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Abstract

This article deals with the problem of testing the equality of the location parameters
in the half-normal distributions. We propose Bayesian hypothesis testing procedures
for the equality of the location parameters under the noninformative prior. The non-
informative prior is usually improper which yields a calibration problem that makes
the Bayes factor to be defined up to arbitrary constants. This problem can be dealt
with the use of the fractional Bayes factor or intrinsic Bayes factor. So we propose the
default Bayesian hypothesis testing procedures based on the fractional Bayes factor
and the intrinsic Bayes factors under the reference priors. Simulation study and an
example are provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, half-normal distribution,
location parameter, reference prior.

1. Introduction

The half-normal distribution has been used as a model for truncated data from appli-
cation areas as diverse as fibre buckling (Haberle, 1991), blowfly dispersion (Dobzhansky
and Wright, 1943), sports science physiology (Pewsey, 2002, 2004) and stochastic frontier
modeling (Aigner et al., 1977; Meeusen and van den Broeck, 1977).

In spite of the usefulness of this distribution, its statistical inference has been developed
recently. Likelihood based inference for the half-normal distribution has been considered by
Pewsey (2002, 2004). Wiper et al. (2008) gave Bayesian inference for the half-normal using
conjugate prior. They show that a generalized version of the normal-gamma distribution is
conjugate to the half-normal likelihood.

Even though the comparison for two location parameters in half-normal distribution is
as important as the comparison for two means in normal distribution, but it has not been
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studied enough. Therefore, there is a necessity for developing Bayesian hypothesis testing
procedure.

Consider X and Y are independently distributed random variables according to the half-
normal distribution HN (ξ1, η1) with the location parameter ξ1 and the scale parameter η1,
and the half-normal distribution HN (ξ2, η2) with the location parameter ξ2 and the scale
parameter η2. Then the half-normal distributions of X and Y are given by

f(x|ξ1, η1) =

√
2

π

1

η1
exp

{
− 1

2η21
(x− ξ1)2

}
, x ≥ ξ1,−∞ < ξ1 <∞, η1 > 0, (1.1)

and

f(y|ξ2, η2) =

√
2

π

1

η2
exp

{
− 1

2η22
(x− ξ2)2

}
, y ≥ ξ2,−∞ < ξ2 <∞, η2 > 0, (1.2)

respectively. The present paper focuses on testing the equality of the location parameters
in the half-normal distributions.

In Bayesian model selection or testing problem, the Bayes factor under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper
so that such priors are only defined up to arbitrary constants which affects the values of
Bayes factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi
(1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion
of the likelihood with a so-called the fraction b. These approaches have shown to be quite
useful in many statistical areas (Kang et al., 2006, 2008). An excellent exposition of the
objective Bayesian method to model selection is Berger and Pericchi (2001).

In this paper, we propose the objective Bayesian hypothesis testing procedures for the
equality of the location parameters in half-normal distributions based on the Bayes factors.
The outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian
hypothesis testing based on the Bayes factors. In Section 3, under the reference prior, we
provide the Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factors. In Section 4, simulation study and an example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypothesesH1,H2 ,· · · ,Hq are under consideration, with the data x = (x1, x2,
· · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter
vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let pi be
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the prior probability of hypothesis Hi,i = 1, 2, · · · , q . Then the posterior probability that
the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1 , (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji interpreted as the comparative support of the data for Hj versus Hi. The computa-
tion of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in Bayesian
analysis, one can use noninformative priors πN

i . Common choices are the uniform prior,
Jeffreys’ prior and the reference prior. The noninformative prior πN

i is typically improper.
Hence the use of noninformative prior πN

i in (2.2) causes the Bji to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic Bayes
factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be used as training sample and let x(−l) be the
remainder of the data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view (2.3), the posteriors πN
i (θi|x(l)) are well defined. Now, consider the Bayes factor

Bji(l) with the remainder of the data x(−l) using πN
i (θi|x(l)) as the priors:

