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Abstract

This article deals with the problem of testing on the common mean of several nor-
mal populations. We propose Bayesian hypothesis testing procedures for the common
normal mean under the noninformative prior. The noninformative prior is usually im-
proper and yields a calibration problem that makes the Bayes factor to be defined up
to a multiplicative constant. So we propose the default Bayesian hypothesis testing
procedures based on the fractional Bayes factor and the intrinsic Bayes factors under
the reference priors. Simulation study and an example are provided.

Keywords: Common normal mean, fractional Bayes factor, intrinsic Bayes factor, ref-
erence prior.

1. Introduction

The inference on a common mean of several normal distributions with unequal variances
has attracted the attention of many researches. This problem is quite natural in balanced
incomplete block design with uncorrelated random block effects and fixed treatments effects
(Montgomery, 1991, pp. 184-186). In this set up, the intra-block estimator and the interblock
estimator of a treatment contrast are independent normal with a common mean, but their
variances are unknown and unequal. A second example relates to meta analysis where for
examples, several clinics and social and behavioral sciences provide estimates of a common
parameter of interest, and the problem is how to combine these estimates meaningfully into
a single one.

Point estimation of the common mean has been addressed both from the classical and
decision theoretic points of view. Among others, we may refer to Graybill and Deal (1959),
Zacks (1966,1970), Khatri and Shah (1974), Cohen and Sackrowitz (1974), Brown and Cohen
(1974), Shinozaki (1978), Bhattacharya (1980), Sinha and Mouqadem (1982), Sinha (1985)
and Kubokawa (1990).
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For interval estimation of the common mean, approximate confidence intervals are found
in Meier (1953), Brown and Cohen (1974), Sinha (1985) and Eberhardt et al. (1989). Exact
intervals are proposed in Fairweather (1972), Cohen and Sackrowitz (1974) and Jordan and
Krishnamoorthy (1996). Yu et al. (1999) and Hartung et al. (2008) have these intervals and
others exact intervals compared by their lengths when the confidence coefficients are the
same. It should be noted that all the methods (except Fairweather’s) considered in Yu et
al. (1999) do not always produce nonempty confidence intervals. They required satisfying
some conditions in order to yield nonempty intervals. Krishnamoorthy and Lu (2003) and
Lin and Lee (2005) proposed a procedure based on the generalized confidence limits, but
with different pivotal quantities.

In contrast, much less attention has been paid to the hypothesis testing problem, presum-
ably due to the complicated sampling distributions of the test statistics involved. Cohen
and Sackrowitz (1989) proposed a test combining individual tests by weighting with re-
spect to their sample variances. This idea was extended by Zhou and Mathew (1993) who
proposed two tests and compared their power functions with that of Fisher’s (1932) test.
Krishnamoorthy and Lu (2003) proposed a test based on the generalized p-value approach,
and showed that the power of the generalized test is much higher than those of the other
tests considered when the population size is five or more regardless of the sample sizes. Also
Lin and Lee (2005) used the same the generalized p-value approach with a different pivot,
and showed that the proposed method is better than the existing methods in the senses of
having the highest powers by simulation study. However it is not clear how closely the size
of the generalized test of Lin and Lee (2005) follow the nominal level (Chang and Pal, 2008).
Chang and Pal (2008) proposed three tests based on the Graybill-Deal estimator as well as
the maximum likelihood estimator, and showed that the three tests exhibit good size and
power behavior by simulation study.

In Bayesian model selection or testing problem, the Bayes factor under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper
so that such priors are only defined up to arbitrary constants which affects the values of
Bayes factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi
(1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion
of the likelihood with a so-called the fraction b. These approaches have shown to be quite
useful in many statistical areas (Kang et al., 2008, 2011; Lee and Kang, 2008). An excellent
exposition of the objective Bayesian method to model selection is Berger and Pericchi (2001).

