JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 2, May 2014 http://dx.doi.org/10.14403/jcms.2014.27.2.227

ON GENERALIZED DERIVATIONS OF BE-ALGEBRAS

Kyung Ho Kim^*

ABSTRACT. In this paper, we introduce the notion of a generalized derivation in a *BE*-algebra, and consider the properties of generalized derivations. Also, we characterize the fixed set $Fix_d(X)$ and *Kerd* by generalized derivations. Moreover, we prove that if d is a generalized derivation of a BE-algebra, every filter F is a d-invariant.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2], Q. P. Hu and X. Li introduced a wide class of abstracts: BCHalgebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [7], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a dualization of a generation of a BCK-algebras. In this paper, we introduce the notion of a generalized derivation in a BE- algebra, and consider the properties of generalized derivations. Also, we characterize the fixed set $Fix_d(X)$ and Kerd by generalized derivations. Moreover, we prove that if d is a generalized derivation of BE-algebra, every filter F is a d-invariant.

2. Preliminaries

In what follows, let X denote an BE-algebra unless otherwise specified.

Received January 13, 2014; Accepted April 07, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.

Key words and phrases: BE-algebra, generalized derivation, self-distributive, filter, isotone.

By a *BE-algebra* we mean an algebra (X; *, 1) of type (2, 0) with a single binary operation "*" that satisfies the following identities: for any $x, y, z \in X$,

- (BE1) x * x = 1 for all $x \in X$,
- (BE2) x * 1 = 1 for all $x \in X$,
- (BE3) 1 * x = x for all $x \in X$,
- (BE4) x * (y * z) = y * (x * z) for all $x, y, z \in X$.

A *BE*-algebra (X, *, 1) is said to be *self-distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$. A non-empty subset *S* of a *BE*-algebra *X* is called a *subalgebra* of *X* if $x * y \in S$ whenever $x, y \in S$. For any x, y in a BE-algebra *X*, we define $x \lor y = (y * x) * x$.

Let X be a $BE\-$ algebra. We define the binary operation " \leq " as the following,

$$x \le y \Leftrightarrow x * y = 1$$

for all $x, y \in X$.

In a *BE*-algebra *X*, the following identities are true for all $x, y, z \in X$.

- (p1) x * (y * x) = 1.
- (p2) x * ((x * y) * y)) = 1.
- (p3) Let X be a self-distributive BE-algebra. If $x \le y$, then $z * x \le z * y$ and $y * z \le x * z$ for all $x, y, z \in X$.

Let X be a BE-algebra and let F be a non-empty subset of X. Then F is called a *filter* of X if

(F1) $1 \in F$, (F2) If $x \in F$ and $x * y \in F$, then $y \in F$.

DEFINITION 2.1. A self-map d on X is called a *derivation* if

$$d(x * y) = (x * d(y)) \lor (d(x) * y)$$

for every $x, y \in X$.

PROPOSITION 2.2. Let d be a derivation of X. Then we have

(1) d(1) = 1, (2) $d(x) = d(x) \lor x$ for all $x \in X$.

(3) $x \leq d(x)$.

3. Generalized derivations of *BE*-algebras

DEFINITION 3.1. Let X be a BE-algebra. A map $D: X \to X$ is called a *generalized derivation* if there exists a derivation $d: X \to X$ such that

$$D(x * y) = (x * D(y)) \lor (d(x) * y)$$

for every $x, y \in X$.

EXAMPLE 3.2. Let $X = \{1, a, b\}$ be a set in which "*" is defined by

Then X is a BE-algebra. Define a map $d:X\to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1\\ b & \text{if } x = a\\ a & \text{if } x = b. \end{cases}$$

Then it is easy to check that d is a derivation of a BE-algebra X. Also, define a map $D: X \to X$ by

$$D(x) = \begin{cases} 1 & \text{if } x = 1\\ a & \text{if } x = a, b. \end{cases}$$

It is easy to verify that D is a generalized derivation of X.

EXAMPLE 3.3. Let $X = \{1, a, b, c\}$ be a set in which "*" is defined by

Then X is a *BE*-algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, a \\ a & \text{if } x = b, c. \end{cases}$$

Then it is easy to check that d is a derivation of X. Also, define a map $D:X\to X$ by

$$D(x) = \begin{cases} 1 & \text{if } x = 1, a, c \\ a & \text{if } x = b. \end{cases}$$

It is easy to verify that D is a generalized derivation of X.

