# JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS 

Hamid Reza Ebrahimi Vishki, Madjid Mirzavaziri, and Fahimeh Moafian


#### Abstract

We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.


## 1. Introduction

Let $\mathcal{A}$ be an algebra (over a unital abelian ring) and let $\mathbb{N}$ stand for the set of all nonnegative integers. A sequence $D=\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ of additive mappings on $\mathcal{A}$ (with $\left.\delta_{0}=i d_{\mathcal{A}}\right)$ is said to be

- a higher derivation if for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\delta_{k}(x y)=\sum_{i=0}^{k} \delta_{i}(x) \delta_{k-i}(y) \quad(x, y \in \mathcal{A}) \tag{1.1}
\end{equation*}
$$

- a Jordan higher derivation if for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\delta_{k}\left(x^{2}\right)=\sum_{i=0}^{k} \delta_{i}(x) \delta_{k-i}(x) \quad(x \in \mathcal{A}) \tag{1.2}
\end{equation*}
$$

It is easy to verify that if $D=\left\{\delta_{k}\right\}$ is a Jordan higher derivation, then

$$
\begin{equation*}
\delta_{k}(x y+y x)=\sum_{i=0}^{k} \delta_{i}(x) \delta_{k-i}(y)+\delta_{i}(y) \delta_{k-i}(x) \quad(x, y \in \mathcal{A}) \tag{1.3}
\end{equation*}
$$

and the converse holds in the case where $\mathcal{A}$ is 2 -torsionfree (that is, $2 x=0$ implies $x=0$ for any $x \in \mathcal{A}$ ).

[^0]It is obvious that if $\left\{\delta_{k}\right\}$ is a (Jordan) higher derivation, then $\delta_{1}$ is a (Jordan) derivation. For a typical example of a (Jordan) higher derivation, one can consider $\left\{\frac{\delta^{k}}{k!}\right\}$, where $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a (Jordan) derivation. This kind of (Jordan) higher derivation is called an ordinary (Jordan) higher derivation.

It is also trivial that every higher derivation is a Jordan higher derivation, but the converse is not true in general. The standard problem is finding out whether a Jordan higher derivation is necessarily a higher derivation. It was shown by Herstein [5] that every Jordan derivation on a 2-torsionfree prime ring is a derivation. This result was extended by Brešar [2] to the case of semiprime rings. Zhang an Yu [15] proved that every Jordan derivation on a triangular algebra is a derivation. Benkovič and Širovnik [1] studied Jordan derivations on a unital algebra with a nontrivial idempotent. Li et al. [6] investigated the Jordan derivations on a generalized matrix algebra. In the context of (Jordan) higher derivations, the construction of a higher derivation on a general algebra has been studied by Mirzavaziri [7]. Xiao and Wei [13] showed that any Jordan higher derivation on a triangular algebra is a higher derivation. Jordan higher derivations on some class of operator algebras have also investigated by Xiao and Wei [14].

In this paper we shall study Jordan higher derivations on trivial extension algebras. Let us introduce a trivial extension algebra. Let $\mathcal{A}$ be an algebra and let $\mathcal{M}$ be an $\mathcal{A}$-module. Then the direct product $\mathcal{A} \times \mathcal{M}$ under its usual pairwise operations and the multiplication given by

$$
(a, m)(b, n)=(a b, a n+m b) \quad(a, b \in \mathcal{A}, m, n \in \mathcal{M})
$$

is an algebra which is called the "trivial extension" of $\mathcal{A}$ by $\mathcal{M}$ and is denoted by $\mathcal{A} \ltimes \mathcal{M}$. This name comes from some cohomological properties of $\mathcal{A} \ltimes \mathcal{M}$. Indeed, Hochschild has noticed that $\mathcal{A} \ltimes \mathcal{M}$ corresponds to the "trivial" element in the second cohomology group of $\mathcal{A}$ with coefficients in $\mathcal{M}$. This is related to the fact that there is a correspondence between derivations from $\mathcal{A}$ to $\mathcal{M}$ and the automorphisms of $\mathcal{A} \ltimes \mathcal{M}$, [11]. It should also be remarked that in functional analysis literature, algebras of this type were termed "module extension" algebras; see [16], in which some interesting performances of Banach algebras of this type are presented.

The main example of a trivial extension algebra is the so-called triangular algebra $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$, which was first introduced by Cheung [3]. Indeed, $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ can be identified to the trivial extension $(\mathcal{A} \oplus \mathcal{B}) \ltimes \mathcal{M}$. More generally, as we shall discuss in Section 3, every trivial generalized matrix algebra $\mathcal{G}(\mathcal{A}, \mathcal{M}, \mathcal{N}, \mathcal{B})$ can be identified to the trivial extension algebra $(\mathcal{A} \oplus \mathcal{B}) \ltimes(\mathcal{M} \oplus$ $\mathcal{N})$.

Jordan derivations on $\mathcal{A} \ltimes \mathcal{M}$ are studied in [4]. In [10] (see also [8]), Lie derivations of $\mathcal{A} \ltimes \mathcal{M}$ are discussed. In this paper, our main aim is to provide some sufficient conditions under which a Jordan higher derivation on $\mathcal{A} \ltimes \mathcal{M}$ become a higher derivation.

The paper is organized as follows. Section 2 is devoted to the constructions of (Jordan) higher derivations on trivial extension algebras. We study some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. In this respect, we consider those trivial extensions $\mathcal{A} \ltimes \mathcal{M}$ such that the $\mathcal{A}$-module $\mathcal{M}$ enjoys zero action from one side (Theorem 2.2). We include an illuminating example of a (non-ordinary) Jordan higher derivation on a trivial extension which is not a higher derivation (Example 2.3). In Section 3, we first show that every trivial generalized matrix algebra is a trivial extension algebra. We then explore the structure of (Jordan) higher derivations of a trivial generalized matrix algebra, intending to arrive at the "higher" version of some results of [6] and [1]. In this respect, we leave a conjecture, to the best of our knowledge, seems to be undecided. At the final part of Section 3, we employ our results to give the construction of Jordan higher derivations on a triangular algebra (Theorem 3.3). It, in particular, provides a direct proof for the fact that every Jordan higher derivation on a triangular algebra is a higher derivation, which has already proved in [13].

