Objective Bayesian testing for the location parameters in the half-normal distributions

Sang Gil Kang ${ }^{1}$ • Dal Ho Kim² ${ }^{2}$ Woo Dong Lee ${ }^{3}$
${ }^{1}$ Department of Computer and Data Information, Sangji University
${ }^{2}$ Department of Statistics, Kyungpook National University
${ }^{3}$ Department of Asset Management, Daegu Haany University
Received 31 October 2011, revised 16 November 2011, accepted 20 November 2011

Abstract

This article deals with the problem of testing the equality of the location parameters in the half-normal distributions. We propose Bayesian hypothesis testing procedures for the equality of the location parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to arbitrary constants. This problem can be dealt with the use of the fractional Bayes factor or intrinsic Bayes factor. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, half-normal distribution, location parameter, reference prior.

1. Introduction

The half-normal distribution has been used as a model for truncated data from application areas as diverse as fibre buckling (Haberle, 1991), blowfly dispersion (Dobzhansky and Wright, 1943), sports science physiology (Pewsey, 2002, 2004) and stochastic frontier modeling (Aigner et al., 1977; Meeusen and van den Broeck, 1977).

In spite of the usefulness of this distribution, its statistical inference has been developed recently. Likelihood based inference for the half-normal distribution has been considered by Pewsey (2002, 2004). Wiper et al. (2008) gave Bayesian inference for the half-normal using conjugate prior. They show that a generalized version of the normal-gamma distribution is conjugate to the half-normal likelihood.

Even though the comparison for two location parameters in half-normal distribution is as important as the comparison for two means in normal distribution, but it has not been

[^0]studied enough. Therefore, there is a necessity for developing Bayesian hypothesis testing procedure.

Consider X and Y are independently distributed random variables according to the halfnormal distribution $\mathcal{H} \mathcal{N}\left(\xi_{1}, \eta_{1}\right)$ with the location parameter ξ_{1} and the scale parameter η_{1}, and the half-normal distribution $\mathcal{H} \mathcal{N}\left(\xi_{2}, \eta_{2}\right)$ with the location parameter ξ_{2} and the scale parameter η_{2}. Then the half-normal distributions of X and Y are given by

$$
\begin{equation*}
f\left(x \mid \xi_{1}, \eta_{1}\right)=\sqrt{\frac{2}{\pi}} \frac{1}{\eta_{1}} \exp \left\{-\frac{1}{2 \eta_{1}^{2}}\left(x-\xi_{1}\right)^{2}\right\}, x \geq \xi_{1},-\infty<\xi_{1}<\infty, \eta_{1}>0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(y \mid \xi_{2}, \eta_{2}\right)=\sqrt{\frac{2}{\pi}} \frac{1}{\eta_{2}} \exp \left\{-\frac{1}{2 \eta_{2}^{2}}\left(x-\xi_{2}\right)^{2}\right\}, y \geq \xi_{2},-\infty<\xi_{2}<\infty, \eta_{2}>0 \tag{1.2}
\end{equation*}
$$

respectively. The present paper focuses on testing the equality of the location parameters in the half-normal distributions.

In Bayesian model selection or testing problem, the Bayes factor under proper priors or informative priors have been very successful. However, limited information and time constraints often require the use of noninformative priors. Since noninformative priors such as Jeffreys' prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper so that such priors are only defined up to arbitrary constants which affects the values of Bayes factors. Spiegelhalter and Smith (1982), O'Hagan (1995) and Berger and Pericchi (1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context of linear model comparisons to choose the arbitrary constants. But the choice of imaginary training sample depends on the models under comparison, and so there is no guarantee that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a datasplitting idea, which would eliminate the arbitrariness of improper prior. O'Hagan (1995) proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion of the likelihood with a so-called the fraction b. These approaches have shown to be quite useful in many statistical areas (Kang et al., 2006, 2008). An excellent exposition of the objective Bayesian method to model selection is Berger and Pericchi (2001).