EXAMPLE 3.4. Let $X = \{1, a, b, c\}$ be a set in which "*" is defined by

Then X is a BE-algebra. Define a map $d: X \to X$ by

_

$$d(x) = \begin{cases} 1 & \text{if } x = 1, b \\ c & \text{if } x = a, c. \end{cases}$$

Then it is easy to check that d is a derivation of X. Also, define a map $D:X\to X$ by

$$D(x) = \begin{cases} 1 & \text{if } x = 1, b \\ a & \text{if } x = a \\ c & \text{if } x = c. \end{cases}$$

Then it is easy to check that D is a generalized derivation of X.

EXAMPLE 3.5. Let $X = \{1, a, b, c\}$ be a set in which "*" is defined by

Then X is a BE-algebra. Define a derivation $d: X \to X$ by

$$d(x) = \begin{cases} 1 & \text{if } x = 1, b, c \\ a & \text{if } x = a \end{cases}$$

and define a map $D: X \to X$ by

$$D(x) = \begin{cases} 1 & \text{if } x = 1, b \\ a & \text{if } x = a \\ c & \text{if } x = c \end{cases}$$

Then it is easy to check that D is a generalized derivation of X.

PROPOSITION 3.6. Let d be a generalized derivation of X. Then we have

(1)
$$D(1) = 1$$
,
(2) $D(x) = D(x) \lor x$ for all $x \in X$.
Proof. (1) Let D be a generalized derivation of X . Then we have
 $D(1) = D(1 * 1) = (1 * D(1)) \lor (d(1) * 1) = D(1) \lor (1 * 1)$
 $= D(1) \lor 1 = (1 * D(1)) * D(1) = D(1) * D(1) = 1.$

(2) For all $x \in X$, we have

$$D(x) = D(1 * x) = (1 * D(x)) \lor (d(1) * x)$$

= $D(x) \lor (1 * x) = D(x) \lor x.$

PROPOSITION 3.7. Let D be a generalized derivation of X. Then the following identities hold:

- (1) $x \leq D(x)$ for all $x \in X$,
- (2) If X is a self-distributive BE-algebra, then D(x * y) = x * D(y) for all $x, y \in X$.

Proof. (1) By Proposition 3.6(2) and (BE4), we have for all $x \in X$, $x * D(x) = x * (D(x) \lor x) = x * ((x * D(x)) * D(x))$

$$= (x * D(x)) * (x * D(x)) = 1$$

which implies $x \leq D(x)$.

(2) By (1) and (p3), we have $x*y \le x*D(y)$ and $d(x)*y \le x*y$ by Proposition 2.2 (3). Hence we get

$$D(x * y) = (x * D(y)) \lor (d(x) * y)$$

= ((d(x) * y) * (x * D(y))) * (x * D(y))
= 1 * (x * D(y)) = x * D(y).

PROPOSITION 3.8. If D is a generalized derivation of X, then we have D(D(x) * x) = 1 for all $x \in X$.

Proof. Let D be a generalized derivation of X. Then we have

$$D(x) * x) = (D(x) * D(x)) \lor (d(D(x))) * x)$$

= 1 \lapha (d(D(x))) * x) = 1

for all $x \in X$.

D(

THEOREM 3.9. Let D be a generalized derivation of X. Then D is one-to-one if and only if D is the identity map on X.

Proof. Sufficiency is obvious. Suppose that D is one-to-one. For $x \in X$, we have

$$D(D(x) * x) = 1 = D(1)$$

and so D(x) * x = 1, i.e., $D(x) \le x$. Since $x \le D(x)$ for all $x \in X$, it follows that D(x) = x so that D is the identity map.

PROPOSITION 3.10. Let X be a BE-algebra. A generalized derivation $D: X \to X$ is an identity map if it satisfies x * D(y) = D(x) * y for all $x, y \in X$

Proof. Let $x, y \in X$ be such that x * D(y) = D(x) * y. Now D(x) = D(1 * x) = 1 * D(x) = D(1) * x = 1 * x = x. Thus d is an identity map.

PROPOSITION 3.11. Let X be a *BE*-algebra. Then

$$x \le D_n(D_{n-1}(...(D_2(D_1(x)))...)))$$

for $n \in \mathbb{N}$, where $D_1, D_2, ..., D_n$ are generalized derivations of X.

Proof. For n = 1,

$$D_1(x) = D_1(1 * x) = (1 * D_1(x)) \lor (d_1(1) * x)$$

= $D_1(x) \lor (1 * x) = D_1(x) \lor x = (x * D_1(x)) * D_1(x).$

Hence we have

$$x * D_1(x) = x * ((x * D_1(x)) * D_1(x)) = (x * D_1(x)) * (x * D_1(x)) = 1$$

which implies $x * D_1(x) = 1$. Thus $x \le D_1(x)$.

