ON GENERALIZED DERIVATIONS OF $B E$-ALGEBRAS

Kyung Ho Kim*

Abstract

In this paper, we introduce the notion of a generalized derivation in a $B E$-algebra, and consider the properties of generalized derivations. Also, we characterize the fixed set $F i x_{d}(X)$ and Kerd by generalized derivations. Moreover, we prove that if d is a generalized derivation of a BE-algebra, every filter F is a d-invariant.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2], Q. P. Hu and X. Li introduced a wide class of abstracts: BCHalgebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [7], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a dualization of a generation of a BCK-algebras. In this paper, we introduce the notion of a generalized derivation in a BE- algebra, and consider the properties of generalized derivations. Also, we characterize the fixed set $F i x_{d}(X)$ and Kerd by generalized derivations. Moreover, we prove that if d is a generalized derivation of BE-algebra, every filter F is a d-invariant.

2. Preliminaries

In what follows, let X denote an $B E$-algebra unless otherwise specified.

[^0]By a $B E$-algebra we mean an algebra $(X ; *, 1)$ of type $(2,0)$ with a single binary operation "*" that satisfies the following identities: for any $x, y, z \in X$,
(BE1) $x * x=1$ for all $x \in X$,
(BE2) $x * 1=1$ for all $x \in X$,
(BE3) $1 * x=x$ for all $x \in X$,
(BE4) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$.
A $B E$-algebra $(X, *, 1)$ is said to be self-distributive if $x *(y * z)=$ $(x * y) *(x * z)$ for all $x, y, z \in X$. A non-empty subset S of a $B E$-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. For any x, y in a BE-algebra X, we define $x \vee y=(y * x) * x$.

Let X be a $B E$-algebra. We define the binary operation " \leq " as the following,

$$
x \leq y \Leftrightarrow x * y=1
$$

for all $x, y \in X$.
In a $B E$-algebra X, the following identities are true for all $x, y, z \in X$.
$(\mathrm{p} 1) x *(y * x)=1$.
$(\mathrm{p} 2) x *((x * y) * y))=1$.
(p3) Let X be a self-distributive BE-algebra. If $x \leq y$, then $z * x \leq z * y$ and $y * z \leq x * z$ for all $x, y, z \in X$.

Let X be a $B E$-algebra and let F be a non-empty subset of X. Then F is called a filter of X if
(F1) $1 \in F$,
(F2) If $x \in F$ and $x * y \in F$, then $y \in F$.
Definition 2.1. A self-map d on X is called a derivation if

$$
d(x * y)=(x * d(y)) \vee(d(x) * y)
$$

for every $x, y \in X$.
Proposition 2.2. Let d be a derivation of X. Then we have
(1) $d(1)=1$,
(2) $d(x)=d(x) \vee x$ for all $x \in X$.
(3) $x \leq d(x)$.

3. Generalized derivations of $B E$-algebras

Definition 3.1. Let X be a $B E$-algebra. A map $D: X \rightarrow X$ is called a generalized derivation if there exists a derivation $d: X \rightarrow X$ such that

$$
D(x * y)=(x * D(y)) \vee(d(x) * y)
$$

for every $x, y \in X$.
Example 3.2 . Let $X=\{1, a, b\}$ be a set in which "*" is defined by

$$
\begin{array}{c|ccc}
* & 1 & a & b \\
\hline 1 & 1 & a & b \\
a & 1 & 1 & 1 \\
b & 1 & 1 & 1
\end{array}
$$

Then X is a $B E$-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1 \\ b & \text { if } x=a \\ a & \text { if } x=b\end{cases}
$$

Then it is easy to check that d is a derivation of a $B E$-algebra X. Also, define a map $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}1 & \text { if } x=1 \\ a & \text { if } x=a, b\end{cases}
$$

It is easy to verify that D is a generalized derivation of X.
Example 3.3. Let $X=\{1, a, b, c\}$ be a set in which" "*" is defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	a	a
b	1	1	1	a
c	1	1	a	1

Then X is a $B E$-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, a \\ a & \text { if } x=b, c .\end{cases}
$$

