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ON GENERALIZED DERIVATIONS OF BE-ALGEBRAS

Kyung Ho Kim*

Abstract. In this paper, we introduce the notion of a generalized
derivation in a BE-algebra, and consider the properties of gen-
eralized derivations. Also, we characterize the fixed set Fixd(X)
and Kerd by generalized derivations. Moreover, we prove that if
d is a generalized derivation of a BE-algebra, every filter F is a
d-invariant.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras:
BCK-algebras and BCI-algebras([3, 4]). It is known that the class of
BCK-algebras is a proper subclass of the class of BCI-algebras. In [1,
2], Q. P. Hu and X. Li introduced a wide class of abstracts: BCH-
algebras. They have shown that the class of BCI-algebras is a proper
subclass of the class of BCH-algebras. In [7], H. S. Kim and Y. H. Kim
introduced the notion of a BE-algebra as a dualization of a generation of
a BCK-algebras. In this paper, we introduce the notion of a generalized
derivation in a BE- algebra, and consider the properties of generalized
derivations. Also, we characterize the fixed set Fixd(X) and Kerd by
generalized derivations. Moreover, we prove that if d is a generalized
derivation of BE-algebra, every filter F is a d-invariant.

2. Preliminaries

In what follows, let X denote an BE-algebra unless otherwise speci-
fied.
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By a BE-algebra we mean an algebra (X; ∗, 1) of type (2, 0) with a
single binary operation “∗” that satisfies the following identities: for
any x, y, z ∈ X,

(BE1) x ∗ x = 1 for all x ∈ X,
(BE2) x ∗ 1 = 1 for all x ∈ X,
(BE3) 1 ∗ x = x for all x ∈ X,
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra (X, ∗, 1) is said to be self-distributive if x ∗ (y ∗ z) =
(x∗y)∗ (x∗z) for all x, y, z ∈ X. A non-empty subset S of a BE-algebra
X is called a subalgebra of X if x ∗ y ∈ S whenever x, y ∈ S. For any
x, y in a BE-algebra X, we define x ∨ y = (y ∗ x) ∗ x.

Let X be a BE-algebra. We define the binary operation “≤” as the
following,

x ≤ y ⇔ x ∗ y = 1

for all x, y ∈ X.

In a BE-algebra X, the following identities are true for all x, y, z ∈ X.

(p1) x ∗ (y ∗ x) = 1.
(p2) x ∗ ((x ∗ y) ∗ y)) = 1.
(p3) Let X be a self-distributive BE-algebra. If x ≤ y, then z ∗x ≤ z ∗y

and y ∗ z ≤ x ∗ z for all x, y, z ∈ X.

Let X be a BE-algebra and let F be a non-empty subset of X. Then
F is called a filter of X if

(F1) 1 ∈ F,
(F2) If x ∈ F and x ∗ y ∈ F, then y ∈ F.

Definition 2.1. A self-map d on X is called a derivation if

d(x ∗ y) = (x ∗ d(y)) ∨ (d(x) ∗ y)

for every x, y ∈ X.

Proposition 2.2. Let d be a derivation of X. Then we have

(1) d(1) = 1,
(2) d(x) = d(x) ∨ x for all x ∈ X.
(3) x ≤ d(x).
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3. Generalized derivations of BE-algebras

Definition 3.1. Let X be a BE-algebra. A map D : X → X is
called a generalized derivation if there exists a derivation d : X → X
such that

D(x ∗ y) = (x ∗D(y)) ∨ (d(x) ∗ y)
for every x, y ∈ X.

Example 3.2. Let X = {1, a, b} be a set in which “∗” is defined by

∗ 1 a b
1 1 a b
a 1 1 1
b 1 1 1

Then X is a BE-algebra. Define a map d : X → X by

d(x) =





1 if x = 1
b if x = a

a if x = b.

Then it is easy to check that d is a derivation of a BE-algebra X. Also,
define a map D : X → X by

D(x) =

{
1 if x = 1
a if x = a, b.

It is easy to verify that D is a generalized derivation of X.

Example 3.3. Let X = {1, a, b, c} be a set in which “∗” is defined
by

∗ 1 a b c
1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 1 a 1

Then X is a BE-algebra. Define a map d : X → X by

d(x) =

{
1 if x = 1, a

a if x = b, c.