Let $n \in \mathbb{N}$ and $x \leq D_n(D_{n-1}(...(D_2(D_1(x)))...)))$. For simplicity, let $T_n = D_n(D_{n-1}(...(D_2(D_1(x)))...)).$

Then

$$D_{n+1}(T_n) = D_{n+1}(1 * T_n) = (1 * D_{n+1}(T_n)) \lor (d_{n+1}(1) * T_n)$$

= $D_{n+1}(T_n) \lor T_n = (T_n * D_{n+1}(T_n)) * D_{n+1}(T_n).$

Hence $T_n * T_{n+1} = 1$, which implies $T_n \leq T_{n+1}$. By assumption, $x \leq T_n \leq T_{n+1}$.

Let D be a generalized derivation of X. Define a set $Fix_D(X)$ by

$$Fix_D(X) := \{x \in X \mid D(x) = x\}$$

for all $x \in X$.

PROPOSITION 3.12. Let D be a generalized derivation of X. If $x \in Fix_D(X)$, then we have $(D \circ D)(x) = x$.

Proof. Let $x \in Fix_D(X)$. Then we have

$$(D \circ D)(x) = D(D(x)) = D(x) = x.$$

This completes the proof.

PROPOSITION 3.13. Let D be a generalized derivation of a self-distributive BE-algebra X. If $y \in Fix_D(X)$, then we have $x * y \in Fix_D(X)$ for all $x \in X$.

Proof. Let $y \in Fix_D(X)$. Then we have D(y) = y. Hence we have D(x * y) $= (x * D(y)) \lor (d(x) * y) = ((d(x) * y) * (x * y)) * (x * y))$ = (x * ((d(x) * y) * y)) * (x * y) = ((x * (d(x) * y)) * (x * y)) * (x * y)) = ((x * d(x)) * (x * y)) * (x * y)) * (x * y) = ((1 * (x * y)) * (x * y)) * (x * y))= ((x * y) * (x * y)) * (x * y) = 1 * (x * y) = x * y.

This completes the proof.

THEOREM 3.14. Let X be a BE-algebra and let D_1, D_2 be two isotone generalized derivations on X. If $D(x) \in Fix_D(X)$, then $D_1 = D_2$ if and only if $Fix_{D_1}(X) = Fix_{D_2}(X)$.

Proof. Let $D_1 = D_2$. Then $Fix_{D_1}(X) = Fix_{D_2}(X)$. Conversely, let $Fix_{D_1}(X) = Fix_{D_2}(X)$ and $D(x) \in Fix_D(X)$ for $x \in X$. Then $D_1(x) \in Fix_{D_1}(X) = Fix_{D_2}(X)$, and so $D_2(D_1(x)) = D_1(x)$. Also, $D_2(x) \in Fix_{D_2}(X) = Fix_{D_1}(X)$, and so $D_1(D_2(x)) = D_2(x)$. Since $x \leq D_1(x)$, we have $D_2(x) \leq D_2(D_1(x))$, and so $D_2(x) = D_1(D_2(x)) \leq D_2(D_1(x))$. Symmetrically, we have $D_2(D_1(x)) \leq D_1(D_2(x))$. Hence $D_1D_2 = D_2D_1$. It follows that $D_2(x) = D_1(D_2(x)) = D_2(D_1(x)) = D_1(x)$. □

Let D be a generalized derivation of X. Define a KerD by

$$KerD = \{x \mid D(x) = 1\}$$

for all $x \in X$.

PROPOSITION 3.15. Let D be a generalized derivation of X. Then KerD is a subalgebra of X.

233

Proof. Clearly, $1 \in KerD$, and so KerD is nonempty. Let $x, y \in KerD$. Then D(x) = 1 and D(y) = 1. Hence we have $D(x*y) = (x*D(y)) \lor (d(x)*y) = (x*1) \lor (d(x)*y) = 1 \lor (d(x)*y) = 1$, and so $x*y \in KerD$. Thus KerD is a subalgebra of X.

A *BE*-algebra X is said to be *commutative* if for all $x, y \in X$,

$$(y \ast x) \ast x = (x \ast y) \ast y$$

PROPOSITION 3.16. Let X be a commutative BE-algebra and let D be a generalized derivation. If $x \in KerD$ and $x \leq y$, then we have $y \in KerD$.