Then it is easy to check that d is a derivation of X. Also, define a map $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}1 & \text { if } x=1, a, c \\ a & \text { if } x=b\end{cases}
$$

It is easy to verify that D is a generalized derivation of X.
Example 3.4. Let $X=\{1, a, b, c\}$ be a set in which "*" is defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	1
b	1	c	1	c
c	1	1	b	1

Then X is a $B E$-algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, b \\ c & \text { if } x=a, c\end{cases}
$$

Then it is easy to check that d is a derivation of X. Also, define a map $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}1 & \text { if } x=1, b \\ a & \text { if } x=a \\ c & \text { if } x=c\end{cases}
$$

Then it is easy to check that D is a generalized derivation of X.
Example 3.5. Let $X=\{1, a, b, c\}$ be a set in which " $*$ " is defined by

$*$	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	a	1	c
c	1	1	1	1

Then X is a $B E$-algebra. Define a derivation $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}1 & \text { if } x=1, b, c \\ a & \text { if } x=a\end{cases}
$$

and define a map $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}1 & \text { if } x=1, b \\ a & \text { if } x=a \\ c & \text { if } x=c\end{cases}
$$

Then it is easy to check that D is a generalized derivation of X.
Proposition 3.6. Let d be a generalized derivation of X. Then we have
(1) $D(1)=1$,
(2) $D(x)=D(x) \vee x$ for all $x \in X$.

Proof. (1) Let D be a generalized derivation of X. Then we have

$$
\begin{aligned}
D(1) & =D(1 * 1)=(1 * D(1)) \vee(d(1) * 1)=D(1) \vee(1 * 1) \\
& =D(1) \vee 1=(1 * D(1)) * D(1)=D(1) * D(1)=1 .
\end{aligned}
$$

(2) For all $x \in X$, we have

$$
\begin{aligned}
D(x) & =D(1 * x)=(1 * D(x)) \vee(d(1) * x) \\
& =D(x) \vee(1 * x)=D(x) \vee x .
\end{aligned}
$$

Proposition 3.7. Let D be a generalized derivation of X. Then the following identities hold:
(1) $x \leq D(x)$ for all $x \in X$,
(2) If X is a self-distributive BE-algebra, then $D(x * y)=x * D(y)$ for all $x, y \in X$.

Proof. (1) By Proposition 3.6(2) and (BE4), we have for all $x \in X$,

$$
\begin{aligned}
x * D(x) & =x *(D(x) \vee x)=x *((x * D(x)) * D(x)) \\
& =(x * D(x)) *(x * D(x))=1
\end{aligned}
$$

which implies $x \leq D(x)$.
(2) By (1) and (p3), we have $x * y \leq x * D(y)$ and $d(x) * y \leq x * y$ by Proposition 2.2 (3). Hence we get

$$
\begin{aligned}
D(x * y) & =(x * D(y)) \vee(d(x) * y) \\
& =((d(x) * y) *(x * D(y))) *(x * D(y)) \\
& =1 *(x * D(y))=x * D(y) .
\end{aligned}
$$

Proposition 3.8. If D is a generalized derivation of X, then we have $D(D(x) * x)=1$ for all $x \in X$.

Proof. Let D be a generalized derivation of X. Then we have

$$
\begin{aligned}
D(D(x) * x) & =(D(x) * D(x)) \vee(d(D(x))) * x) \\
& =1 \vee(d(D(x))) * x)=1
\end{aligned}
$$

for all $x \in X$.
Theorem 3.9. Let D be a generalized derivation of X. Then D is one-to-one if and only if D is the identity map on X.

Proof. Sufficiency is obvious. Suppose that D is one-to-one. For $x \in X$, we have

$$
D(D(x) * x)=1=D(1)
$$

and so $D(x) * x=1$, i.e., $D(x) \leq x$. Since $x \leq D(x)$ for all $x \in X$, it follows that $D(x)=x$ so that D is the identity map.