Bji(l) =

∫
f(x(−l)|θj ,x(l))πN

j (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πN

i (θi|x(l))dθi
= BN

ji ·BN
ij (x(l)) (2.4)

where

BN
ji = BN

ji (x) =
mN

j (x)

mN
i (x)

and

BN
ij (x(l)) =

mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BN

ij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAI
ji = BN

ji ×
1

L

L∑
l=1

BN
ij (x(l)), (2.5)
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where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BN

ji ×ME[BN
ij (x(l))], (2.6)

where ME indicates the median for all the training sample Bayes factors.
Therefore we can also calculate the posterior probability of Hi using (2.1), where Bji is

replaced by BAI
ji and BMI

ji from (2.5) and (2.6), respectively.
The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind

the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction,b ,of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BF
ji = BN

ji ·
∫
Lb(x|θi)πN

i (θi)dθi∫
Lb(x|θj)πN

j (θj)dθj
= BN

ji ·
mb

i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice of
b is b = m/n, where m is the size of the minimal training sample, assuming that this number
is uniquely defined. For details, see O’Hagan (1995, 1997) and the discussion by Berger and
Mortera in O’Hagan (1995).

3. Bayesian hypothesis testing procedures

Let Xi, i = 1, · · · , n1 denote observations from the half-normal distribution HN (ξ1, η1),
and Yi, i = 1, · · · , n2 denote observations from the half-normal distribution HN (ξ2, η2).
Then likelihood function is given by

f(x,y|ξ1, ξ2, η1, η2) =

(
2

π

)n1+n2
2

η−n1
1 η−n2

2 exp

{
−
∑n1

i=1(xi − ξ1)2

2η21
−
∑n2

i=1(yi − ξ2)2

2η22

}
,

(3.1)
where x = (x1, · · · , xn1

), y = (y1, · · · , yn2
), −∞ < ξ1 < ∞, −∞ < ξ2 < ∞, η1 > 0 and

η2 > 0. We are interested in testing the hypotheses H1 : ξ1 = ξ2 versus H2 : ξ1 6= ξ2 based
on the fractional Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : ξ1 = ξ2 ≡ ξ is

L1(ξ, η1, η2|x,y) =

(
2

π

)n1+n2
2

η−n1
1 η−n2

2 exp

{
−
∑n1

i=1(xi − ξ)2

2η21
−
∑n2

i=1(yi − ξ)2

2η22

}
. (3.2)

And under the hypothesis H1, the reference prior for (ξ, η1, η2) derived by Kang et al. (2010)
and is

πN
1 (ξ, η1, η2) ∝ η−11 η−12 . (3.3)
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Then from the likelihood (3.2) and the reference prior (3.3), the element mb
1(x,y) of the

FBF under H1 is given by

mb
1(x,y) =

∫ z(1)

−∞

∫ ∞
0

∫ ∞
0

Lb
1(ξ, η1, η2|x,y)πN

1 (ξ, η1, η2)dη1dη2dξ

=
1

4

(
2

π

) b(n1+n2)
2

Γ

[
bn1
2

]
Γ

[
bn2
2

]

×
∫ z

−∞

[
b(s21 + n1(x̄− ξ)2)

2

]− bn1
2
[
b(s22 + n2(ȳ − ξ)2)

2

]− bn2
2

dξ, (3.4)

where z(1) = min{x1, · · · , xn1
, y1, · · · , yn2

}, x̄ =
∑n1

i=1 xi/n1, s21 =
∑n1

i=1(xi − x̄)2, ȳ =∑n2

i=1 yi/n2 and s22 =
∑n2

i=1(yi− ȳ)2. For the hypothesis H2 : ξ1 6= ξ2, the reference prior for
(ξ1, ξ2, η1, η2) is

πN (ξ1, ξ2, η1, η2) ∝ η−11 η−12 (3.5)

and can be easily derived following Kang et al. (2010). The likelihood function under the
hypothesis H2 is

L2(ξ1, ξ2, η1, η2|x,y) =

(
2

π

)n1+n2
2

η−n1
1 η−n2

2 exp

{
−
∑n1

i=1(xi − ξ1)2

2η21
−
∑n2

i=1(yi − ξ2)2

2η22

}
.