In this paper, we propose the objective Bayesian hypothesis testing procedures for the
common mean of several normal distributions based on the Bayes factors. The outline of the
remaining sections is as follows. In Section 2, we introduce the Bayesian hypothesis testing
based on the Bayes factors. In Section 3, under the reference prior, we provide the Bayesian
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hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes
factors. In Section 4, simulation study and an example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypothesesH1,H2 ,· · · ,Hq are under consideration, with the data x = (x1, x2,
· · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter
vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let pi be
the prior probability of hypothesis Hi,i = 1, 2, · · · , q . Then the posterior probability that
the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1 , (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji interpreted as the comparative support of the data for Hj versus Hi. The computa-
tion of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in Bayesian
analysis, one can use noninformative priors πNi . Common choices are the uniform prior,
Jeffreys’ prior and the reference prior. The noninformative prior πNi is typically improper.
Hence the use of noninformative prior πNi in (2.2) causes the Bji to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic Bayes
factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be so used and let x(−l) be the remainder of the
data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view (2.3), the posteriors πNi (θi|x(l)) are well defined. Now, consider the Bayes factor
Bji(l) with the remainder of the data x(−l) using πNi (θi|x(l)) as the priors:

Bji(l) =

∫
f(x(−l)|θj ,x(l))πNj (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πNi (θi|x(l))dθi

= BNji ·BNij (x(l)) (2.4)

where

BNji = BNji (x) =
mN
j (x)

mN
i (x)

and

BNij (x(l)) =
mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively.
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Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BNij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAIji = BNji ×
1

L

L∑
l=1

BNij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BNji ×ME[BNij (x(l))], (2.6)

where ME indicates the median for all the training sample Bayes factors.
Therefore we can also calculate the posterior probability of Hi using (2.1), where Bji is

replaced by BAIji and BMI
ji from (2.5) and (2.6), respectively.

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, b ,of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BFji = BNji ·
∫
Lb(x|θi)πNi (θi)dθi∫
Lb(x|θj)πNj (θj)dθj

= BNji ·
mb
i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice of
b is b = m/n, where m is the size of the minimal training sample, assuming that this number
is uniquely defined. See O’Hagan (1995, 1997) and the discussion by Berger and Mortera in
O’Hagan (1995).

3. Bayesian hypothesis testing procedures

Let Xij , i = 1, · · · , k, j = 1, · · · , ni, denote observations from N(µ, σ2
i ). Then likelihood

function is given by

f(x|µ, σ1, · · · , σk) =
(√

2π
)−n( k∏

i=1

σ−nii

)
exp

−
k∑
i=1

ni∑
j=1

(xij − µ)2

2σ2
i

 , (3.1)

where x = (x1, · · · ,xk), xi = (xi1, · · · , xini), i = 1, · · · , k and n =
∑k
i=1 ni. We are inter-

ested in testing the hypotheses H1 : µ = µ0 versus H2 : µ 6= µ0 based on the fractional
Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : µ = µ0 is

L1(σ1, · · · , σk|x) =
(√

2π
)−n( k∏

i=1

σ−nii

)
exp

{
−

k∑
i=1

1

2σ2
i

[
S2
i + ni(x̄i − µ0)2

]}
, (3.2)
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where S2
i =

∑ni
j=1(xij − x̄i)2 and x̄i =

∑ni
j=1 xij/ni, i = 1, · · · , k. And under the hypothesis

H1, the reference prior for (σ1, · · · , σk) is

πN1 (σ1, · · · , σk) ∝
k∏
i=1

σ−1i . (3.3)

Then from the likelihood (3.2) and the reference prior (3.3) , the element mb
1(x) of the FBF

under H1 is given by

mb
1(x) =

∫ ∞
0

· · ·
∫ ∞
0

Lb1(σ1, · · · , σk|x)πN1 (σ1, · · · , σk)dσ1 · · · dσk

=
(√

2π
)−bn

2−k
k∏
i=1

Γ

[
bni
2

]{
b[S2

i + ni(x̄i − µ0)2]

2

}− bni2
. (3.4)