In this paper, we propose the objective Bayesian hypothesis testing procedures for the equality of the location parameters in half-normal distributions based on the Bayes factors. The outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian hypothesis testing based on the Bayes factors. In Section 3, under the reference prior, we provide the Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors. In Section 4, simulation study and an example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypotheses $H_{1}, H_{2}, \cdots, H_{q}$ are under consideration, with the data $\mathbf{x}=\left(x_{1}, x_{2}\right.$, $\left.\cdots, x_{n}\right)$ having probability density function $f_{i}\left(\mathbf{x} \mid \theta_{i}\right)$ under hypothesis H_{i}. The parameter vector θ_{i} is unknown. Let $\pi_{i}\left(\theta_{i}\right)$ be the prior distributions of hypothesis H_{i}, and let p_{i} be
the prior probability of hypothesis $H_{i}, i=1,2, \cdots, q$. Then the posterior probability that the hypothesis H_{i} is true is

$$
\begin{equation*}
P\left(H_{i} \mid \mathbf{x}\right)=\left(\sum_{j=1}^{q} \frac{p_{j}}{p_{i}} \cdot B_{j i}\right)^{-1} \tag{2.1}
\end{equation*}
$$

where $B_{j i}$ is the Bayes factor of hypothesis H_{j} to hypothesis H_{i} defined by

$$
\begin{equation*}
B_{j i}=\frac{\int f_{j}\left(\mathbf{x} \mid \theta_{j}\right) \pi_{j}\left(\theta_{j}\right) d \theta_{j}}{\int f_{i}\left(\mathbf{x} \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) d \theta_{i}}=\frac{m_{j}(\mathbf{x})}{m_{i}(\mathbf{x})} \tag{2.2}
\end{equation*}
$$

The $B_{j i}$ interpreted as the comparative support of the data for H_{j} versus H_{i}. The computation of $B_{j i}$ needs specification of the prior distribution $\pi_{i}\left(\theta_{i}\right)$ and $\pi_{j}\left(\theta_{j}\right)$. Often in Bayesian analysis, one can use noninformative priors π_{i}^{N}. Common choices are the uniform prior, Jeffreys' prior and the reference prior. The noninformative prior π_{i}^{N} is typically improper. Hence the use of noninformative prior π_{i}^{N} in (2.2) causes the $B_{j i}$ to contain unspecified constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic Bayes factor, and O'Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample. Let $\mathbf{x}(l)$ denote the part of the data to be used as training sample and let $\mathbf{x}(-l)$ be the remainder of the data, such that

$$
\begin{equation*}
0<m_{i}^{N}(\mathbf{x}(l))<\infty, i=1, \cdots, q \tag{2.3}
\end{equation*}
$$

In view (2.3), the posteriors $\pi_{i}^{N}\left(\theta_{i} \mid \mathbf{x}(l)\right)$ are well defined. Now, consider the Bayes factor $B_{j i}(l)$ with the remainder of the data $\mathbf{x}(-l)$ using $\pi_{i}^{N}\left(\theta_{i} \mid \mathbf{x}(l)\right)$ as the priors:

$$
\begin{equation*}
B_{j i}(l)=\frac{\int f\left(\mathbf{x}(-l) \mid \theta_{j}, \mathbf{x}(l)\right) \pi_{j}^{N}\left(\theta_{j} \mid \mathbf{x}(l)\right) d \theta_{j}}{\int f\left(\mathbf{x}(-l) \mid \theta_{i}, \mathbf{x}(l)\right) \pi_{i}^{N}\left(\theta_{i} \mid \mathbf{x}(l)\right) d \theta_{i}}=B_{j i}^{N} \cdot B_{i j}^{N}(\mathbf{x}(l)) \tag{2.4}
\end{equation*}
$$

where

$$
B_{j i}^{N}=B_{j i}^{N}(\mathbf{x})=\frac{m_{j}^{N}(\mathbf{x})}{m_{i}^{N}(\mathbf{x})}
$$