Proof. Let
$$x \in KerD$$
 and $x \le y$. Then $D(x) = 1$ and $x * y = 1$.
 $D(y) = D(1 * y) = D((x * y) * y)$
 $= ((y * x) * D(x)) \lor (d(y * x) * x)$
 $= ((y * x) * 1) \lor (d(y * x) * x)$
 $= 1 \lor (d(y * x) * x) = 1,$

and so $y \in KerD$. This completes the proof.

THEOREM 3.17. Let D be a generalized idempotent derivation of a self-distributive BE-algebra X. If D is isotone, then KerD is a filter of X.

Proof. Clearly, $1 \in KerD$. Let $x \in KerD$ and $x * y \in KerD$. Then we have D(x) = D(x * y) = 1, and so 1 = D(x * y) = x * D(y) by Proposition 3.7 (2). Hence $x \leq D(y)$. Since D is isotone, we get $1 = D(x) \leq D(D(y)) = D(y)$, which implies D(y) = 1. That is, $y \in KerD$. This completes the proof.

PROPOSITION 3.18. Let D be a generalized derivation of X and $x, y \in KerD$. Then we have $x \lor y \in KerD$.

Proof. Let D be a generalized derivation of X and $x, y \in KerD$. Then D(x) = D(y) = 1. Hence we have

$$D(x * y) = (x * D(y)) \lor (D(x) * y)$$

= (x * 1) \vee (1 * y) = 1 \vee y = 1.

PROPOSITION 3.19. Let D be a generalized derivation of X and $y \in KerD$. Then we have $x * y \in KerD$ for all $x \in X$.

Proof. Let D be a generalized derivation of X and $y \in KerD$. Then D(y) = 1. Hence we have for all $x \in X$,

$$D(x * y) = (x * D(y)) \lor (d(x) * y)$$

= (x * 1) \vee (d(x) * y) = 1 \vee d(x) * y) = 1.

PROPOSITION 3.20. Let D be a generalized derivation of X. If D is one-to-one, then KerD = 1.

Proof. Suppose that D is one-to-one and $x \in Ker(D)$. Then D(x) =1 = D(1), and thus x = 1, i.e., $KerD = \{1\}$.

DEFINITION 3.21. Let X be a *BE*-algebra. A self-map D is *isotone* if $x \leq y$ implies $D(x) \leq D(y)$.

PROPOSITION 3.22. Let D be a generalized derivation of X. If D is an endomorphism of X, then D is isotone.

Proof. Let $x \leq y$. Then x * y = 1. Hence we have

$$D(x) * D(y) = D(x * y) = D(1) = 1,$$

which implies $D(x) \leq D(y)$. This completes the proof.

PROPOSITION 3.23. Let D be an isotone generalized derivation of X. If $x \leq y$ and $x \in KerD$, then $y \in KerD$.

Proof. Let $x \leq y$ and $x \in KerD$. Then we have D(x) = 1, and so

$$1 = D(x) \le D(y),$$

which implies D(y) = 1.

DEFINITION 3.24. Let X be a BE-algebra. A nonempty subset F of X is said to be a *D*-invariant if $D(F) \subseteq F$ where $D(F) = \{D(x) \mid x \in D(F)\}$ X.

PROPOSITION 3.25. Let X be a BE-algebra and let D be a generalized derivation of X. Then every filter F is a D-invariant.

Proof. Let F be a filter of X. Let $y \in D(F)$. Then y = D(x) for some $x \in F$. It follows from Proposition 3.7(1) that $x * y = x * D(x) = 1 \in F$, which implies $y \in F$. Thus $D(F) \subseteq F$. Hence F is D-invariant.

References

- Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [2] Q. P. Hu and X. Li, On proper BCH-algebras, Math Japonicae 30 (1985), 659-661.
- [3] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math Japonicae 23 (1978), 1-20.
- [4] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [5] K. H. Kim and S. M. Lee, On derivations of BE-algebras, Honam Mathematical Journal 36 (2014), no. 1, 167-178.
- [6] K. H. Kim and S. M. Lee, On generalized f-derivations of BE-algebras, International Mathematical Forum 9 (11) (2014), 523-531.
- [7] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japo. 66 (2007), no. 1, 113-116.
- [8] S. S. Ahn and K. S. So, On ideals and uppers in BE-algebras, Sci. Math. Japo. Online e-2008, 351-357.

*

Department of Mathematics Korea National University of Transportation Chungju 380-702, Republic of Korea *E-mail*: ghkim@ut.ac.kr