## 2. Jordan higher derivations on $\mathcal{A} \ltimes \mathcal{M}$

Let us proceed with the following result, characterizing the construction of a (Jordan) higher derivation on a trivial extension algebra $\mathcal{A} \ltimes \mathcal{M}$.

Proposition 2.1. A sequence $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ of additive mappings on $\mathcal{A} \ltimes \mathcal{M}$ can be presented as the form
(2.1) $\delta_{k}(a, m)=\left(J_{k}(a)+T_{k}(m), K_{k}(a)+S_{k}(m)\right) \quad(a \in \mathcal{A}, m \in \mathcal{M}, k \in \mathbb{N})$, where $J_{k}: \mathcal{A} \rightarrow \mathcal{A}, K_{k}: \mathcal{A} \rightarrow \mathcal{M}, T_{k}: \mathcal{M} \rightarrow \mathcal{A}$ and $S_{k}: \mathcal{M} \rightarrow \mathcal{M}$ are additive mappings. Moreover,

- $D$ is a higher derivation if and only if
(1) $\left\{J_{k}\right\}_{k \in \mathbb{N}}$ is a higher derivation on $\mathcal{A}$;
(2) $K_{k}(a b)=\sum_{i=0}^{k}\left(J_{i}(a) K_{k-i}(b)+K_{i}(a) J_{k-i}(b)\right)$;
(3) $T_{k}(m a)=\sum_{i=0}^{k} T_{i}(m) J_{k-i}(a), T_{k}(a m)=\sum_{i=0}^{k} J_{i}(a) T_{k-i}(m)$;
(4) $S_{k}(m a)=\sum_{i=0}^{k}\left(S_{i}(m) J_{k-i}(a)+T_{i}(m) K_{k-i}(a)\right)$, $S_{k}(a m)=\sum_{i=0}^{k}\left(J_{i}(a) S_{k-i}(m)+K_{i}(a) T_{k-i}(m)\right) ;$
(5) $\sum_{i=0}^{k} T_{i}(m) T_{k-i}(n)=0, \sum_{i=0}^{k}\left(T_{i}(m) S_{k-i}(n)+S_{i}(m) T_{k-i}(n)\right)=0$
for all $a, b \in \mathcal{A}, m \in \mathcal{M}$.
- $D$ is a Jordan higher derivation if and only if
(a) $\left\{J_{k}\right\}_{k \in \mathbb{N}}$ is a Jordan higher derivation on $\mathcal{A}$;
(b) $K_{k}\left(a^{2}\right)=\sum_{i=0}^{k}\left(J_{i}(a) K_{k-i}(a)+K_{i}(a) J_{k-i}(a)\right)$;
(c) $T_{k}(m a+a m)=\sum_{i=0}^{k}\left(T_{i}(m) J_{k-i}(a)+J_{i}(a) T_{k-i}(m)\right)$;
(d) $S_{k}(m a+a m)=\sum_{i=0}^{k}\left(S_{i}(m) J_{k-i}(a)+T_{i}(m) K_{k-i}(a)+J_{i}(a) S_{k-i}(m)+\right.$ $\left.K_{i}(a) T_{k-i}(m)\right)$;
(e) $\sum_{i=0}^{k} T_{i}(m) T_{k-i}(m)=0, \sum_{i=0}^{k}\left(T_{i}(m) S_{k-i}(m)+S_{i}(m) T_{k-i}(m)\right)=0$
for all $a \in \mathcal{A}, m \in \mathcal{M}$.
Proof. As $\delta_{0}=i d_{\mathcal{A} \ltimes \mathcal{M}}$, we have $J_{0}=i d_{\mathcal{A}}, T_{0}=0, K_{0}=0$ and $S_{0}=i d_{\mathcal{M}}$. Fix $k \in \mathbb{N}$ and let $\delta_{k}: \mathcal{A} \ltimes \mathcal{M} \rightarrow \mathcal{A} \ltimes \mathcal{M}$ be an additive mapping. That $\delta_{k}$ has the presentation (2.1) is straightforward. Then $D$ is a higher derivation if and only if the identity

$$
\begin{align*}
& \left(J_{k}(a b)+T_{k}(a n+m b), K_{k}(a b)+S_{k}(a n+m b)\right)  \tag{2.2}\\
= & \sum_{i=0}^{k}\left(J_{i}(a)+T_{i}(m), K_{i}(a)+S_{i}(m)\right)\left(J_{k-i}(b)+T_{k-i}(n), K_{k-i}(b)+S_{k-i}(n)\right)
\end{align*}
$$

holds for all $a, b \in \mathcal{A}, m, n \in \mathcal{M}$. One can directly check that (2.2) holds if and only if it is true for $(a, b, 0,0),(a, 0,0, m),(0, a, m, 0)$ and $(0,0, m, n)$. We now have the following considerations for the equation (2.2).