and

$$
B_{i j}^{N}(\mathbf{x}(l))=\frac{m_{i}^{N}(\mathbf{x}(l))}{m_{j}^{N}(\mathbf{x}(l))}
$$

are the Bayes factors that would be obtained for the full data \mathbf{x} and training samples $\mathbf{x}(l)$, respectively.
Berger and Pericchi (1996) proposed the use of a minimal training sample to compute $B_{i j}^{N}(\mathbf{x}(l))$. Then, an average over all the possible minimal training samples contained in the sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of H_{j} to H_{i} is

$$
\begin{equation*}
B_{j i}^{A I}=B_{j i}^{N} \times \frac{1}{L} \sum_{l=1}^{L} B_{i j}^{N}(\mathbf{x}(l)), \tag{2.5}
\end{equation*}
$$

where L is the number of all possible minimal training samples. Also the median intrinsic Bayes factor (MIBF) by Berger and Pericchi (1998) of H_{j} to H_{i} is

$$
\begin{equation*}
B_{j i}^{M I}=B_{j i}^{N} \times M E\left[B_{i j}^{N}(\mathbf{x}(l))\right], \tag{2.6}
\end{equation*}
$$

where $M E$ indicates the median for all the training sample Bayes factors.
Therefore we can also calculate the posterior probability of H_{i} using (2.1), where $B_{j i}$ is replaced by $B_{j i}^{A I}$ and $B_{j i}^{M I}$ from (2.5) and (2.6), respectively.

The fractional Bayes factor (O'Hagan, 1995) is based on a similar intuition to that behind the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors into proper priors, it uses a fraction, b, of each likelihood function, $L\left(\theta_{i}\right)=f_{i}\left(\mathbf{x} \mid \theta_{i}\right)$, with the remaining $1-b$ fraction of the likelihood used for model discrimination. Then the fractional Bayes factor (FBF) of hypothesis H_{j} versus hypothesis H_{i} is

$$
\begin{equation*}
B_{j i}^{F}=B_{j i}^{N} \cdot \frac{\int L^{b}\left(\mathbf{x} \mid \theta_{i}\right) \pi_{i}^{N}\left(\theta_{i}\right) d \theta_{i}}{\int L^{b}\left(\mathbf{x} \mid \theta_{j}\right) \pi_{j}^{N}\left(\theta_{j}\right) d \theta_{j}}=B_{j i}^{N} \cdot \frac{m_{i}^{b}(\mathbf{x})}{m_{j}^{b}(\mathbf{x})} \tag{2.7}
\end{equation*}
$$

O'Hagan (1995) proposed three ways for the choice of the fraction b. One common choice of b is $b=m / n$, where m is the size of the minimal training sample, assuming that this number is uniquely defined. For details, see O'Hagan $(1995,1997)$ and the discussion by Berger and Mortera in O'Hagan (1995).

3. Bayesian hypothesis testing procedures

Let $X_{i}, i=1, \cdots, n_{1}$ denote observations from the half-normal distribution $\mathcal{H} \mathcal{N}\left(\xi_{1}, \eta_{1}\right)$, and $Y_{i}, i=1, \cdots, n_{2}$ denote observations from the half-normal distribution $\mathcal{H} \mathcal{N}\left(\xi_{2}, \eta_{2}\right)$. Then likelihood function is given by