(3.6)
Thus from the likelihood (3.6) and the reference prior (3.5), the element mb

2(x,y) of FBF
under H2 is given as follows.

mb
2(x,y) =

∫ y(1)

−∞

∫ x(1)

−∞

∫ ∞
0

∫ ∞
0

Lb
2(ξ1, ξ2, η1, η2|x,y)πN

2 (ξ1, ξ2, η1, η2)dη1dη2dξ1dξ2

=
1

4

(
2

π

) b(n1+n2)
2

Γ

[
bn1
2

]
Γ

[
bn2
2

]
(3.7)

×
∫ y(1)

−∞

∫ x(1)

−∞

[
b(s21 + n1(x̄− ξ1)2)

2

]− bn1
2
[
b(s22 + n2(ȳ − ξ2)2)

2

]− bn2
2

dξ1dξ2,

where x(1) = min{x1, · · · , xn1
} and y(1) = min{y1, · · · , yn2

}. Therefore the element BN
21 of

FBF is given by

BN
21 =

S2(x,y)

S1(x,y)
, (3.8)

where

S1(x,y) =

∫ z(1)

−∞

[
s21 + n1(x̄− ξ)2

]−n1
2
[
s22 + n2(ȳ − ξ)2

]−n2
2 dξ

and

S2(x,y) =

∫ y(1)

−∞

∫ x(1)

−∞

[
s21 + n1(x̄− ξ1)2

]−n1
2
[
s22 + n2(ȳ − ξ2)2

]−n2
2 dξ1dξ2.

And the ratio of marginal densities with fraction b is

mb
1(x,y)

mb
2(x,y)

=
S1(x,y; b)

S2(x,y; b)
, (3.9)
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where

S1(x,y; b) =

∫ z(1)

−∞

[
s21 + n1(x̄− ξ)2

]− bn1
2
[
s22 + n2(ȳ − ξ)2

]− bn2
2 dξ

and

S2(x,y; b) =

∫ y(1)

−∞

∫ x(1)

−∞

[
s21 + n1(x̄− ξ1)2

]− bn1
2
[
s22 + n2(ȳ − ξ2)2

]− bn2
2 dξ1dξ2.

Thus the FBF of H2 versus H1 is given by

BF
21 =

S2(x,y)

S1(x,y)
· S1(x,y; b)

S2(x,y; b)
. (3.10)

Note that the calculations of the FBF of H2 versus H1 requires only one dimensional inte-
gration.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN
21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So

under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 and H2, respectively. The marginal density of (Xj1 , Xj2) and (Yk1

, Yk2
) is finite for all

1 ≤ j1 < j2 ≤ n and 1 ≤ k1 < k2 ≤ m under each hypothesis. Thus we conclude that any
training sample of size 4 is a minimal training sample.

The marginal density mN
1 (xj1 , xj2 , yk1 , yk2) under H1 is given by

mN
1 (xj1 , xj2 , yk1

, yk2
)

=

∫ z(j1)

−∞

∫ ∞
0

∫ ∞
0

f(xj1 , xj2 , yk1 , yk2 |ξ, η1, η2)πN
1 (ξ,η1, η2)dη1dη2dξ

=

∫ z(j1)

−∞

[
(xj1 − xj2)2

2
+

(xj1 + xj2 − 2ξ)2

2

]−1 [
(yk1
− yk2

)2

2
+

(yk1
+ yk2

− 2ξ)2

2

]−1
dξ,

where z(j1) = min{xj1 , xj2 , yk1 , yk2}, And the marginal density mN
2 (xj1 , xj2 , yk1 , yk2) under

H2 is given by

mN
2 (xj1 , xj2 , yk1

, yk2
)

=

∫ y(k1)

−∞

∫ x(j1)

−∞

∫ ∞
0

∫ ∞
0

f(xj1 , xj2 , yk1 , yk2 |ξ1, ξ2, η1, η2)πN
2 (ξ1, ξ2, η1, η2)dη1dη2dξ1dξ2

=

∫ y(k1)

