• Title/Summary/Keyword: default Bayes factor

Search Result 26, Processing Time 0.024 seconds

Default Bayesian hypothesis testing for the scale parameters in nonregular Pareto distributions

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1299-1308
    • /
    • 2012
  • This article deals with the problem of testing the equality of the scale parameters in nonregular Pareto distributions.We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be de ned up to a multiplicative constant. So we propose the default Bayesia hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and a real data example are provided.

Default Bayesian hypothesis testing for the scale parameters in the half logistic distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.465-472
    • /
    • 2014
  • This article deals with the problem of testing the equality of the scale parameters in the half logistic distributions. We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative priors. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be dened up to a multiplicative constant. Thus we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian testing for the scale parameters in two parameter exponential distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.949-957
    • /
    • 2013
  • In this paper, we consider the problem of testing the equality of the scale parameters in two parameter exponential distributions. We propose Bayesian testing procedures for the equality of the scale parameters under the noninformative priors. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Thus, we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian testing on the common mean of several normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.605-616
    • /
    • 2012
  • This article deals with the problem of testing on the common mean of several normal populations. We propose Bayesian hypothesis testing procedures for the common normal mean under the noninformative prior. The noninformative prior is usually improper and yields a calibration problem that makes the Bayes factor to be defined u to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian testing for the equality of shape parameters in the inverse Weibull distributions

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1569-1579
    • /
    • 2014
  • This article deals with the problem of testing for the equality of the shape parameters in two inverse Weibull distributions. We propose Bayesian hypothesis testing procedures for the equality of the shape parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Instrinsic Priors for Testing Two Exponential Means with the Fractional Bayes Factor

  • Kim, Seong W.;Kim, Hyunsoo
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.395-405
    • /
    • 2000
  • This article addresses the Bayesian hypothesis testing for the comparison of two exponential mans. Conventional Bayes factors with improper non-informative priors are into well defined. The fractional Byes factor(FBF) of O'Hagan(1995) is used to overcome such as difficulty. we derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding FBFs. We demonstrate our results with three examples.

  • PDF

Default Bayesian testing for normal mean with known coefficient of variation

  • Kang, Sang-Gil;Kim, Dal-Ho;Le, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.297-308
    • /
    • 2010
  • This article deals with the problem of testing mean when the coefficient of variation in normal distribution is known. We propose Bayesian hypothesis testing procedures for the normal mean under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Specially, we develop intrinsic priors which give asymptotically same Bayes factor with the intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.

Objective Bayesian testing for the location parameters in the half-normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1265-1273
    • /
    • 2011
  • This article deals with the problem of testing the equality of the location parameters in the half-normal distributions. We propose Bayesian hypothesis testing procedures for the equality of the location parameters under the noninformative prior. The non-informative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to arbitrary constants. This problem can be deal with the use of the fractional Bayes factor or intrinsic Bayes factor. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

A Bayesian Test Criterion for the Multivariate Behrens-Fisher Problem

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.107-124
    • /
    • 1999
  • An approximate Bayes criterion for multivariate Behrens-Fisher problem is proposed and examined. Development of the criterion involves derivation of approximate Bayes factor using the imaginary training sample approach introduced by Speigelhalter and Smith (1982). The criterion is designed to develop a Bayesian test, so that it provides an alternative test to other tests based upon asymptotic sampling theory (such as the tests suggested by Bennett(1951), James(1954) and Yao(1965). For the derived criterion, numerical studies demonstrate routine application and give comparisons with the classical tests.

  • PDF

A Bayes Criterion for Selecting Variables in MDA (MDA에서 판별변수 선택을 위한 베이즈 기준)

  • 김혜중;유희경
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.435-449
    • /
    • 1998
  • In this article we have introduced a Bayes criterion for the variable selection in multiple discriminant analysis (MDA). The criterion is a default Bayes factor for the comparision of homo/heteroscadasticity of the multivariate normal means. The default Bayes factor is obtained from a development of the imaginary training sample method introduced by Spiegelhalter and Smith (1982). Based an the criterion, we also provided a test for additional discrimination in MDA. The advantage of the criterion is that it is not only applicable for the optimal subset selection method but for the stepwise method. More over, the criterion can be reduced to that for two-group discriminant analysis. Thus the criterion can be regarded as an unified alternative to variable selection criteria suggested by various sampling theory approaches. To illustrate the performance of the criterion, a numerical study has bean done via Monte Carlo experiment.

  • PDF