$$
\begin{equation*}
f\left(\mathbf{x}, \mathbf{y} \mid \xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}\right)=\left(\frac{2}{\pi}\right)^{\frac{n_{1}+n_{2}}{2}} \eta_{1}^{-n_{1}} \eta_{2}^{-n_{2}} \exp \left\{-\frac{\sum_{i=1}^{n_{1}}\left(x_{i}-\xi_{1}\right)^{2}}{2 \eta_{1}^{2}}-\frac{\sum_{i=1}^{n_{2}}\left(y_{i}-\xi_{2}\right)^{2}}{2 \eta_{2}^{2}}\right\} \tag{3.1}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, \cdots, x_{n_{1}}\right), \mathbf{y}=\left(y_{1}, \cdots, y_{n_{2}}\right),-\infty<\xi_{1}<\infty,-\infty<\xi_{2}<\infty, \eta_{1}>0$ and $\eta_{2}>0$. We are interested in testing the hypotheses $H_{1}: \xi_{1}=\xi_{2}$ versus $H_{2}: \xi_{1} \neq \xi_{2}$ based on the fractional Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis $H_{1}: \xi_{1}=\xi_{2} \equiv \xi$ is

$$
\begin{equation*}
L_{1}\left(\xi, \eta_{1}, \eta_{2} \mid \mathbf{x}, \mathbf{y}\right)=\left(\frac{2}{\pi}\right)^{\frac{n_{1}+n_{2}}{2}} \eta_{1}^{-n_{1}} \eta_{2}^{-n_{2}} \exp \left\{-\frac{\sum_{i=1}^{n_{1}}\left(x_{i}-\xi\right)^{2}}{2 \eta_{1}^{2}}-\frac{\sum_{i=1}^{n_{2}}\left(y_{i}-\xi\right)^{2}}{2 \eta_{2}^{2}}\right\} \tag{3.2}
\end{equation*}
$$

And under the hypothesis H_{1}, the reference prior for (ξ, η_{1}, η_{2}) derived by Kang et al. (2010) and is

$$
\begin{equation*}
\pi_{1}^{N}\left(\xi, \eta_{1}, \eta_{2}\right) \propto \eta_{1}^{-1} \eta_{2}^{-1} \tag{3.3}
\end{equation*}
$$

Then from the likelihood (3.2) and the reference prior (3.3), the element $m_{1}^{b}(\mathbf{x}, \mathbf{y})$ of the FBF under H_{1} is given by

$$
\begin{align*}
m_{1}^{b}(\mathbf{x}, \mathbf{y}) & =\int_{-\infty}^{z_{(1)}} \int_{0}^{\infty} \int_{0}^{\infty} L_{1}^{b}\left(\xi, \eta_{1}, \eta_{2} \mid \mathbf{x}, \mathbf{y}\right) \pi_{1}^{N}\left(\xi, \eta_{1}, \eta_{2}\right) d \eta_{1} d \eta_{2} d \xi \\
& =\frac{1}{4}\left(\frac{2}{\pi}\right)^{\frac{b\left(n_{1}+n_{2}\right)}{2}} \Gamma\left[\frac{b n_{1}}{2}\right] \Gamma\left[\frac{b n_{2}}{2}\right] \\
& \times \int_{-\infty}^{z}\left[\frac{b\left(s_{1}^{2}+n_{1}(\bar{x}-\xi)^{2}\right)}{2}\right]^{-\frac{b n_{1}}{2}}\left[\frac{b\left(s_{2}^{2}+n_{2}(\bar{y}-\xi)^{2}\right)}{2}\right]^{-\frac{b n_{2}}{2}} d \xi, \tag{3.4}
\end{align*}
$$

where $z_{(1)}=\min \left\{x_{1}, \cdots, x_{n_{1}}, y_{1}, \cdots, y_{n_{2}}\right\}, \bar{x}=\sum_{i=1}^{n_{1}} x_{i} / n_{1}, s_{1}^{2}=\sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2}, \bar{y}=$ $\sum_{i=1}^{n_{2}} y_{i} / n_{2}$ and $s_{2}^{2}=\sum_{i=1}^{n_{2}}\left(y_{i}-\bar{y}\right)^{2}$. For the hypothesis $H_{2}: \xi_{1} \neq \xi_{2}$, the reference prior for $\left(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}\right)$ is

$$
\begin{equation*}
\pi^{N}\left(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}\right) \propto \eta_{1}^{-1} \eta_{2}^{-1} \tag{3.5}
\end{equation*}
$$