Proposition 3.10. Let X be a $B E$-algebra. A generalized derivation $D: X \rightarrow X$ is an identity map if it satisfies $x * D(y)=D(x) * y$ for all $x, y \in X$

Proof. Let $x, y \in X$ be such that $x * D(y)=D(x) * y$. Now $D(x)=$ $D(1 * x)=1 * D(x)=D(1) * x=1 * x=x$. Thus d is an identity map.

Proposition 3.11. Let X be a $B E$-algebra. Then

$$
x \leq D_{n}\left(D_{n-1}\left(\ldots\left(D_{2}\left(D_{1}(x)\right)\right) \ldots\right)\right)
$$

for $n \in \mathbb{N}$, where $D_{1}, D_{2}, \ldots, D_{n}$ are generalized derivations of X.
Proof. For $n=1$,

$$
\begin{aligned}
D_{1}(x)=D_{1}(1 * x) & =\left(1 * D_{1}(x)\right) \vee\left(d_{1}(1) * x\right) \\
& =D_{1}(x) \vee(1 * x)=D_{1}(x) \vee x=\left(x * D_{1}(x)\right) * D_{1}(x)
\end{aligned}
$$

Hence we have

$$
x * D_{1}(x)=x *\left(\left(x * D_{1}(x)\right) * D_{1}(x)\right)=\left(x * D_{1}(x)\right) *\left(x * D_{1}(x)\right)=1
$$

which implies $x * D_{1}(x)=1$. Thus $x \leq D_{1}(x)$.
Let $n \in \mathbb{N}$ and $x \leq D_{n}\left(D_{n-1}\left(\ldots\left(D_{2}\left(D_{1}(x)\right)\right) \ldots\right)\right)$. For simplicity, let

$$
T_{n}=D_{n}\left(D_{n-1}\left(\ldots\left(D_{2}\left(D_{1}(x)\right)\right) \ldots\right)\right)
$$

Then

$$
\begin{aligned}
D_{n+1}\left(T_{n}\right) & =D_{n+1}\left(1 * T_{n}\right)=\left(1 * D_{n+1}\left(T_{n}\right)\right) \vee\left(d_{n+1}(1) * T_{n}\right) \\
& =D_{n+1}\left(T_{n}\right) \vee T_{n}=\left(T_{n} * D_{n+1}\left(T_{n}\right)\right) * D_{n+1}\left(T_{n}\right)
\end{aligned}
$$

Hence $T_{n} * T_{n+1}=1$, which implies $T_{n} \leq T_{n+1}$. By assumption, $x \leq$ $T_{n} \leq T_{n+1}$.

Let D be a generalized derivation of X. Define a set $\operatorname{Fix}_{D}(X)$ by

$$
\operatorname{Fix}_{D}(X):=\{x \in X \mid D(x)=x\}
$$

for all $x \in X$.
Proposition 3.12. Let D be a generalized derivation of X. If $x \in$ $\operatorname{Fix}_{D}(X)$, then we have $(D \circ D)(x)=x$.

Proof. Let $x \in \operatorname{Fix}_{D}(X)$. Then we have

$$
(D \circ D)(x)=D(D(x))=D(x)=x
$$

This completes the proof.
Proposition 3.13. Let D be a generalized derivation of a self-distributive $B E$-algebra X. If $y \in F i x_{D}(X)$, then we have $x * y \in F i x_{D}(X)$ for all $x \in X$.

Proof. Let $y \in \operatorname{Fix}_{D}(X)$. Then we have $D(y)=y$. Hence we have

$$
\begin{aligned}
& D(x * y) \\
& =(x * D(y)) \vee(d(x) * y)=((d(x) * y) *(x * y)) *(x * y) \\
& =(x *((d(x) * y) * y)) *(x * y)=((x *(d(x) * y)) *(x * y)) *(x * y) \\
& =((x * d(x)) *(x * y)) *(x * y)) *(x * y)=((1 *(x * y)) *(x * y)) *(x * y) \\
& =((x * y) *(x * y)) *(x * y)=1 *(x * y)=x * y .
\end{aligned}
$$

This completes the proof.
Theorem 3.14. Let X be a $B E$-algebra and let D_{1}, D_{2} be two isotone generalized derivations on X. If $D(x) \in \operatorname{Fix}_{D}(X)$, then $D_{1}=D_{2}$ if and only if $F i x_{D_{1}}(X)=\operatorname{Fix}_{D_{2}}(X)$.