For the hypothesis H2, the reference prior for (µ, σ1, · · · , σk) is

πN (µ, σ1, · · · , σk) ∝
k∏
i=1

σ−1i . (3.5)

The likelihood function under the hypothesis H2 is

L2(µ, σ1, · · · , σk|x) =
(√

2π
)−n( k∏

i=1

σ−nii

)
exp

{
−

k∑
i=1

1

2σ2
i

[
S2
i + ni(x̄i − µ)2

]}
. (3.6)

Thus from the likelihood (3.6) and the reference prior (3.5), the element mb
2(x) of FBF under

H2 is given as follows.

mb
2(x) =

∫ ∞
−∞

∫ ∞
0

· · ·
∫ ∞
0

Lb2(µ, σ1, · · · , σk|x)πN2 (µ, σ1, · · · , σk)dσ1 · · · dσkdµ

=
(√

2π
)−bn

2−k
k∏
i=1

Γ

[
bni
2

] ∫ ∞
−∞

k∏
i=1

{
b[S2

i + ni(x̄i − µ)2]

2

}− bni2
dµ. (3.7)

Therefore the element BN21 of FBF is given by

BN21 =
S2(x)

S1(x)
, (3.8)

where

S1(x) =

k∏
i=1

{
S2
i + ni(x̄i − µ0)2

}−ni2
and

S2(x) =

∫ ∞
−∞

k∏
i=1

{
S2
i + ni(x̄i − µ)2

}−ni2 dµ.
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And the ratio of marginal densities with fraction b is

mb
1(x)

mb
2(x)

=
S1(x; b)

S2(x; b)
, (3.9)

where

S1(x; b) =

k∏
i=1

{
S2
i + ni(x̄i − µ0)2

}− bni2
and

S2(x; b) =

∫ ∞
−∞

k∏
i=1

{
S2
i + ni(x̄i − µ)2

}− bni2 dµ.

Thus the FBF of H2 versus H1 is given by

BF21 =
S2(x)

S1(x)
· S1(x; b)

S2(x; b)
. (3.10)

Note that the calculations of the FBF of H2 versus H1 requires only one dimensional inte-
gration.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 and H2, respectively.

Let Xl = (Xli, Xlj), i, j(i < j) = 1, 2, · · · , nl be a random sample of size 2 from population
l, l = 1, 2, · · · , k. The marginal density of X1,X2, · · · ,Xk under the hypothesisH1 with prior
(3.3) is

mN
1 (x1,x2, · · · ,xk)

=

∫ ∞
0

· · ·
∫ ∞
0

f(x1,x2, · · · ,xk|σ1, · · · , σk)πN1 (σ1, · · · , σk)dσ1 · · · dσk

=
(√

2π
)−2k

2k
k∏
l=1

[
(xli − xlj)2 + (xli + xlj − 2µ0)2

]−1
,

where xl = (xli, xlj), i, j(i < j) = 1, 2, · · · , nl, l = 1, 2, · · · , k.
And the marginal density mN

2 (x1,x2, · · · ,xk) under H2 is given by

mN
2 (x1,x2, · · · ,xk)

=

∫ −∞
∞

∫ ∞
0

· · ·
∫ ∞
0

f(x1,x2, · · · ,xk|µ, σ1, · · · , σk)πN2 (µ, σ1, · · · , σk)dσ1 · · · dσkdµ

=
(√

2π
)−2k

2k
∫ ∞
−∞

k∏
l=1

[
(xli − xlj)2 + (xli + xlj − 2µ)2

]−1
dµ.
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Since the marginal densities mN
1 and mN

2 are finite, the minimal training sample is xl =
(xli, xlj), i, j(i < j) = 1, 2, · · · , nl, l = 1, 2, · · · , k. Thus we can conclude that any training
sample of size 2k is a minimal training sample.