and can be easily derived following Kang et al. (2010). The likelihood function under the hypothesis H_{2} is

$$
\begin{equation*}
L_{2}\left(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2} \mid \mathbf{x}, \mathbf{y}\right)=\left(\frac{2}{\pi}\right)^{\frac{n_{1}+n_{2}}{2}} \eta_{1}^{-n_{1}} \eta_{2}^{-n_{2}} \exp \left\{-\frac{\sum_{i=1}^{n_{1}}\left(x_{i}-\xi_{1}\right)^{2}}{2 \eta_{1}^{2}}-\frac{\sum_{i=1}^{n_{2}}\left(y_{i}-\xi_{2}\right)^{2}}{2 \eta_{2}^{2}}\right\} \tag{3.6}
\end{equation*}
$$

Thus from the likelihood (3.6) and the reference prior (3.5), the element $m_{2}^{b}(\mathbf{x}, \mathbf{y})$ of FBF under H_{2} is given as follows.

$$
\begin{align*}
m_{2}^{b}(\mathbf{x}, \mathbf{y}) & =\int_{-\infty}^{y_{(1)}} \int_{-\infty}^{x_{(1)}} \int_{0}^{\infty} \int_{0}^{\infty} L_{2}^{b}\left(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2} \mid \mathbf{x}, \mathbf{y}\right) \pi_{2}^{N}\left(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}\right) d \eta_{1} d \eta_{2} d \xi_{1} d \xi_{2} \\
& =\frac{1}{4}\left(\frac{2}{\pi}\right)^{\frac{b\left(n_{1}+n_{2}\right)}{2}} \Gamma\left[\frac{b n_{1}}{2}\right] \Gamma\left[\frac{b n_{2}}{2}\right] \tag{3.7}\\
& \times \int_{-\infty}^{y_{(1)}} \int_{-\infty}^{x_{(1)}}\left[\frac{b\left(s_{1}^{2}+n_{1}\left(\bar{x}-\xi_{1}\right)^{2}\right)}{2}\right]^{-\frac{b n_{1}}{2}}\left[\frac{b\left(s_{2}^{2}+n_{2}\left(\bar{y}-\xi_{2}\right)^{2}\right)}{2}\right]^{-\frac{b n_{2}}{2}} d \xi_{1} d \xi_{2},
\end{align*}
$$

where $x_{(1)}=\min \left\{x_{1}, \cdots, x_{n_{1}}\right\}$ and $y_{(1)}=\min \left\{y_{1}, \cdots, y_{n_{2}}\right\}$. Therefore the element B_{21}^{N} of FBF is given by

$$
\begin{equation*}
B_{21}^{N}=\frac{S_{2}(\mathbf{x}, \mathbf{y})}{S_{1}(\mathbf{x}, \mathbf{y})} \tag{3.8}
\end{equation*}
$$

where

$$
S_{1}(\mathbf{x}, \mathbf{y})=\int_{-\infty}^{z_{(1)}}\left[s_{1}^{2}+n_{1}(\bar{x}-\xi)^{2}\right]^{-\frac{n_{1}}{2}}\left[s_{2}^{2}+n_{2}(\bar{y}-\xi)^{2}\right]^{-\frac{n_{2}}{2}} d \xi
$$

and

$$
S_{2}(\mathbf{x}, \mathbf{y})=\int_{-\infty}^{y_{(1)}} \int_{-\infty}^{x_{(1)}}\left[s_{1}^{2}+n_{1}\left(\bar{x}-\xi_{1}\right)^{2}\right]^{-\frac{n_{1}}{2}}\left[s_{2}^{2}+n_{2}\left(\bar{y}-\xi_{2}\right)^{2}\right]^{-\frac{n_{2}}{2}} d \xi_{1} d \xi_{2}
$$