Proof. Let $D_{1}=D_{2}$. Then Fix $_{D_{1}}(X)=\operatorname{Fix}_{D_{2}}(X)$. Conversely, let Fix $_{D_{1}}(X)=$ Fix $_{D_{2}}(X)$ and $D(x) \in$ Fix $_{D}(X)$ for $x \in X$. Then $D_{1}(x) \in$ Fix $_{D_{1}}(X)=$ Fix $_{D_{2}}(X)$, and so $D_{2}\left(D_{1}(x)\right)=D_{1}(x)$. Also, $D_{2}(x) \in$ Fix $_{D_{2}}(X)=$ Fix $_{D_{1}}(X)$, and so $D_{1}\left(D_{2}(x)\right)=D_{2}(x)$. Since $x \leq D_{1}(x)$, we have $D_{2}(x) \leq D_{2}\left(D_{1}(x)\right)$, and so $D_{2}(x)=D_{1}\left(D_{2}(x)\right) \leq D_{2}\left(D_{1}(x)\right)$. Symmetrically, we have $D_{2}\left(D_{1}(x)\right) \leq D_{1}\left(D_{2}(x)\right)$. Hence $D_{1} D_{2}=D_{2} D_{1}$. It follows that $D_{2}(x)=D_{1}\left(D_{2}(x)\right)=D_{2}\left(D_{1}(x)\right)=D_{1}(x)$.

Let D be a generalized derivation of X. Define a $\operatorname{Ker} D$ by

$$
\operatorname{Ker} D=\{x \mid D(x)=1\}
$$

for all $x \in X$.
Proposition 3.15. Let D be a generalized derivation of X. Then $\operatorname{Ker} D$ is a subalgebra of X.

Proof. Clearly, $1 \in \operatorname{KerD}$, and so $\operatorname{Ker} D$ is nonempty. Let $x, y \in$ $\operatorname{Ker} D$. Then $D(x)=1$ and $D(y)=1$. Hence we have
$D(x * y)=(x * D(y)) \vee(d(x) * y)=(x * 1) \vee(d(x) * y)=1 \vee(d(x) * y)=1$, and so $x * y \in \operatorname{Ker} D$. Thus $\operatorname{Ker} D$ is a subalgebra of X.

A $B E$-algebra X is said to be commutative if for all $x, y \in X$,

$$
(y * x) * x=(x * y) * y
$$

Proposition 3.16. Let X be a commutative BE-algebra and let D be a generalized derivation. If $x \in \operatorname{Ker} D$ and $x \leq y$, then we have $y \in \operatorname{Ker} D$.

Proof. Let $x \in \operatorname{Ker} D$ and $x \leq y$. Then $D(x)=1$ and $x * y=1$.

$$
\begin{aligned}
D(y) & =D(1 * y)=D((x * y) * y) \\
& =((y * x) * D(x)) \vee(d(y * x) * x) \\
& =((y * x) * 1) \vee(d(y * x) * x) \\
& =1 \vee(d(y * x) * x)=1,
\end{aligned}
$$

and so $y \in \operatorname{Ker} D$. This completes the proof.
Theorem 3.17. Let D be a generalized idempotent derivation of a self-distributive BE-algebra X. If D is isotone, then KerD is a filter of X.

Proof. Clearly, $1 \in \operatorname{Ker} D$. Let $x \in \operatorname{Ker} D$ and $x * y \in \operatorname{KerD}$. Then we have $D(x)=D(x * y)=1$, and so $1=D(x * y)=x * D(y)$ by Proposition 3.7 (2). Hence $x \leq D(y)$. Since D is isotone, we get $1=$ $D(x) \leq D(D(y))=D(y)$, which implies $D(y)=1$. That is, $y \in \operatorname{Ker} D$. This completes the proof.

