ⊆ Z(R) or d = 0. By the same way, if F (x)◦y+x◦G(y) = 0,
for every x, y ∈ R, then also the result holds.

Theorem 3.11. Let R be a prime ring. If R admits nonzero gener-
alized derivations F and G associated with the same derivation d such
that F (x) ◦ y ± [x,G(y)] = 0 for all x, y ∈ R. Then either d = 0 or
F (R) ⊆ Z(R).

Proof. Firstly, by hypothesis, we have

(3.59) F (x) ◦ y + [x,G(y)] = 0,∀x, y ∈ R.

Replacing y by yx, where x ∈ R, in the relation (59) and using (59),
we get

(3.60) y[F (x), x]− [x, y]d(x)− y[x, d(x)] = 0, ∀x, y ∈ R,

Replacing y by F (x)y in (60), we get

F (x)y[F (x), x]− [x, F (x)y]d(x)− F (x)y[x, d(x)] = 0,∀ x, y ∈ R,

and so we obtain
(3.61)
F (x)y[F (x), x]+F (x)[x, y]d(x)−[x, F (x)]yd(x)−F (x)y[x, d(x)] = 0,∀x, y ∈ R.

Multiplying the equation (60) by F (x) on left side, we get

(3.62) F (x)y[F (x), x]−F (x)[x, y]d(x)−F (x)y[x, d(x)] = 0,∀ x, y ∈ R.

From (61) and (62), we get

(3.63) [x, F (x)]yd(x) = 0, ∀x, y ∈ R.
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This means that [x, F (x)]Rd(x) = 0 for all x ∈ R. Since R is prime, we
have F (R) ⊆ Z(R) or d = 0. By the same way, if F (x)◦y− [x,G(y)] = 0,
for every x, y ∈ R, then also the result holds.

Theorem 3.12. Let R be a prime ring. If R admits nonzero general-
ized derivations F and G associated with the same derivation d such that
F (x) ◦G(y) = ±xy for all x, y ∈ R. Then either d = 0 or F (R) ⊆ Z(R).

Proof. By hypothesis, we have

(3.64) F (x) ◦G(y) = xy,∀x, y ∈ R.

Replacing y by yz in the relation (64), we get F (x) ◦ G(yz) = xyz for
every x, y, z ∈ R. This implies that

F (x) ◦ (G(y)z + F (x) ◦ yd(z)) = xyz

for every x, y, z ∈ R, and hence

F (x) ◦G(y)z + F (x) ◦ yd(z) = xyz

for every x, y, z ∈ R, and so we get

(3.65) G(y)[F (x), z]− (F (x) ◦ y)d(z) + y[F (x), d(z)] = 0,∀ x, y, z ∈ R.

Replacing z by F (x) in (65), we obtain

(3.66) (F (x) ◦ y)d(F (x)) + y[F (x), d(F (x))] = 0,∀ x, y ∈ R.

Now, replacing y by ty in the equation (66), we get
(3.67)
t(F (x)◦y)d(F (x))+[F (x), t]yd(F (x))+ty[F (x), d(F (x))] = 0,∀ x, y, t ∈ R.

Multiplying the equation (66) by t on left side, we get

(3.68) t(F (x) ◦ y)d(F (x)) + ty[F (x), d(F (x))] = 0, ∀ x, y t ∈ R.

Combining (67) with (68), we obtain

(3.69) [F (x), t]yd(F (x)) = 0, ∀ x, y, t ∈ R.

That is, [F (x), t]Rd(F (x)) = (0). Since R is prime, we get either F (R) ⊆
Z(R) or d(F (y)) = 0 for every y ∈ R. Since F is onto, we get d = 0.
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