−∞

∫ x(j1)

−∞

[
(xj1 − xj2)2

2
+

(xj1 + xj2 − 2ξ1)2

2

]−1
×
[

(yk1
− yk2

)2

2
+

(yk1
+ yk2

− 2ξ2)2

2

]−1
dξ1dξ2,

where x(j1) = min{xj1 , xj2} and y(k1) = min{yk1
, yk2
}. Therefore the AIBF of H2 versus H1

is given by

BAI
21 =

S2(x,y)

S1(x,y)

 1

L

n∑
j1,j2

m∑
k1,k2

T1(xj1 , xj2 , yk1 , yk2)

T2(xj1 , xj2 , yk1
, yk2

)

 , (3.11)
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where L = [n1n2(n1 − 1)(n2 − 1)]/4,

T1(xj1 , xj2 , yk1
, yk2

) =

∫ z(j1)

−∞

[
(xj1 − xj2)2 + (xj1 + xj2 − 2ξ)2

]−1
×
[
(yk1
− yk2

)2 + (yk1
+ yk2

− 2ξ)2
]−1

dξ

and

T2(xj1 , xj2 , yk1
, yk2

) =

∫ y(k1)

−∞

∫ x(j1)

−∞

[
(xj1 − xj2)2 + (xj1 + xj2 − 2ξ1)2

]−1
×
[
(yk1 − yk2)2 + (yk1 + yk2 − 2ξ2)2

]−1
dξ1dξ2.

Also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x,y)

S1(x,y)
ME

[
T1(xj1 , xj2 , yk1 , yk2)

T2(xj1 , xj2 , yk1
, yk2

)

]
. (3.12)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require only one
dimensional integration.

4. Numerical studies

In order to assess our approaches, we evaluate the posterior probability for several con-
figurations of (ξ1, η1), (ξ2, η2) and (n1, n2). In particular, for fixed (ξ1, η1) and (ξ2, η2), we
take 500 independent random samples of Xi and Yi with sample size n1 and n2 from the
models (1.1) and (1.2), respectively. We want to test the hypotheses H1 : ξ1 = ξ2 versus
H2 : ξ1 6= ξ2. The posterior probabilities of H1 being true are computed assuming equal
prior probabilities. Table 4.1 shows the results of the averages and the standard deviations
in parentheses of posterior probabilities. In Table 4.1, PF (·),PAI(·) and PMI(·) are the
posterior probabilities of the hypothesis H1 being true based on FBF, AIBF and MIBF,
respectively. We take the fraction b of FBF as 4/n. From Table 4.1, the FBF, the AIBF
and the MIBF give fairly reasonable answers for all configurations. Also the FBF, the AIBF
and the MIBF give a similar behavior for all sample sizes. However for the large values of
η2, the AIBF and the MIBF slightly favor the hypothesis H1 than the FBF.
Example 4.1 This example is the artificial example. We take random sample of Xi with

sample size 15 from half-normal HN (1, 1), and also take random sample of Yi with sample
size 15 form half-normal HN (2, 3). The generated data sets are given by

Group 1: 1.36, 1.30, 2.85, 1.46, 1.85, 1.60, 2.31, 1.82, 2.53, 2.46, 1.46, 1.75, 1.88, 1.09, 1.02.
Group 2: 7.08, 4.41, 6.57, 2.03, 2.96, 3.02, 4.01, 4.58, 5.69, 5.60, 4.02, 2.26, 2.67, 6.21, 3.09.

For this data sets, the maximum likelihood estimates of ξ1 and η1 in group 1 are 1.02 and
0.93, and for group 2, the maximum likelihood estimates of ξ2 and η2 are 2.03 and 2.75.