Proposition 3.18. Let D be a generalized derivation of X and $x, y \in$ $\operatorname{Ker} D$. Then we have $x \vee y \in \operatorname{Ker} D$.

Proof. Let D be a generalized derivation of X and $x, y \in \operatorname{Ker} D$. Then $D(x)=D(y)=1$. Hence we have

$$
\begin{aligned}
D(x * y) & =(x * D(y)) \vee(D(x) * y) \\
& =(x * 1) \vee(1 * y)=1 \vee y=1
\end{aligned}
$$

Proposition 3.19. Let D be a generalized derivation of X and $y \in$ $\operatorname{Ker} D$. Then we have $x * y \in \operatorname{KerD}$ for all $x \in X$.

Proof. Let D be a generalized derivation of X and $y \in \operatorname{KerD}$. Then $D(y)=1$. Hence we have for all $x \in X$,

$$
\begin{aligned}
D(x * y) & =(x * D(y)) \vee(d(x) * y) \\
& =(x * 1) \vee(d(x) * y)=1 \vee d(x) * y)=1
\end{aligned}
$$

Proposition 3.20. Let D be a generalized derivation of X. If D is one-to-one, then $\operatorname{Ker} D=1$.

Proof. Suppose that D is one-to-one and $x \in \operatorname{Ker}(D)$. Then $D(x)=$ $1=D(1)$, and thus $x=1$, i.e., $\operatorname{Ker} D=\{1\}$.

Definition 3.21. Let X be a $B E$-algebra. A self-map D is isotone if $x \leq y$ implies $D(x) \leq D(y)$.

Proposition 3.22. Let D be a generalized derivation of X. If D is an endomorphism of X, then D is isotone.

Proof. Let $x \leq y$. Then $x * y=1$. Hence we have

$$
D(x) * D(y)=D(x * y)=D(1)=1
$$

which implies $D(x) \leq D(y)$. This completes the proof.
Proposition 3.23. Let D be an isotone generalized derivation of X. If $x \leq y$ and $x \in \operatorname{Ker} D$, then $y \in \operatorname{KerD}$.

Proof. Let $x \leq y$ and $x \in \operatorname{Ker} D$. Then we have $D(x)=1$, and so

$$
1=D(x) \leq D(y)
$$

which implies $D(y)=1$.
Definition 3.24. Let X be a $B E$-algebra. A nonempty subset F of X is said to be a D-invariant if $D(F) \subseteq F$ where $D(F)=\{D(x) \mid x \in$ $X\}$.

Proposition 3.25. Let X be a $B E$-algebra and let D be a generalized derivation of X. Then every filter F is a D-invariant.

Proof. Let F be a filter of X. Let $y \in D(F)$. Then $y=D(x)$ for some $x \in F$. It follows from Proposition 3.7(1) that $x * y=x * D(x)=1 \in F$, which implies $y \in F$. Thus $D(F) \subseteq F$. Hence F is D-invariant.

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313320.
[2] Q. P. Hu and X. Li, On proper BCH-algebras, Math Japonicae 30 (1985), 659-661.
[3] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math Japonicae 23 (1978), 1-20.
[4] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[5] K. H. Kim and S. M. Lee, On derivations of BE-algebras, Honam Mathematical Journal 36 (2014), no. 1, 167-178.
[6] K. H. Kim and S. M. Lee, On generalized f-derivations of BE-algebras, International Mathematical Forum 9 (11) (2014), 523-531.
[7] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japo. 66 (2007), no. 1, 113-116.
[8] S. S. Ahn and K. S. So, On ideals and uppers in BE-algebras, Sci. Math. Japo. Online e-2008, 351-357.
*
Department of Mathematics
Korea National University of Transportation
Chungju 380-702, Republic of Korea
E-mail: ghkim@ut.ac.kr

[^0]: Received January 13, 2014; Accepted April 07, 2014.
 2010 Mathematics Subject Classification: Primary 06F35, 03G25, 08A30.
 Key words and phrases: BE-algebra, generalized derivation, self-distributive, filter, isotone.