Therefore the AIBF of H2 versus H1 is given by

BAI21 =
S2(x)

S1(x)

 1

L

n1∑
1i<1j

n2∑
2i<2j

· · ·
nk∑

ki<kj

T1(x1i, x1j , x2i, x2j , · · · , xki, xkj)
T2(x1i, x1j , x2i, x2j , · · · , xki, xkj)

 , (3.11)

where L =
∏k
i=1[ni(ni − 1)]/2,

T1(x1i, x1j , x2i, x2j , · · · , xki, xkj) =

k∏
l=1

[
(xli − xlj)2 + (xli + xlj − 2µ0)2

]−1
and

T2(x1i, x1j , x2i, x2j , · · · , xki, xkj) =

∫ ∞
−∞

k∏
l=1

[
(xli − xlj)2 + (xli + xlj − 2µ)2

]−1
dµ.

Also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x)

S1(x)
ME

[
T1(x1i, x1j , x2i, x2j , · · · , xki, xkj)
T2(x1i, x1j , x2i, x2j , · · · , xki, xkj)

]
. (3.12)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require only one
dimensional integration.

Remark 3.1 To compare the GDE1 and GDE2 tests of Chang and Pal (2008) and the
Bayes factors in Section 4, we describe the GDE1 and GDE2 tests. The GDE1 test uses
Sinha’s (1985) first order unbiased variance estimator of µ̂GDE , and the GDE2 test uses the
corrected exact unbiased variance estimator of µ̂GDE obtained Chang and Pal (2008). The
GDE1 test is

Reject H1 if ∆GDE1 = (µ̂GDE − µ0)2/V̂(1)(µ̂GDE) > χ2
1,α,

where s2i = S2
i /(ni − 1),

µ̂GDE =

k∑
i=1

(ni/s
2
i )x̄i/

k∑
i=1

(ni/s
2
i ),

V̂(1)(µ̂GDE) =

(
k∑
i=1

ni/s
2
i

)−1 [
1 + 4

k∑
i=1

(ni + 1)−1(ni/s
2
i )

×


k∑
i=1

(ni/s
2
i )− (ni/s

2
i )

2/

(
k∑
i=1

ni/s
2
i

)2

−1
 .

And the GDE2 test is

Reject H1 if ∆GDE2 = (µ̂GDE − µ0)2/V̂ (µ̂GDE) > (tl,(α/2))
2,
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where

V̂ (µ̂GDE) =

(
k∑
i=1

ni/s
2
i

)−2 k∑
i=1

(ni/s
2
i )2F1

(
1, 2; (ni + 1)/2; 1− (ni/s

2
i )/

(
k∑
i=1

ni/s
2
i

))
,

tl,(α/2) = {t[l],(α/2)}+ {(t[l]+1,(α/2) − t[l],(α/2))(l − [l])},

l ≈

(
k∑
i=1

(s2i /ni)

)2

/

(
k∑
i=1

(s2i /ni)
2/(ni − 1)

)
,

and here 2F1(a, b; c; z) is the Gaussian hypergeometric function and [l] is the largest integer
smaller than l.

4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (µ, σ1), · · · , (µ, σk) and (n1, · · · , nk). In particular,
for fixed (µ, σ1), · · · , (µ, σk), we take 1,000 independent random samples of Xi with sample
size ni from N(µ, σ2

i ), i = 1, · · · , k. In our simulation, we put µ = 0 without loss of generality.
We want to test the hypothesesH1 : µ = µ0 versusH2 : µ 6= µ0. The posterior probabilities of
H1 being true are computed assuming equal prior probabilities. Tables 4.1 and 4.2 show the
results of the averages and the standard deviations in parentheses of posterior probabilities.
For fixed σ1,σ2 and µ0, Table 4.1 shows results with k = 2, n1 = 5, 10 and n2 = 5, 10, 20.
Table 4.2 is designed under the condition that k = 3, n1 = 5, 10, n2 = 5, 10 and n3 =
5, 10, 20. In Tables 4.1 and 4.2, PF (·),PAI(·) and PMI(·) are the posterior probabilities of
the hypothesis H1 being true based on FBF, AIBF and MIBF, respectively. From Tables
4.1 and 4.2, the FBF, the AIBF and the MIBF accept the hypothesis H1 when the values
of µ0 are close to 0, whereas reject the hypothesis H1 when the values of µ0 are far from 0.
Also the FBF and the AIBF give a similar behavior for all sample sizes. However the MIBF
favors the hypothesis H1 than the FBF and the AIBF.