It is true for
( $a, b, 0,0$ ) if and only if (1) and (2) hold;
$(a, 0,0, m)$ if and only if a half of (3) and (4) hold (for $T_{k}(a m)$ and $\left.S_{k}(a m)\right)$;
$(0, a, m, 0)$ if and only if the other half of (3) and (4) hold (for $T_{k}(m a)$ and

$$
\left.S_{k}(m a)\right)
$$

$(0,0, m, n)$ if and only if (5) holds.
A similar argument shows the result for Jordan higher derivations.
By the virtue of Proposition 2.1(b), if we replace $a$ with $a+b$ we arrive at the following identity which will be frequently used in the sequel.

$$
\begin{align*}
& K_{k}(a b+b a)  \tag{2.3}\\
= & \sum_{i=0}^{k}\left(J_{i}(a) K_{k-i}(b)+J_{i}(b) K_{k-i}(a)+K_{i}(a) J_{k-i}(b)+K_{i}(b) J_{k-i}(a)\right), \quad(a, b \in \mathcal{A}) .
\end{align*}
$$

For an $\mathcal{A}$-module $\mathcal{M}$ we recall that:
$\mathcal{M}$ is left (resp. right) faithful if $a \mathcal{M}=0$ (resp. $\mathcal{M} a=0$ ) implies $a=0$ for any $a \in \mathcal{A}$. If $\mathcal{M}$ is both left and right faithful, then it is called faithful.

In the case where $\mathcal{A}$ is unital, $\mathcal{M}$ is left (resp. right) unital if $1 m=m$ (resp. $m 1=m$ ) for any $m \in \mathcal{M}$. If $\mathcal{M}$ is both left and right unital, then it is called unital.

We employ Proposition 2.1 for certain trivial extensions. We consider the case that the module operation on one side of $\mathcal{M}$ is trivial. We denote by $\mathcal{M}_{0}$ (resp. $\left.{ }_{0} \mathcal{M}\right)$ specifically the $\mathcal{A}$-module with trivial right module action, (i.e., $m a=0($ resp. $a m=0)$ for all $a \in \mathcal{A}, m \in \mathcal{M}$ ). The trivial extension algebras of this type are known as a fertile source of (counter-) examples in various situations in functional analysis. For example, they have been served for constructing certain counter-examples in the theory of weak amenability of

Banach algebras; [16, Example 7.5]. In the next result, we show that every Jordan higher derivation on either of the trivial extension algebras $\mathcal{A} \ltimes \mathcal{M}_{0}$ and $\mathcal{A} \ltimes{ }_{0} \mathcal{M}$ is a higher derivation.

Theorem 2.2. Let $\mathcal{A}$ be a unital algebra and $\mathcal{M}$ be a left unital, left faithful $\mathcal{A}$ module. Then every Jordan higher derivation on $\mathcal{A} \ltimes \mathcal{M}_{0}$ is a higher derivation. The same fact holds for $\mathcal{A} \ltimes_{0} \mathcal{M}$, in the case where $\mathcal{M}$ is a right unital, right faithful $\mathcal{A}$-module.
Proof. Let $\left\{\delta_{k}\right\}$ be a Jordan higher derivation on $A \ltimes \mathcal{M}_{0}$ with the presentation as in (2.1). In order to show that $\left\{\delta_{k}\right\}$ is a higher derivation, it suffices to prove that the conditions (1) to (5) of Proposition 2.1 are fulfilled. First, let us show that $T_{k}=0$ for all $k$. As $m a=0$, for all $a \in \mathcal{A}, m \in \mathcal{M}$, from (c) we get the identity $T_{k}(a m)=\sum_{i=0}^{k}\left(T_{i}(m) J_{k-i}(a)+J_{i}(a) T_{k-i}(m)\right)$. Applying the latter identity for $a=1$ together with the fact that $J_{k}(1)=0$ for each $k \geq 1$, one gets $T_{k}=0$ for all $k$. From this the identities in (5) are fulfilled trivially and also the identities in (4) follow obviously from (d).

Our next aim is to show that $\left\{J_{k}\right\}$ is a higher derivation. We prove by induction on $k$. Fix $a, b \in \mathcal{A}$ and $m \in \mathcal{M}$. From Proposition 2.1(4), we have

$$
\begin{equation*}
S_{k}(a m)=\sum_{i=0}^{k} J_{i}(a) S_{k-i}(m) \tag{2.4}
\end{equation*}
$$

It follows that $S_{1}(a m)=J_{1}(a) m+a S_{1}(m)$, which gives

$$
\begin{aligned}
J_{1}(a b) m+a b S_{1}(m)=S_{1}(a b m) & =J_{1}(a) b m+a S_{1}(b m) \\
& =J_{1}(a) b m+a J_{1}(b) m+a b S_{1}(m)
\end{aligned}
$$

and the left faithfulness of $\mathcal{M}$ implies that $J_{1}(a b)=J_{1}(a) b+a J_{1}(b)$. Suppose that the conclusion holds for any integer less than $k$. By (2.4), we arrive at

$$
\begin{aligned}
& J_{k}(a b) m+\sum_{i=0}^{k-1} J_{i}(a b) S_{k-i}(m) \\
= & \sum_{i=0}^{k} J_{i}(a b) S_{k-i}(m) \\
= & S_{k}(a b m) \\
= & \sum_{i=0}^{k} J_{i}(a) S_{k-i}(b m) \\
= & \sum_{i=0}^{k} J_{i}(a)\left(\sum_{j=0}^{k-i} J_{j}(b) S_{k-i-j}(m)\right) \\
= & \sum_{i=0}^{k} J_{i}(a) J_{k-i}(b) m+\sum_{i=0}^{k-1}\left(\sum_{j=0}^{i} J_{j}(a) J_{i-j}(b)\right) S_{k-i}(m)
\end{aligned}
$$

$$
=\sum_{i=0}^{k} J_{i}(a) J_{k-i}(b) m+\sum_{i=0}^{k-1} J_{i}(a b) S_{k-i}(m) .
$$

By the induction hypothesis and the fact that $\mathcal{M}$ is left faithful we conclude that $\left\{J_{k}\right\}$ is a higher derivation.