Then it is easy to check that d is a derivation of X. Also, define a map
D : X → X by
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D(x) =

{
1 if x = 1, a, c

a if x = b.

It is easy to verify that D is a generalized derivation of X.

Example 3.4. Let X = {1, a, b, c} be a set in which “∗” is defined
by

∗ 1 a b c
1 1 a b c
a 1 1 b 1
b 1 c 1 c
c 1 1 b 1

Then X is a BE-algebra. Define a map d : X → X by

d(x) =

{
1 if x = 1, b

c if x = a, c.

Then it is easy to check that d is a derivation of X. Also, define a map
D : X → X by

D(x) =





1 if x = 1, b

a if x = a

c if x = c.

Then it is easy to check that D is a generalized derivation of X.

Example 3.5. Let X = {1, a, b, c} be a set in which “∗” is defined
by

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 1 1 1

Then X is a BE-algebra. Define a derivation d : X → X by

d(x) =

{
1 if x = 1, b, c

a if x = a

and define a map D : X → X by
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D(x) =





1 if x = 1, b

a if x = a

c if x = c

Then it is easy to check that D is a generalized derivation of X.

Proposition 3.6. Let d be a generalized derivation of X. Then we
have

(1) D(1) = 1,
(2) D(x) = D(x) ∨ x for all x ∈ X.

Proof. (1) Let D be a generalized derivation of X. Then we have
D(1) = D(1 ∗ 1) = (1 ∗D(1)) ∨ (d(1) ∗ 1) = D(1) ∨ (1 ∗ 1)

= D(1) ∨ 1 = (1 ∗D(1)) ∗D(1) = D(1) ∗D(1) = 1.

(2) For all x ∈ X, we have
D(x) = D(1 ∗ x) = (1 ∗D(x)) ∨ (d(1) ∗ x)

= D(x) ∨ (1 ∗ x) = D(x) ∨ x.

Proposition 3.7. Let D be a generalized derivation of X. Then the
following identities hold:

(1) x ≤ D(x) for all x ∈ X,
(2) If X is a self-distributive BE-algebra, then D(x ∗ y) = x ∗D(y) for

all x, y ∈ X.

Proof. (1) By Proposition 3.6(2)and (BE4), we have for all x ∈ X,

x ∗D(x) = x ∗ (D(x) ∨ x) = x ∗ ((x ∗D(x)) ∗D(x))

= (x ∗D(x)) ∗ (x ∗D(x)) = 1

which implies x ≤ D(x).
(2) By (1) and (p3), we have x ∗ y ≤ x ∗D(y) and d(x) ∗ y ≤ x ∗ y by

Proposition 2.2 (3). Hence we get
D(x ∗ y) = (x ∗D(y)) ∨ (d(x) ∗ y)

= ((d(x) ∗ y) ∗ (x ∗D(y))) ∗ (x ∗D(y))

= 1 ∗ (x ∗D(y)) = x ∗D(y).

Proposition 3.8. If D is a generalized derivation of X, then we have
D(D(x) ∗ x) = 1 for all x ∈ X.
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Proof. Let D be a generalized derivation of X. Then we have
D(D(x) ∗ x) = (D(x) ∗D(x)) ∨ (d(D(x))) ∗ x)

= 1 ∨ (d(D(x))) ∗ x) = 1

for all x ∈ X.

Theorem 3.9. Let D be a generalized derivation of X. Then D is
one-to-one if and only if D is the identity map on X.

Proof. Sufficiency is obvious. Suppose that D is one-to-one. For
x ∈ X, we have

D(D(x) ∗ x) = 1 = D(1)
and so D(x) ∗ x = 1, i.e., D(x) ≤ x. Since x ≤ D(x) for all x ∈ X, it
follows that D(x) = x so that D is the identity map.

Proposition 3.10. Let X be a BE-algebra. A generalized derivation
D : X → X is an identity map if it satisfies x ∗D(y) = D(x) ∗ y for all
x, y ∈ X

Proof. Let x, y ∈ X be such that x ∗D(y) = D(x) ∗ y. Now D(x) =
D(1 ∗ x) = 1 ∗ D(x) = D(1) ∗ x = 1 ∗ x = x. Thus d is an identity
map.