Example 4.1 In an example given by Snedecor (1950) the data from four experiments are
used to estimate the percentage of albumin in plasma protein of normal human subjects.
This dataset is reported in Meier (1953) and is analyzed in Jordan and Krishnamoorthy
(1996) and Krishnamoorthy and Lu (2003). The data appear in the Table 4.3.

We want to test the hypotheses H1 : µ = µ0 versus H2 : µ 6= µ0. The p-values of GDE1
and GDE2 tests (Chang and Pal, 2008), and the values of the fractional Bayes factor and
the posterior probabilities of H1 are given in Table 4.4. The AIBF and the MIBF are not
mentioned in Table 4.3 because we do not have the full original dataset available in order to
compute the the AIBF and the MIBF. The results of Table 4.4 indicate that for values of µ0

that are close to 60.5, any criteria accept the H1. However for values of µ0 between 59.8648
and 60.1479, the GDE1 and GDE2 tests accept the H1 whereas the fractional Bayes factor
reject H1. The GDE1 and GDE2 tests favor the H1 more than the fractional Bayes factor.
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Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

σ1 σ2 µ0 (n1, n2) PF (H1|x, y) PAI (H1|x, y) PMI (H1|x, y)

1.0 1.0

0.0

5,5 0.547 (0.127) 0.583 (0.177) 0.648 (0.147)
5,10 0.589 (0.139) 0.617 (0.181) 0.691 (0.149)
10,10 0.622 (0.146) 0.633 (0.189) 0.720 (0.154)
10,20 0.667 (0.141) 0.673 (0.178) 0.762 (0.139)

0.2

5,5 0.517 (0.145) 0.545 (0.192) 0.614 (0.166)
5,10 0.543 (0.174) 0.568 (0.209) 0.645 (0.188)
10,10 0.556 (0.191) 0.571 (0.222) 0.657 (0.202)
10,20 0.562 (0.214) 0.574 (0.240) 0.659 (0.223)

0.4

5,5 0.443 (0.181) 0.456 (0.221) 0.532 (0.202)
5,10 0.436 (0.217) 0.454 (0.251) 0.532 (0.242)
10,10 0.393 (0.235) 0.403 (0.258) 0.483 (0.262)
10,20 0.338 (0.251) 0.348 (0.270) 0.422 (0.284)

0.6

5,5 0.349 (0.195) 0.354 (0.229) 0.434 (0.221)
5,10 0.286 (0.215) 0.293 (0.239) 0.365 (0.248)
10,10 0.227 (0.214) 0.230 (0.234) 0.293 (0.254)
10,20 0.145 (0.186) 0.149 (0.199) 0.193 (0.226)

0.8

5,5 0.264 (0.184) 0.258 (0.205) 0.343 (0.216)
5,10 0.160 (0.169) 0.159 (0.184) 0.219 (0.207)
10,10 0.101 (0.141) 0.099 (0.148) 0.139 (0.176)
10,20 0.031 (0.071) 0.031 (0.073) 0.045 (0.096)

1.0

5,5 0.176 (0.160) 0.172 (0.176) 0.248 (0.196)
5,10 0.082 (0.121) 0.079 (0.128) 0.119 (0.151)
10,10 0.032 (0.070) 0.030 (0.072) 0.049 (0.094)
10,20 0.006 (0.027) 0.006 (0.028) 0.009 (0.037)

1.0 2.0

0.0

5,5 0.553 (0.126) 0.583 (0.174) 0.652 (0.140)
5,10 0.589 (0.150) 0.601 (0.179) 0.667 (0.156)
10,10 0.638 (0.141) 0.656 (0.178) 0.733 (0.144)
10,20 0.666 (0.152) 0.660 (0.181) 0.739 (0.152)