It remains to show that $K_{k}$ satisfies (2). By (2.3), we have

$$
\begin{equation*}
K_{k}(a b+b a)=\sum_{i=0}^{k}\left(J_{i}(a) K_{k-i}(b)+J_{i}(b) K_{k-i}(a)\right) . \tag{2.5}
\end{equation*}
$$

Putting $b=1$ in (2.5), we get

$$
\begin{equation*}
K_{k}(a)=\sum_{i=0}^{k} J_{i}(a) K_{k-i}(1) \tag{2.6}
\end{equation*}
$$

Using the equation (2.6) for $a b$, as $J_{k}$ is a higher derivation for each $k$, we have

$$
\begin{aligned}
K_{k}(a b) & =\sum_{i=0}^{k} J_{i}(a b) K_{k-i}(1)=\sum_{i=0}^{k}\left(\sum_{j=0}^{i} J_{r}(a) J_{i-j}(b)\right) K_{k-i}(1) \\
& =\sum_{i=0}^{k} J_{i}(a)\left(\sum_{j=0}^{k-i} J_{r}(b) K_{k-i-j}(1)\right)=\sum_{i=0}^{k} J_{i}(a) K_{k-i}(b) .
\end{aligned}
$$

Thus $K_{k}$ satisfies (2) and this completes the proof.
The following example illustrates that, in contrast to the situation for triangular algebras (see [13] and Theorem 3.3 infra), a Jordan higher derivation on a trivial extension algebra may not be a higher derivation.

Example 2.3. Let $\mathcal{A}_{2}$ be the algebra of $2 \times 2$ upper triangular matrices on $\mathbb{R}$. We consider $\mathbb{R}$ as an $\mathcal{A}_{2}$-module equipped with the module operations $a m=a_{22} m$ and $m a=m a_{11}\left(a \in \mathcal{A}_{2}, m \in \mathbb{R}\right)$. Then the sequence $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ defined by $\delta_{0}=i d_{\mathcal{A}_{2} \ltimes \mathbb{R}}$ and

$$
\begin{aligned}
& \delta_{k}: \mathcal{A}_{2} \ltimes \mathbb{R} \longrightarrow \mathcal{A}_{2} \ltimes \mathbb{R} \\
& (a, m) \mapsto\left(\left(\begin{array}{cc}
0 & \frac{a_{12}}{k!} \\
0 & 0
\end{array}\right), \frac{k-1}{k!} a_{12}\right) \quad\left(a \in \mathcal{A}_{2}, m \in \mathbb{R}, k \in \mathbb{N}\right)
\end{aligned}
$$

is a Jordan higher derivation. Here

$$
J_{k}(a)=\left(\begin{array}{cc}
0 & \frac{a_{12}}{k!} \\
0 & 0
\end{array}\right), \quad T_{k}(m)=0, \quad K_{k}(a)=\frac{k-1}{k!} a_{12}, \quad S_{k}(m)=0
$$

We prove that these mappings satisfy the conditions of Proposition 2.1. We have
(a) $\left\{J_{k}\right\}$ is a Jordan higher derivation on $\mathcal{A}$, since for $k \in \mathbb{N}$ we have

$$
J_{k}\left(a^{2}\right)=\left(\begin{array}{cc}
0 & \frac{a_{11} a_{12}+a_{12} a_{22}}{k!} \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
0 & \frac{a_{12}}{k!} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right)+\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right)\left(\begin{array}{cc}
0 & \frac{a_{12}}{k!} \\
0 & 0
\end{array}\right) \\
& =J_{k}(a) a+a J_{k}(a) \\
& =\sum_{i=0}^{k} J_{i}(a) J_{k-i}(a) .
\end{aligned}
$$

(b) $K_{k}\left(a^{2}\right)=\sum_{i=0}^{k}\left(K_{i}(a) J_{k-i}(a)+J_{i}(a) K_{k-i}(a)\right)$, since

$$
K_{k}\left(a^{2}\right)=\frac{k-1}{k!}\left(a_{11} a_{12}+a_{12} a_{22}\right)
$$

and for $i=1, \ldots, k-1, K_{i}(a) J_{k-i}(a)=0=J_{i}(a) K_{k-i}(a)$. Further,

$$
\begin{aligned}
K_{k}(a) J_{0}(a) & =\frac{k-1}{k!} a_{12}\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right)=\frac{k-1}{k!} a_{12} a_{11}, \\
J_{k}(a) K_{0}(a) & =0
\end{aligned}
$$

and

$$
\begin{aligned}
& K_{0}(a) J_{k}(a)=0, \\
& J_{0}(a) K_{k}(a)=\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right) \frac{k-1}{k!} a_{12}=a_{22} \frac{k-1}{k!} a_{12} .
\end{aligned}
$$

The conditions (c), (d), (e) in Proposition 2.1 clearly hold, and so $\left\{\delta_{k}\right\}$ is a Jordan higher derivation.

Moreover, $\left\{\delta_{k}\right\}$ is not a higher derivation, since

$$
\delta_{2}\left(\left(\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), 0\right)\left(\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right), 0\right)\right)=\delta_{2}\left(\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), 0\right)=\left(\left(\begin{array}{cc}
0 & \frac{1}{2} \\
0 & 0
\end{array}\right), \frac{1}{2}\right)
$$

while,

$$
\begin{aligned}
& \delta_{2}\left(\left(\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), 0\right)\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), 0\right)\right)+2 \delta_{1}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 0\right) \delta_{1}\left(\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right), 0\right) \\
& +\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 0\right) \delta_{2}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), 0\right) \\
= & \left(\left(\begin{array}{ll}
0 & \frac{1}{2} \\
0 & 0
\end{array}\right), \frac{1}{2}\right)\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), 0\right)+2\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 0\right)(0,0) \\
& +\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 0\right)(0,0) \\
= & \left(\left(\begin{array}{ll}
0 & \frac{1}{2} \\
0 & 0
\end{array}\right), 0\right) .
\end{aligned}
$$