And the ratio of marginal densities with fraction b is

$$
\begin{equation*}
\frac{m_{1}^{b}(\mathbf{x}, \mathbf{y})}{m_{2}^{b}(\mathbf{x}, \mathbf{y})}=\frac{S_{1}(\mathbf{x}, \mathbf{y} ; b)}{S_{2}(\mathbf{x}, \mathbf{y} ; b)} \tag{3.9}
\end{equation*}
$$

where

$$
S_{1}(\mathbf{x}, \mathbf{y} ; b)=\int_{-\infty}^{z_{(1)}}\left[s_{1}^{2}+n_{1}(\bar{x}-\xi)^{2}\right]^{-\frac{b n_{1}}{2}}\left[s_{2}^{2}+n_{2}(\bar{y}-\xi)^{2}\right]^{-\frac{b n_{2}}{2}} d \xi
$$

and

$$
S_{2}(\mathbf{x}, \mathbf{y} ; b)=\int_{-\infty}^{y_{(1)}} \int_{-\infty}^{x_{(1)}}\left[s_{1}^{2}+n_{1}\left(\bar{x}-\xi_{1}\right)^{2}\right]^{-\frac{b n_{1}}{2}}\left[s_{2}^{2}+n_{2}\left(\bar{y}-\xi_{2}\right)^{2}\right]^{-\frac{b n_{2}}{2}} d \xi_{1} d \xi_{2}
$$

Thus the FBF of H_{2} versus H_{1} is given by

$$
\begin{equation*}
B_{21}^{F}=\frac{S_{2}(\mathbf{x}, \mathbf{y})}{S_{1}(\mathbf{x}, \mathbf{y})} \cdot \frac{S_{1}(\mathbf{x}, \mathbf{y} ; b)}{S_{2}(\mathbf{x}, \mathbf{y} ; b)} \tag{3.10}
\end{equation*}
$$

Note that the calculations of the FBF of H_{2} versus H_{1} requires only one dimensional integration.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element B_{21}^{N} of the intrinsic Bayes factor is computed in the fractional Bayes factor. So under minimal training sample, we only calculate the marginal densities for the hypotheses H_{1} and H_{2}, respectively. The marginal density of $\left(X_{j_{1}}, X_{j_{2}}\right)$ and $\left(Y_{k_{1}}, Y_{k_{2}}\right)$ is finite for all $1 \leq j_{1}<j_{2} \leq n$ and $1 \leq k_{1}<k_{2} \leq m$ under each hypothesis. Thus we conclude that any training sample of size 4 is a minimal training sample.

The marginal density $m_{1}^{N}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right)$ under H_{1} is given by

$$
\begin{aligned}
& m_{1}^{N}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right) \\
& =\int_{-\infty}^{z_{\left(j_{1}\right)}} \int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}} \mid \xi, \eta_{1}, \eta_{2}\right) \pi_{1}^{N}\left(\xi, \eta_{1}, \eta_{2}\right) d \eta_{1} d \eta_{2} d \xi \\
& =\int_{-\infty}^{z_{\left(j_{1}\right)}}\left[\frac{\left(x_{j_{1}}-x_{j_{2}}\right)^{2}}{2}+\frac{\left(x_{j_{1}}+x_{j_{2}}-2 \xi\right)^{2}}{2}\right]^{-1}\left[\frac{\left(y_{k_{1}}-y_{k_{2}}\right)^{2}}{2}+\frac{\left(y_{k_{1}}+y_{k_{2}}-2 \xi\right)^{2}}{2}\right]^{-1} d \xi
\end{aligned}
$$

where $z_{\left(j_{1}\right)}=\min \left\{x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right\}$, And the marginal density $m_{2}^{N}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right)$ under H_{2} is given by