Proposition 3.11. Let X be a BE-algebra. Then

x ≤ Dn(Dn−1(...(D2(D1(x)))...))

for n ∈ N, where D1, D2, ..., Dn are generalized derivations of X.

Proof. For n = 1,

D1(x) = D1(1 ∗ x) = (1 ∗D1(x)) ∨ (d1(1) ∗ x)

= D1(x) ∨ (1 ∗ x) = D1(x) ∨ x = (x ∗D1(x)) ∗D1(x).

Hence we have

x ∗D1(x) = x ∗ ((x ∗D1(x)) ∗D1(x)) = (x ∗D1(x)) ∗ (x ∗D1(x)) = 1

which implies x ∗D1(x) = 1. Thus x ≤ D1(x).
Let n ∈ N and x ≤ Dn(Dn−1(...(D2(D1(x)))...)). For simplicity, let

Tn = Dn(Dn−1(...(D2(D1(x)))...)).

Then
Dn+1(Tn) = Dn+1(1 ∗ Tn) = (1 ∗Dn+1(Tn)) ∨ (dn+1(1) ∗ Tn)

= Dn+1(Tn) ∨ Tn = (Tn ∗Dn+1(Tn)) ∗Dn+1(Tn).

Hence Tn ∗ Tn+1 = 1, which implies Tn ≤ Tn+1. By assumption, x ≤
Tn ≤ Tn+1.
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Let D be a generalized derivation of X. Define a set FixD(X) by

FixD(X) := {x ∈ X | D(x) = x}
for all x ∈ X.

Proposition 3.12. Let D be a generalized derivation of X. If x ∈
FixD(X), then we have (D ◦D)(x) = x.

Proof. Let x ∈ FixD(X). Then we have

(D ◦D)(x) = D(D(x)) = D(x) = x.

This completes the proof.

Proposition 3.13. Let D be a generalized derivation of a self-distributive
BE-algebra X. If y ∈ FixD(X), then we have x ∗ y ∈ FixD(X) for all
x ∈ X.

Proof. Let y ∈ FixD(X). Then we have D(y) = y. Hence we have
D(x ∗ y)

= (x ∗D(y)) ∨ (d(x) ∗ y) = ((d(x) ∗ y) ∗ (x ∗ y)) ∗ (x ∗ y)

= (x ∗ ((d(x) ∗ y) ∗ y)) ∗ (x ∗ y) = ((x ∗ (d(x) ∗ y)) ∗ (x ∗ y)) ∗ (x ∗ y)

= ((x ∗ d(x)) ∗ (x ∗ y)) ∗ (x ∗ y)) ∗ (x ∗ y) = ((1 ∗ (x ∗ y)) ∗ (x ∗ y)) ∗ (x ∗ y)

= ((x ∗ y) ∗ (x ∗ y)) ∗ (x ∗ y) = 1 ∗ (x ∗ y) = x ∗ y.

This completes the proof.

Theorem 3.14. Let X be a BE-algebra and let D1, D2 be two isotone
generalized derivations on X. If D(x) ∈ FixD(X), then D1 = D2 if and
only if FixD1(X) = FixD2(X).

Proof. Let D1 = D2. Then FixD1(X) = FixD2(X). Conversely, let
FixD1(X) = FixD2(X) and D(x) ∈ FixD(X) for x ∈ X. Then D1(x) ∈
FixD1(X) = FixD2(X), and so D2(D1(x)) = D1(x). Also, D2(x) ∈
FixD2(X) = FixD1(X), and so D1(D2(x)) = D2(x). Since x ≤ D1(x),
we have D2(x) ≤ D2(D1(x)), and so D2(x) = D1(D2(x)) ≤ D2(D1(x)).
Symmetrically, we have D2(D1(x)) ≤ D1(D2(x)). Hence D1D2 = D2D1.
It follows that D2(x) = D1(D2(x)) = D2(D1(x)) = D1(x).

Let D be a generalized derivation of X. Define a KerD by

KerD = {x | D(x) = 1}
for all x ∈ X.

Proposition 3.15. Let D be a generalized derivation of X. Then
KerD is a subalgebra of X.
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Proof. Clearly, 1 ∈ KerD, and so KerD is nonempty. Let x, y ∈
KerD. Then D(x) = 1 and D(y) = 1. Hence we have

D(x∗y) = (x∗D(y))∨(d(x)∗y) = (x∗1)∨(d(x)∗y) = 1∨(d(x)∗y) = 1,

and so x ∗ y ∈ KerD. Thus KerD is a subalgebra of X.