Nevertheless, $\delta_{1}$ is a derivation, since for every $a, b \in \mathcal{A}_{2}, m, n \in \mathbb{R}$,

$$
\delta_{1}((a, m)(b, n))=\delta_{1}(a b, a n+m b)=\left(\left(\begin{array}{cc}
0 & (a b)_{12} \\
0 & 0
\end{array}\right), 0\right)
$$

$$
=\left(\left(\begin{array}{cc}
0 & a_{11} b_{12}+a_{12} b_{22} \\
0 & 0
\end{array}\right), 0\right),
$$

and

$$
\begin{aligned}
& \delta_{1}(a, m)(b, n)+(a, m) \delta_{1}(b, n) \\
= & \left(\left(\begin{array}{cc}
0 & a_{12} \\
0 & 0
\end{array}\right), 0\right)(b, n)+(a, m)\left(\left(\begin{array}{cc}
0 & b_{12} \\
0 & 0
\end{array}\right), 0\right) \\
= & \left(\left(\begin{array}{cc}
0 & a_{12} b_{22} \\
0 & 0
\end{array}\right), 0\right)+\left(\left(\begin{array}{cc}
0 & a_{11} b_{12} \\
0 & 0
\end{array}\right), 0\right) .
\end{aligned}
$$

It should be remarked that, in the above example $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$ is not an ordinary Jordan higher derivation, since $\delta_{2} \neq \frac{1}{2} \delta_{1}$. In the next example we present an ordinary Jordan higher derivation on the same trivial extension algebra $\mathcal{A}_{2} \ltimes \mathbb{R}$ which is not a higher derivation.

Example 2.4. Let $\mathcal{A}_{2} \ltimes \mathbb{R}$ be the trivial extension algebra as given in Example 2.3. Then, a direct verification reveals that, the map $\delta: \mathcal{A}_{2} \ltimes \mathbb{R} \longrightarrow \mathcal{A}_{2} \ltimes \mathbb{R}$ defined by $\delta(a, m)=\left(0, a_{12}\right)$ is a Jordan derivation that is not a derivation. Consequently, the ordinary Jordan higher derivation $\left\{\frac{\delta^{k}}{k!}\right\}$ is not a higher derivation on $\mathcal{A}_{2} \ltimes \mathbb{R}$.

## 3. Application to trivial generalized matrix algebras and triangular algebras

Trivial generalized matrix algebras: This kind of algebras, as the natural generalization of triangular algebras, were first introduced by Sands [12], where he studied various radicals of algebras occurring in Morita contexts. Roughly speaking, a generalized matrix algebra has the following presentation

$$
\mathcal{G}(\mathcal{A}, \mathcal{M}, \mathcal{N}, \mathcal{B})=\left\{\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right): a \in \mathcal{A}, m \in \mathcal{M}, n \in \mathcal{N}, b \in \mathcal{B}\right\}
$$

where $\mathcal{A}$ and $\mathcal{B}$ are unital algebras and $\mathcal{M}, \mathcal{N}$ are $(\mathcal{A}, \mathcal{B})$-module and $(\mathcal{B}, \mathcal{A})$ module, respectively, such that at least one of $\mathcal{M}$ and $\mathcal{N}$ is distinct from zero. The algebra operations of $\mathcal{G}(\mathcal{A}, \mathcal{M}, \mathcal{N}, \mathcal{B})$ are the usual matrix-like operations, in which the symbolic products $m n=\Phi_{\mathcal{M N}}(m \otimes n) \in \mathcal{A}$ and $n m=\Psi_{\mathcal{N M}}(n \otimes$ $m) \in \mathcal{B},(m \in \mathcal{M}, n \in \mathcal{N})$, come from certain module homomorphisms $\Phi_{\mathcal{M N}}$ : $\mathcal{M} \otimes_{\mathcal{B}} \mathcal{N} \longrightarrow \mathcal{A}$ and $\Psi_{\mathcal{N} \mathcal{M}}: \mathcal{N} \otimes_{\mathcal{A}} \mathcal{M} \longrightarrow \mathcal{B}$. However, for our purpose here, we further assume that $m n=0$ and $n m=0$ for all $m \in \mathcal{M}, n \in \mathcal{N}$, that is, $\Phi_{\mathcal{M N}}$ and $\Psi_{\mathcal{N M}}$ are both zero. Such a generalized matrix algebra is called a "trivial generalized matrix algebra".

It is worth to notice that every trivial generalized matrix algebra is a trivial extension algebra. Indeed, it can be readily verified that $\mathcal{G}(\mathcal{A}, \mathcal{M}, \mathcal{N}, \mathcal{B})$ is isomorphic to the trivial extension algebra $(\mathcal{A} \oplus \mathcal{B}) \ltimes(\mathcal{M} \oplus \mathcal{N})$, where the
algebra $\mathcal{A} \oplus \mathcal{B}$ has its usual pointwise operations and $\mathcal{M} \oplus \mathcal{N}$ as an $(\mathcal{A} \oplus \mathcal{B})$ module is equipped with the module operations

$$
\begin{gathered}
(a \oplus b)(m \oplus n)=a m \oplus b n \quad \text { and } \quad(m \oplus n)(a \oplus b)=m b \oplus n a \\
(a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M}, n \in \mathcal{N}) .
\end{gathered}
$$

In the case where $\mathcal{N}=0$ we arrive at the so-called triangular algebra $\operatorname{Tri}(\mathcal{A}, \mathcal{M}$, $\mathcal{B})$, which is isomorphic to the trivial extension algebra $(\mathcal{A} \oplus \mathcal{B}) \ltimes \mathcal{M}$. It is known that every Jordan higher derivation on $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is a higher derivation [13]. In particular, every Jordan derivation on $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is a derivation [15].