0.2

5,5 0.538 (0.139) 0.573 (0.179) 0.636 (0.158)
5,10 0.568 (0.166) 0.575 (0.199) 0.645 (0.175)
10,10 0.601 (0.170) 0.625 (0.199) 0.699 (0.178)
10,20 0.630 (0.185) 0.623 (0.210) 0.704 (0.186)

0.4

5,5 0.492 (0.163) 0.516 (0.204) 0.587 (0.183)
5,10 0.513 (0.192) 0.521 (0.219) 0.597 (0.200)
10,10 0.479 (0.227) 0.490 (0.252) 0.573 (0.243)
10,20 0.476 (0.248) 0.477 (0.260) 0.552 (0.259)

0.6

5,5 0.429 (0.184) 0.447 (0.218) 0.525 (0.203)
5,10 0.414 (0.220) 0.421 (0.238) 0.495 (0.234)
10,10 0.354 (0.237) 0.364 (0.259) 0.437 (0.267)
10,20 0.322 (0.246) 0.327 (0.257) 0.395 (0.273)

0.8

5,5 0.347 (0.190) 0.353 (0.216) 0.435 (0.212)
5,10 0.325 (0.216) 0.334 (0.235) 0.409 (0.238)
10,10 0.207 (0.192) 0.215 (0.211) 0.276 (0.230)
10,20 0.155 (0.190) 0.158 (0.199) 0.206 (0.230)

1.0

5,5 0.279 (0.184) 0.281 (0.206) 0.359 (0.213)
5,10 0.235 (0.202) 0.246 (0.218) 0.315 (0.235)
10,10 0.114 (0.147) 0.116 (0.159) 0.160 (0.186)
10,20 0.075 (0.125) 0.077 (0.132) 0.108 (0.159)

1.0 3.0

0.0

5,5 0.560 (0.130) 0.589 (0.173) 0.651 (0.144)
5,10 0.619 (0.137) 0.615 (0.164) 0.679 (0.138)
10,10 0.646 (0.138) 0.661 (0.174) 0.738 (0.139)
10,20 0.696 (0.137) 0.667 (0.171) 0.749 (0.133)

0.2

5,5 0.550 (0.144) 0.578 (0.187) 0.645 (0.160)
5,10 0.591 (0.164) 0.587 (0.188) 0.652 (0.166)
10,10 0.607 (0.175) 0.622 (0.208) 0.698 (0.180)
10,20 0.651 (0.178) 0.633 (0.198) 0.710 (0.174)

0.4

5,5 0.499 (0.166) 0.523 (0.203) 0.591 (0.184)
5,10 0.533 (0.190) 0.535 (0.202) 0.600 (0.187)
10,10 0.506 (0.219) 0.520 (0.241) 0.599 (0.231)
10,20 0.539 (0.232) 0.525 (0.242) 0.600 (0.233)

0.6

5,5 0.455 (0.176) 0.472 (0.210) 0.546 (0.193)
5,10 0.460 (0.213) 0.460 (0.222) 0.530 (0.210)
10,10 0.373 (0.236) 0.385 (0.257) 0.460 (0.261)
10,20 0.385 (0.254) 0.373 (0.259) 0.447 (0.268)

0.8

5,5 0.361 (0.186) 0.370 (0.210) 0.450 (0.210)
5,10 0.371 (0.220) 0.374 (0.226) 0.451 (0.229)
10,10 0.244 (0.206) 0.251 (0.223) 0.317 (0.241)
10,20 0.245 (0.225) 0.240 (0.224) 0.302 (0.246)

1.0

5,5 0.319 (0.183) 0.330 (0.207) 0.408 (0.213)
5,10 0.296 (0.216) 0.306 (0.221) 0.380 (0.233)
10,10 0.149 (0.172) 0.150 (0.179) 0.202 (0.207)
10,20 0.124 (0.163) 0.125 (0.165) 0.169 (0.194)
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Table 4.2 The averages and the standard deviations in parentheses of posterior probabilities