We want to test the hypotheses H1 : ξ1 = ξ2 versus H2 : ξ1 6= ξ2. The values of the Bayes
factors and the posterior probabilities of H1 are given in Table 4.2. From Table 4.2, the
posterior probabilities based on various Bayes factors give the same answer, and select the
hypothesis H2. The AIBF has smaller posterior probability of H1 than any other posterior
probabilities based on the FBF and the MIBF, but the values of three Bayes factors are
almost the same.
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Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

ξ1 ξ2 (n1, n2)
PF (H1|x, y) PAI (H1|x, y) PMI (H1|x, y)

η1 = 1.0, η2 = 2.0

0.0

0.0

5,5 0.651(0.149) 0.662 (0.180) 0.672 (0.180)
5,10 0.742(0.154) 0.738 (0.171) 0.750 (0.170)
10,10 0.777(0.151) 0.788 (0.165) 0.798 (0.164)
10,20 0.827(0.148) 0.825 (0.158) 0.834 (0.155)

0.5

5,5 0.561(0.156) 0.541 (0.188) 0.553 (0.189)
5,10 0.568(0.194) 0.533 (0.218) 0.546 (0.219)
10,10 0.524(0.193) 0.509 (0.207) 0.524 (0.209)
10,20 0.330(0.206) 0.296 (0.209) 0.309 (0.212)

1.5

5,5 0.323(0.142) 0.283 (0.153) 0.294 (0.157)
5,10 0.131(0.101) 0.096 (0.090) 0.101 (0.093)
10,10 0.089(0.074) 0.080 (0.073) 0.084 (0.076)
10,20 0.004(0.006) 0.003 (0.005) 0.003 (0.005)

3.5

5,5 0.104(0.072) 0.082 (0.072) 0.084 (0.073)
5,10 0.006(0.007) 0.003 (0.005) 0.003 (0.005)
10,10 0.003(0.005) 0.003 (0.005) 0.003 (0.005)
10,20 0.000(0.000) 0.000 (0.000) 0.000 (0.000)

5.5

5,5 0.045(0.034) 0.033 (0.031) 0.034 (0.032)
5,10 0.000(0.001) 0.000 (0.000) 0.000 (0.000)
10,10 0.000(0.000) 0.000 (0.000) 0.000 (0.000)
10,20 0.000(0.000) 0.000 (0.000) 0.000 (0.000)

η1 = 1.0, η2 = 3.0

0.0

0.0

5,5 0.638(0.145) 0.647 (0.174) 0.663 (0.177)
5,10 0.732(0.161) 0.734 (0.179) 0.749 (0.178)
10,10 0.754(0.164) 0.766 (0.176) 0.779 (0.173)
10,20 0.819(0.143) 0.820 (0.154) 0.832 (0.150)

0.5

5,5 0.576(0.151) 0.569 (0.176) 0.585 (0.178)
5,10 0.601(0.187) 0.583 (0.208) 0.599 (0.210)
10,10 0.585(0.188) 0.587 (0.199) 0.604 (0.201)
10,20 0.501(0.192) 0.481 (0.199) 0.501 (0.201)

1.5

5,5 0.389(0.149) 0.372 (0.168) 0.382 (0.172)
5,10 0.235(0.146) 0.209 (0.151) 0.217 (0.156)
10,10 0.196(0.123) 0.196 (0.133) 0.206 (0.140)
10,20 0.027(0.032) 0.024 (0.030) 0.025 (0.032)

3.5

5,5 0.177(0.096) 0.164 (0.108) 0.168 (0.111)
5,10 0.024(0.025) 0.018 (0.022) 0.018 (0.022)
10,10 0.018(0.018) 0.019 (0.020) 0.019 (0.020)
10,20 0.000(0.000) 0.000 (0.000) 0.000 (0.000)

5.5

5,5 0.091(0.062) 0.082 (0.070) 0.085 (0.073)
5,10 0.003(0.004) 0.002 (0.003) 0.002 (0.003)
10,10 0.002(0.003) 0.002 (0.003) 0.002 (0.003)
10,20 0.000(0.000) 0.000 (0.000) 0.000 (0.000)

η1 = 1.0, η2 = 5.0

0.0

0.0

5,5 0.626(0.141) 0.641 (0.162) 0.661 (0.167)
5,10 0.719(0.145) 0.733 (0.161) 0.751 (0.162)
10,10 0.730(0.169) 0.752 (0.175) 0.768 (0.176)
10,20 0.819(0.147) 0.834 (0.150) 0.847 (0.147)