In contrast to the situation for triangular algebras, as the following example demonstrates, a Jordan (higher) derivation on a trivial generalized matrix algebra need not be a (higher) derivation, in general.

Example 3.1 (See [6, Example 3.5]). Set $\mathcal{A}=\mathcal{B}=\mathbb{R}$, equipped with its usual algebra operations, $\mathcal{M}=\mathcal{N}=\mathbb{R}$ with the multiplication as $\mathbb{R}$-module operations and suppose that $m n=0=n m$ for each $m \in \mathcal{M}, n \in \mathcal{N}$. Then a direct verification reveals that the map $\delta$ on the trivial generalized matrix algebra $(\mathcal{A} \oplus \mathcal{B}) \ltimes(\mathcal{M} \oplus \mathcal{N})$ defined by

$$
(a \oplus b, m \oplus n) \mapsto(0, m+n \oplus m-n) \quad(a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M}, n \in \mathcal{N})
$$

is a Jordan derivation, but not a derivation. It follows that the ordinary Jordan higher derivation $\left\{\frac{\delta^{k}}{k!}\right\}$ is not a higher derivation on $(\mathcal{A} \oplus \mathcal{B}) \ltimes(\mathcal{M} \oplus \mathcal{N})$.

In the context of Jordan derivations, it has been shown in [6, Theorem 3.11] (see also [1, Corollary 4.2]) that, under some mild conditions, every Jordan derivation on a trivial generalized matrix algebra $(\mathcal{A} \oplus \mathcal{B}) \ltimes(\mathcal{M} \oplus \mathcal{N})$ can be expressed as the sum of a derivation and an antiderivation; and the involved antiderivation is identically zero in the case where $\mathcal{N}=0$. For instance, one can directly check that, in the setting of Example 3.1, the maps $(a \oplus b, m \oplus n) \mapsto$ $(0, m \oplus-n)$ and $(a \oplus b, m \oplus n) \mapsto(0, n \oplus m)$ are the desired derivation and antiderivation, respectively.

In [4, Theorem 2.1] it has been shown that, under some very technical conditions on a trivial extension algebra, every Jordan derivation is the sum of a derivation and an antiderivation. However, a careful look at the proposed conditions reveals that the discussed trivial extension algebra is a trivial generalized matrix algebra.

As generalizations of [6, Propositions 3.1, 3.2], one can employ Proposition 2.1 for $(\mathcal{A} \oplus \mathcal{B}) \ltimes(\mathcal{M} \oplus \mathcal{N})$, (of course through tedious computations) to give the construction of (Jordan) higher derivations of a trivial generalized matrix algebra. The obtained constructions can apply for exploring those sufficient conditions expressing a Jordan higher derivation $\left\{\delta_{k}\right\}$ on a trivial generalized matrix algebra as the sum of a higher derivation $\left\{d_{k}\right\}$ and some "suitable" sequence $\left\{d_{k}^{\prime}\right\}$ of additive mappings. It should be noticed that, in contrast to the case $k=1$, the tail sequence $\left\{d_{k}^{\prime}\right\}$ is not a higher antiderivation, (i.e., does not satisfy the equation $d_{k}^{\prime}(x y)=\sum_{i=0}^{k} d_{i}^{\prime}(y) d_{k-i}^{\prime}(x)$ for all $\left.x, y\right)$, in general.

It would be more desirable if one studies those conditions under which the tail sequence $\left\{d_{k}^{\prime}\right\}$ is identically zero. However, the existent examples support to conjecture that:

Conjecture 3.2. If every Jordan higher derivation on a trivial generalized matrix algebra $\mathcal{G}=\mathcal{G}(\mathcal{A}, \mathcal{M}, \mathcal{N}, \mathcal{B})$ is a higher derivation, then either $\mathcal{M}=0$ or $\mathcal{N}=0$; (which makes $\mathcal{G}$ into a triangular algebra).

Triangular algebras: The rest of this section is devoted to the case that $\mathcal{N}=$ 0 . In this case we arrive at the so-call triangular algebra $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$. In the following result, we apply Proposition 2.1 to give the construction of (Jordan) higher derivations on $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$. This, in particular, provides a direct proof for the main result of [13], stating that every Jordan higher derivation on a triangular algebra is a higher derivation, which was proved by a quite different method.

Theorem 3.3. Suppose that $\mathcal{A}$ and $\mathcal{B}$ are 2 -torsion free unital algebras and $\mathcal{M}$ is faithful as an $(\mathcal{A}, \mathcal{B})$-module. Then every Jordan higher derivation $\left\{\delta_{k}\right\}$ on the triangular algebra $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ can be presented in the form

$$
\begin{aligned}
& \delta_{k}\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
p_{k}(a) \quad \sum_{i=1}^{k}\left(p_{k-i}(a) m_{i}-m_{i} q_{k-i}(b)\right)+S_{k}(m) \\
0 & q_{k}(b)
\end{array}\right) \\
&(a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M}),
\end{aligned}
$$

where $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$ are higher derivations on $\mathcal{A}$ and $\mathcal{B}$, respectively; $\left\{m_{k}\right\}$ is a sequence in $\mathcal{M}$ and $\left\{S_{k}\right\}$ is a sequence of additive mappings on $\mathcal{M}$ satisfying:

$$
\begin{gathered}
S_{k}(a m)=\sum_{i=0}^{k} p_{i}(a) S_{k-i}(m) \quad \text { and } \quad S_{k}(m b)=\sum_{i=0}^{k} S_{i}(m) q_{k-i}(b) \\
(a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M}) .
\end{gathered}
$$

In particular, every Jordan higher derivation on the triangular algebra $\operatorname{Tri}(\mathcal{A}$, $\mathcal{M}, \mathcal{B})$ is a higher derivation.