σ1 σ2 σ3 µ0 (n1, n2, n3) PF (H1|x, y) PAI (H1|x, y) PMI (H1|x, y)

1.0 1.0 1.0

0.0

5,5,5 0.528 (0.129) 0.574 (0.189) 0.658 (0.150)
5,10,10 0.586 (0.138) 0.625 (0.187) 0.715 (0.149)
10,10,10 0.607 (0.144) 0.636 (0.190) 0.735 (0.151)
10,10,20 0.640 (0.143) 0.659 (0.189) 0.765 (0.142)

0.2

5,5,5 0.488 (0.161) 0.528 (0.216) 0.611 (0.190)
5,10,10 0.507 (0.198) 0.544 (0.243) 0.633 (0.222)
10,10,10 0.521 (0.201) 0.551 (0.240) 0.649 (0.221)
10,10,20 0.504 (0.224) 0.522 (0.255) 0.627 (0.243)

0.4

5,5,5 0.391 (0.192) 0.416 (0.238) 0.508 (0.225)
5,10,10 0.331 (0.220) 0.352 (0.256) 0.439 (0.265)
10,10,10 0.323 (0.237) 0.336 (0.267) 0.423 (0.280)
10,10,20 0.246 (0.224) 0.256 (0.248) 0.338 (0.276)

0.6

5,5,5 0.284 (0.193) 0.290 (0.232) 0.386 (0.235)
5,10,10 0.164 (0.183) 0.172 (0.205) 0.237 (0.237)
10,10,10 0.123 (0.164) 0.124 (0.176) 0.181 (0.214)
10,10,20 0.059 (0.109) 0.062 (0.122) 0.090 (0.154)

0.8

5,5,5 0.173 (0.168) 0.168 (0.193) 0.255 (0.219)
5,10,10 0.058 (0.103) 0.058 (0.111) 0.095 (0.146)
10,10,10 0.035 (0.084) 0.038 (0.095) 0.059 (0.125)
10,10,20 0.008 (0.029) 0.009 (0.033) 0.015 (0.048)

1.0

5,5,5 0.096 (0.121) 0.086 (0.131) 0.154 (0.168)
5,10,10 0.017 (0.045) 0.015 (0.048) 0.030 (0.072)
10,10,10 0.007 (0.028) 0.007 (0.030) 0.012 (0.043)
10,10,20 0.001 (0.017) 0.001 (0.014) 0.002 (0.017)

1.0 1.0 3.0

0.0

5,5,5 0.534 (0.127) 0.575 (0.186) 0.652 (0.152)
5,10,10 0.596 (0.142) 0.627 (0.185) 0.707 (0.153)
10,10,10 0.614 (0.139) 0.645 (0.179) 0.733 (0.144)
10,10,20 0.651 (0.147) 0.649 (0.185) 0.738 (0.149)

0.2

5,5,5 0.510 (0.146) 0.548 (0.197) 0.628 (0.167)
5,10,10 0.546 (0.181) 0.565 (0.219) 0.653 (0.196)
10,10,10 0.540 (0.198) 0.567 (0.233) 0.659 (0.213)
10,10,20 0.578 (0.202) 0.576 (0.230) 0.670 (0.206)

0.4

5,5,5 0.438 (0.180) 0.469 (0.228) 0.552 (0.210)
5,10,10 0.422 (0.220) 0.443 (0.251) 0.528 (0.246)
10,10,10 0.363 (0.230) 0.384 (0.261) 0.470 (0.266)
10,10,20 0.403 (0.251) 0.406 (0.267) 0.495 (0.272)

0.6

5,5,5 0.349 (0.195) 0.363 (0.234) 0.451 (0.231)
5,10,10 0.268 (0.213) 0.280 (0.237) 0.358 (0.252)
10,10,10 0.213 (0.210) 0.221 (0.230) 0.289 (0.256)
10,10,20 0.203 (0.219) 0.211 (0.233) 0.271 (0.257)