0.5

5,5 0.563(0.151) 0.575 (0.168) 0.592 (0.177)
5,10 0.643(0.161) 0.652 (0.175) 0.668 (0.179)
10,10 0.621(0.186) 0.643 (0.191) 0.661 (0.196)
10,20 0.614(0.196) 0.624 (0.203) 0.644 (0.205)

1.5

5,5 0.447(0.148) 0.462 (0.166) 0.473 (0.174)
5,10 0.376(0.166) 0.378 (0.182) 0.389 (0.188)
10,10 0.347(0.160) 0.376 (0.173) 0.387 (0.179)
10,20 0.132(0.092) 0.137 (0.100) 0.144 (0.105)

3.5

5,5 0.272(0.119) 0.289 (0.145) 0.297 (0.153)
5,10 0.098(0.071) 0.095 (0.078) 0.098 (0.081)
10,10 0.075(0.059) 0.090 (0.074) 0.093 (0.076)
10,20 0.002(0.003) 0.002 (0.003) 0.002 (0.003)

5.5

5,5 0.162(0.093) 0.172 (0.114) 0.177 (0.119)
5,10 0.022(0.021) 0.020 (0.022) 0.020 (0.023)
10,10 0.015(0.015) 0.019 (0.020) 0.019 (0.021)
10,20 0.000(0.000) 0.000 (0.000) 0.000 (0.000)

η1 = 1.0, η2 = 10.0

0.0

0.0

5,5 0.561(0.148) 0.602 (0.156) 0.623 (0.170)
5,10 0.669(0.161) 0.712 (0.168) 0.729 (0.175)
10,10 0.665(0.174) 0.714 (0.172) 0.730 (0.177)
10,20 0.778(0.163) 0.813 (0.159) 0.828 (0.159)

0.5

5,5 0.546(0.139) 0.588 (0.148) 0.610 (0.164)
5,10 0.632(0.160) 0.674 (0.166) 0.690 (0.171)
10,10 0.623(0.184) 0.674 (0.183) 0.691 (0.190)
10,20 0.683(0.182) 0.727 (0.179) 0.744 (0.181)

1.5

5,5 0.485(0.134) 0.535 (0.146) 0.551 (0.160)
5,10 0.496(0.161) 0.545 (0.175) 0.557 (0.181)
10,10 0.472(0.173) 0.540 (0.182) 0.551 (0.189)
10,20 0.372(0.167) 0.430 (0.184) 0.447 (0.192)

3.5

5,5 0.356(0.129) 0.410 (0.154) 0.420 (0.163)
5,10 0.257(0.128) 0.298 (0.154) 0.306 (0.159)
10,10 0.220(0.113) 0.288 (0.143) 0.298 (0.151)
10,20 0.059(0.045) 0.078 (0.062) 0.083 (0.066)

5.5

5,5 0.274(0.114) 0.328 (0.145) 0.340 (0.157)
5,10 0.120(0.075) 0.140 (0.095) 0.146 (0.099)
10,10 0.102(0.068) 0.146 (0.096) 0.152 (0.100)
10,20 0.007(0.008) 0.010 (0.012) 0.011 (0.013)
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Table 4.2 Bayes factor and posterior probabilities of H1 : ξ1 = ξ2

BF
21 PF (H1|x,y) BAI

21 PAI(H1|x,y) BMI
21 PMI(H1|x,y)

2.754 0.266 2.767 0.265 2.642 0.275

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based on
the fractional Bayes factor and the intrinsic Bayes factors for the equality of the location pa-
rameters in half-normal distributions under the reference priors. From our numerical results,
the developed hypothesis testing procedures give fairly reasonable answers for all parameter
configurations. However the AIBF and the MIBF slightly favors the hypothesis H1 than the
AIBF for the large values of η2. From our simulation and example, we recommend the use
of the FBF than the AIBF and MIBF for practical application in view of its simplicity and
ease of implementation.
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