Proof. We recall that the triangular algebra $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ can be identified to the trivial extension algebra $(\mathcal{A} \oplus \mathcal{B}) \ltimes \mathcal{M}$, where the algebra $(\mathcal{A} \oplus \mathcal{B})$ acts on $\mathcal{M}$ via the operations $(a \oplus b) m=a m$ and $m(a \oplus b)=m b$. Let $\left\{\delta_{k}\right\}$ be a Jordan higher derivation on $(\mathcal{A} \oplus \mathcal{B}) \ltimes \mathcal{M}$. By Proposition 2.1, we can write
$\delta_{k}(a \oplus b, m)=\left(J_{k}(a \oplus b)+T_{k}(m), K_{k}(a \oplus b)+S_{k}(m)\right), \quad((a \oplus b) \in \mathcal{A} \oplus \mathcal{B}, m \in \mathcal{M})$,
where $J_{k}: \mathcal{A} \oplus \mathcal{B} \longrightarrow \mathcal{A} \oplus \mathcal{B}, K_{k}: \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{M}, T_{k}: \mathcal{M} \rightarrow \mathcal{A} \oplus \mathcal{B}$ and $S_{k}: \mathcal{M} \rightarrow \mathcal{M}$ are additive mappings satisfying (a) to (e) of Proposition 2.1. In order to prove that $\left\{\delta_{k}\right\}$ is a higher derivation, it is enough to show that conditions (1) to (5) of Proposition 2.1 are satisfied.

Fix $a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M}$ and $k \in \mathbb{N}$. By induction on $k$ we shall prove that $J_{k}(a \oplus b)=p_{k}(a) \oplus q_{k}(b)$, where $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$ are Jordan higher derivations on $\mathcal{A}$ and $\mathcal{B}$, respectively. To this end, we write $J_{k}$ in the form $J_{k}(a \oplus b)=$
$\left(p_{k}(a)+p_{k}^{\prime}(b)\right) \oplus\left(q_{k}(b)+q_{k}^{\prime}(a)\right)$ for some additive mappings $p_{k}: \mathcal{A} \longrightarrow \mathcal{A}$, $q_{k}: \mathcal{B} \rightarrow \mathcal{B}, p_{k}^{\prime}: \mathcal{B} \rightarrow \mathcal{A}$ and $q_{k}^{\prime}: \mathcal{A} \rightarrow \mathcal{B}$. We then trivially have $p_{0}(a)=$ $a, q_{0}(b)=b, p_{0}^{\prime}(b)=0, q_{0}^{\prime}(a)=0$. Using the identity (1.2) for $J_{k}$ at $(1,0)$ we conclude that $p_{k}^{\prime}(1)=0, p_{k}(1)=0$. One more time applying (1.2) for $J_{k}$ at $a \oplus 0$, shows that $\left\{p_{k}\right\}$ is a Jordan higher derivation on $\mathcal{A}$. Using the identity (1.3) for $J_{k}((a \oplus 0)(1 \oplus 0)+(1 \oplus 0)(a \oplus 0))$ together with 2-faithfulness of $\mathcal{A}$ show that $q_{k}^{\prime}(a)=0$ for each $k$. Similarly, $\left\{q_{k}\right\}$ is a Jordan higher derivation and $p_{k}^{\prime}=0$ for each $k$.

Our next aim is to show that $T_{k}=0$. To this end, we may write $T_{k}$ : $\mathcal{M} \longrightarrow \mathcal{A} \oplus \mathcal{B}$ in the form $T_{k}(m)=t_{k}(m) \oplus t_{k}^{\prime}(m)$ for some additive mappings $t_{k}: \mathcal{M} \longrightarrow \mathcal{A}, t_{k}^{\prime}: \mathcal{M} \longrightarrow \mathcal{B}$. Using Proposition 2.1(c) for $T_{k}$ we have,

$$
\begin{aligned}
& t_{k}(m) \oplus t_{k}^{\prime}(m) \\
= & T_{k}(m)=T_{k}(m(1 \oplus 0)+(1 \oplus 0) m) \\
= & \sum_{i=0}^{k}\left(\left(t_{i}(m) \oplus t_{i}^{\prime}(m)\right)\left(p_{k-i}(1) \oplus 0\right)+\left(p_{i}(1) \oplus 0\right)\left(t_{k-i}(m) \oplus t_{k-i}^{\prime}(m)\right)\right) \\
= & 2 t_{k}(m) \oplus 0
\end{aligned}
$$

and this implies that $T_{k}(m)=0$.
For $S_{k}: \mathcal{M} \longrightarrow \mathcal{M}$ we have

$$
\begin{aligned}
S_{k}(a m) & =S_{k}(m(a \oplus 0)+(a \oplus 0) m) \\
& =\sum_{i=0}^{k}\left(S_{i}(m)\left(p_{k-i}(a) \oplus 0\right)+\left(p_{i}(a) \oplus 0\right) S_{k-i}(m)\right) \\
& =\sum_{i=0}^{k} p_{i}(a) S_{k-i}(m) .
\end{aligned}
$$

Similarly $S_{k}(m b)=\sum_{i=0}^{k} S_{i}(m) q_{k-i}(b)$. In particular, $S_{k}$ satisfies (4).
As $\mathcal{M}$ is faithful as an $\mathcal{A} \oplus \mathcal{B}$-module, similar to that in the proof of Theorem 2.2, $J_{k}(a \oplus b)=p_{k}(a) \oplus q_{k}(b)$ is a higher derivation on $\mathcal{A} \oplus \mathcal{B}$, which in turn implies that $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$ are higher derivations on $\mathcal{A}$ and $\mathcal{B}$, respectively.