A BE-algebra X is said to be commutative if for all x, y ∈ X,

(y ∗ x) ∗ x = (x ∗ y) ∗ y.

Proposition 3.16. Let X be a commutative BE-algebra and let D
be a generalized derivation. If x ∈ KerD and x ≤ y, then we have
y ∈ KerD.

Proof. Let x ∈ KerD and x ≤ y. Then D(x) = 1 and x ∗ y = 1.

D(y) = D(1 ∗ y) = D((x ∗ y) ∗ y)

= ((y ∗ x) ∗D(x)) ∨ (d(y ∗ x) ∗ x)

= ((y ∗ x) ∗ 1) ∨ (d(y ∗ x) ∗ x)

= 1 ∨ (d(y ∗ x) ∗ x) = 1,

and so y ∈ KerD. This completes the proof.

Theorem 3.17. Let D be a generalized idempotent derivation of a
self-distributive BE-algebra X. If D is isotone, then KerD is a filter of
X.

Proof. Clearly, 1 ∈ KerD. Let x ∈ KerD and x ∗ y ∈ KerD. Then
we have D(x) = D(x ∗ y) = 1, and so 1 = D(x ∗ y) = x ∗ D(y) by
Proposition 3.7 (2). Hence x ≤ D(y). Since D is isotone, we get 1 =
D(x) ≤ D(D(y)) = D(y), which implies D(y) = 1. That is, y ∈ KerD.
This completes the proof.

Proposition 3.18. Let D be a generalized derivation of X and x, y ∈
KerD. Then we have x ∨ y ∈ KerD.

Proof. Let D be a generalized derivation of X and x, y ∈ KerD.
Then D(x) = D(y) = 1. Hence we have

D(x ∗ y) = (x ∗D(y)) ∨ (D(x) ∗ y)

= (x ∗ 1) ∨ (1 ∗ y) = 1 ∨ y = 1.

Proposition 3.19. Let D be a generalized derivation of X and y ∈
KerD. Then we have x ∗ y ∈ KerD for all x ∈ X.
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Proof. Let D be a generalized derivation of X and y ∈ KerD. Then
D(y) = 1. Hence we have for all x ∈ X,

D(x ∗ y) = (x ∗D(y)) ∨ (d(x) ∗ y)

= (x ∗ 1) ∨ (d(x) ∗ y) = 1 ∨ d(x) ∗ y) = 1.

Proposition 3.20. Let D be a generalized derivation of X. If D is
one-to-one, then KerD = 1.

Proof. Suppose that D is one-to-one and x ∈ Ker(D). Then D(x) =
1 = D(1), and thus x = 1, i.e., KerD = {1}.

Definition 3.21. Let X be a BE-algebra. A self-map D is isotone
if x ≤ y implies D(x) ≤ D(y).

Proposition 3.22. Let D be a generalized derivation of X. If D is
an endomorphism of X, then D is isotone.

Proof. Let x ≤ y. Then x ∗ y = 1. Hence we have

D(x) ∗D(y) = D(x ∗ y) = D(1) = 1,

which implies D(x) ≤ D(y). This completes the proof.

Proposition 3.23. Let D be an isotone generalized derivation of X.
If x ≤ y and x ∈ KerD, then y ∈ KerD.

Proof. Let x ≤ y and x ∈ KerD. Then we have D(x) = 1, and so

1 = D(x) ≤ D(y),

which implies D(y) = 1.

Definition 3.24. Let X be a BE-algebra. A nonempty subset F of
X is said to be a D-invariant if D(F ) ⊆ F where D(F ) = {D(x) | x ∈
X}.

Proposition 3.25. Let X be a BE-algebra and let D be a general-
ized derivation of X. Then every filter F is a D-invariant.

Proof. Let F be a filter of X. Let y ∈ D(F ). Then y = D(x) for some
x ∈ F. It follows from Proposition 3.7(1) that x ∗ y = x ∗D(x) = 1 ∈ F,
which implies y ∈ F. Thus D(F ) ⊆ F. Hence F is D-invariant.
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