0.8

5,5,5 0.248 (0.185) 0.249 (0.217) 0.338 (0.231)
5,10,10 0.146 (0.165) 0.150 (0.181) 0.213 (0.213)
10,10,10 0.086 (0.134) 0.088 (0.144) 0.128 (0.175)
10,10,20 0.070 (0.120) 0.072 (0.128) 0.107 (0.160)

1.0

5,5,5 0.164 (0.157) 0.159 (0.174) 0.243 (0.204)
5,10,10 0.061 (0.106) 0.062 (0.117) 0.098 (0.147)
10,10,10 0.032 (0.079) 0.033 (0.087) 0.051 (0.109)
10,10,20 0.024 (0.065) 0.024 (0.065) 0.040 (0.089)

1.0 3.0 5.0

0.0

5,5,5 0.559 (0.124) 0.601 (0.170) 0.667 (0.142)
5,10,10 0.613 (0.143) 0.614 (0.170) 0.682 (0.145)
10,10,10 0.644 (0.130) 0.677 (0.161) 0.755 (0.128)
10,10,20 0.670 (0.151) 0.662 (0.186) 0.748 (0.148)

0.2

5,5,5 0.548 (0.137) 0.589 (0.183) 0.658 (0.153)
5,10,10 0.591 (0.162) 0.595 (0.190) 0.665 (0.161)
10,10,10 0.602 (0.167) 0.632 (0.197) 0.713 (0.171)
10,10,20 0.633 (0.185) 0.628 (0.208) 0.711 (0.185)

0.4

5,5,5 0.499 (0.162) 0.533 (0.207) 0.609 (0.183)
5,10,10 0.535 (0.196) 0.542 (0.210) 0.616 (0.190)
10,10,10 0.494 (0.220) 0.518 (0.251) 0.604 (0.238)
10,10,20 0.531 (0.222) 0.533 (0.237) 0.617 (0.226)

0.6

5,5,5 0.438 (0.182) 0.466 (0.220) 0.549 (0.206)
5,10,10 0.463 (0.215) 0.477 (0.229) 0.553 (0.220)
10,10,10 0.369 (0.234) 0.393 (0.258) 0.474 (0.265)
10,10,20 0.401 (0.247) 0.405 (0.260) 0.486 (0.264)

0.8

5,5,5 0.373 (0.188) 0.393 (0.221) 0.478 (0.214)
5,10,10 0.363 (0.228) 0.374 (0.236) 0.454 (0.238)
10,10,10 0.239 (0.208) 0.255 (0.229) 0.327 (0.249)
10,10,20 0.226 (0.214) 0.232 (0.224) 0.299 (0.248)

1.0

5,5,5 0.306 (0.190) 0.323 (0.219) 0.409 (0.222)
5,10,10 0.265 (0.213) 0.284 (0.226) 0.359 (0.240)
10,10,10 0.129 (0.154) 0.138 (0.173) 0.189 (0.202)
10,10,20 0.121 (0.160) 0.126 (0.167) 0.174 (0.198)
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Table 4.3 Percentage of albumin in plasma protein

Experiment ni Mean Variance
A 12 62.3 12.986
B 15 60.3 7.840
C 7 59.5 33.433
D 16 61.5 18.513

Table 4.4 p-value, Bayes factor and posterior probability of H1 : µ = µ0

µ0 pGDE1-value pGDE2-value BF
21 PF (H1|x)

59.2 0.002 0.007 28.558 0.034
59.5 0.010 0.021 8.005 0.111

59.7643 0.033 0.050 3.033 0.248
59.8648 0.050 0.069 2.188 0.314

60.0 0.084 0.105 1.466 0.405
60.1479 0.142 0.162 1.000 0.500

60.5 0.391 0.403 .513 0.661

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the common mean of
several normal distributions under the reference priors. From our numerical results, the
developed hypothesis testing procedures give fairly reasonable answers for all parameter
configurations. However the MIBF favors the hypothesis H1 than the FBF and the AIBF.
From our simulation and example, we recommend the use of the FBF than the AIBF and
MIBF for practical application in view of its simplicity and ease of implementation.
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