Next, we can write $K_{k}: \mathcal{A} \oplus \mathcal{B} \longrightarrow \mathcal{M}$ in the form $K_{k}(a \oplus b)=f_{k}(a)+g_{k}(b)$ for some additive mappings $f_{k}: \mathcal{A} \longrightarrow \mathcal{M}$ and $g_{k}: \mathcal{B} \longrightarrow \mathcal{M}$. Applying the identity of Proposition 2.1(b) at $1 \oplus 1$, one can easily deduce that $f_{k}(1)=$ $-g_{k}(1)$. Set $m_{k}=f_{k}(1)$ for each $k \in \mathbb{N}$. By using (2.3), we see that

$$
\begin{aligned}
2 f_{k}(a)=K_{k}(2 a \oplus 0) & =K_{k}((a \oplus 0)(1 \oplus 0) \oplus(1 \oplus 0)(a \oplus 0)) \\
& =\sum_{i=0}^{k}\left(\left(p_{i}(a) \oplus 0\right) f_{k-i}(1)+\left(p_{i}(1) \oplus 0\right) f_{k-i}(a)\right) \\
& =\sum_{i=0}^{k}\left(p_{i}(a) m_{k-i}\right)+f_{k}(a) .
\end{aligned}
$$

That is $f_{k}(a)=\sum_{i=0}^{k} p_{i}(a) m_{k-i}$. Similarly $g_{k}(b)=-\sum_{i=0}^{k} m_{k-i} q_{i}(b)$. We thus have $K_{k}(a, b)=\sum_{i=0}^{k}\left(p_{i}(a) m_{k-i}-m_{k-i} q_{i}(b)\right)$. Now a direct verification, based on the fact that $\left\{p_{k}\right\},\left\{q_{k}\right\}$ are higher derivations, reveals that $K_{k}$ satisfies Proposition 2.1(2), as required. The proof is now complete.

The case $k=1$ of the characterization given in Theorem 3.3 shows that every (Jordan) derivation on the triangular algebra $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ has the presentation

$$
\delta\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
p(a) & a m_{1}-m_{1} b+S(m) \\
0 & q(b)
\end{array}\right)
$$

where $m_{1} \in \mathcal{M}$ and $p: \mathcal{A} \rightarrow \mathcal{A}, q: \mathcal{B} \rightarrow \mathcal{B}$ are derivations and $S: \mathcal{M} \rightarrow \mathcal{M}$ is an additive mapping satisfying $S(a m)=a S(m)+p(a) m$ and $S(m b)=S(m) b+$ $m q(b)$; for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $m \in \mathcal{M}$. In particular, $\delta$ is a derivation, (see [3] and also [15, Theorem 2.1]).

Furthermore, as a consequence of Theorem 3.3, one can show that the ordinary higher derivation $\left\{\frac{\delta^{k}}{k!}\right\}$ (induced by $\delta$ ) on $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is in the form

$$
\begin{aligned}
& \left(\frac{\delta^{k}}{k!}\right)\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right) \\
= & \left(\begin{array}{cc}
\left(\frac{p^{k}}{k!}\right)(a) & \sum_{i=1}^{k}\left(\left(\frac{p^{k-i}}{(k-i)!}\right)(a) m_{i}-m_{i}\left(\frac{q^{k-i}}{(k-i)!}\right)(b)\right)+\left(\frac{S^{k}}{k!}\right)(m) \\
0 & \left(\frac{q^{k}}{k!}\right)(b)
\end{array}\right),
\end{aligned}
$$

where $\left\{m_{i}\right\}$ is a sequence in $\mathcal{M}$ (see [9]).
Acknowledgment. The authors would like to thank the anonymous referee for his/her clever suggestions. This research was supported by a grant from Ferdowsi University of Mashhad (No. MP94340MIZ).

## References

[1] D. Benkovič and N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl. 437 (2012), no. 9, 2271-2284.
[2] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), no. 1, 218-228.
[3] W.-S. Cheung, Mappings on triangular algebras, Ph.D Thesis, University of Victoria, 2000.
[4] H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc. 39 (2013), no. 4, 635-645.
[5] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[6] Y. Li, L. van Wyk and F. Wei, Jordan derivations and antiderivations of generalized matrix algebras, Oper. Matrices 7 (2013), no. 2, 399-415.
[7] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. Algebra $\mathbf{3 8}$ (2010), no. 3, 981-987.
[8] F. Moafian, Higher derivations on trivial extension algebras and triangular algebras, Ph.D Thesis, Ferdowsi University of Mashhad, 2015.
[9] F. Moafian and H. R. Ebrahimi Vishki, Lie higher derivations on triangular algebras revisited, to appear in Filomat.
[10] A. H. Mokhtari, F. Moafian and H. R. Ebrahimi Vishki, Lie derivations on trivial extension algebras, arXiv:1504.05924v1 [math.RA].
[11] Y. Ohnuki, K. Takeda and K. Yamagata, Symmetric Hochschild extension algebras, Colloq. Math. 80 (1999), no. 2, 155-174.
[12] A. D. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335-345.
[13] Z. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl. 432 (2010), no. 10, 2615-2622.
[14] , Jordan higher derivations on some operator algebras, Houston J. Math. 38 (2012), no. 1, 275-293.
[15] J. H. Zhang and W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251-255.
[16] Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4131-4151.

Hamid Reza Ebrahimi Vishki
Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures (CEAAS)
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

E-mail address: vishki@um.ac.ir
Madjid Mirzavaziri
Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures (CEAAS)
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

E-mail address: mirzavaziri@um.ac.ir
Fahimeh Moafian
Department of Pure Mathematics
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

E-mail address: fa.moafian@stu-mail.um.ac.ir


[^0]:    Received July 1, 2015; Revised November 2, 2015.
    2010 Mathematics Subject Classification. Primary 16W25; Secondary 47B47, 15A78.
    Key words and phrases. higher derivation, Jordan higher derivation, trivial extension algebra, generalized matrix algebra, triangular algebra.