$$
\begin{aligned}
& m_{2}^{N}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right) \\
& =\int_{-\infty}^{y_{\left(k_{1}\right)}} \int_{-\infty}^{x_{\left(j_{1}\right)}} \int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}} \mid \xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}\right) \pi_{2}^{N}\left(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}\right) d \eta_{1} d \eta_{2} d \xi_{1} d \xi_{2} \\
& =\int_{-\infty}^{y_{\left(k_{1}\right)}} \int_{-\infty}^{x_{\left(j_{1}\right)}}\left[\frac{\left(x_{j_{1}}-x_{j_{2}}\right)^{2}}{2}+\frac{\left(x_{j_{1}}+x_{j_{2}}-2 \xi_{1}\right)^{2}}{2}\right]^{-1} \\
& \times\left[\frac{\left(y_{k_{1}}-y_{k_{2}}\right)^{2}}{2}+\frac{\left(y_{k_{1}}+y_{k_{2}}-2 \xi_{2}\right)^{2}}{2}\right]^{-1} d \xi_{1} d \xi_{2},
\end{aligned}
$$

where $x_{\left(j_{1}\right)}=\min \left\{x_{j_{1}}, x_{j_{2}}\right\}$ and $y_{\left(k_{1}\right)}=\min \left\{y_{k_{1}}, y_{k_{2}}\right\}$. Therefore the AIBF of H_{2} versus H_{1} is given by

$$
\begin{equation*}
B_{21}^{A I}=\frac{S_{2}(\mathbf{x}, \mathbf{y})}{S_{1}(\mathbf{x}, \mathbf{y})}\left[\frac{1}{L} \sum_{j_{1}, j_{2}}^{n} \sum_{k_{1}, k_{2}}^{m} \frac{T_{1}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right)}{T_{2}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right)}\right] \tag{3.11}
\end{equation*}
$$

where $L=\left[n_{1} n_{2}\left(n_{1}-1\right)\left(n_{2}-1\right)\right] / 4$,

$$
\begin{aligned}
T_{1}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right) & =\int_{-\infty}^{z_{\left(j_{1}\right)}}\left[\left(x_{j_{1}}-x_{j_{2}}\right)^{2}+\left(x_{j_{1}}+x_{j_{2}}-2 \xi\right)^{2}\right]^{-1} \\
& \times\left[\left(y_{k_{1}}-y_{k_{2}}\right)^{2}+\left(y_{k_{1}}+y_{k_{2}}-2 \xi\right)^{2}\right]^{-1} d \xi
\end{aligned}
$$

and

$$
\begin{aligned}
T_{2}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right) & =\int_{-\infty}^{y_{\left(k_{1}\right)}} \int_{-\infty}^{x_{\left(j_{1}\right)}}\left[\left(x_{j_{1}}-x_{j_{2}}\right)^{2}+\left(x_{j_{1}}+x_{j_{2}}-2 \xi_{1}\right)^{2}\right]^{-1} \\
& \times\left[\left(y_{k_{1}}-y_{k_{2}}\right)^{2}+\left(y_{k_{1}}+y_{k_{2}}-2 \xi_{2}\right)^{2}\right]^{-1} d \xi_{1} d \xi_{2}
\end{aligned}
$$

Also the MIBF of H_{2} versus H_{1} is given by

$$
\begin{equation*}
B_{21}^{M I}=\frac{S_{2}(\mathbf{x}, \mathbf{y})}{S_{1}(\mathbf{x}, \mathbf{y})} M E\left[\frac{T_{1}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right)}{T_{2}\left(x_{j_{1}}, x_{j_{2}}, y_{k_{1}}, y_{k_{2}}\right)}\right] \tag{3.12}
\end{equation*}
$$

Note that the calculations of the AIBF and the MIBF of H_{2} versus H_{1} require only one dimensional integration.

4. Numerical studies

In order to assess our approaches, we evaluate the posterior probability for several configurations of $\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)$ and $\left(n_{1}, n_{2}\right)$. In particular, for fixed $\left(\xi_{1}, \eta_{1}\right)$ and $\left(\xi_{2}, \eta_{2}\right)$, we take 500 independent random samples of X_{i} and Y_{i} with sample size n_{1} and n_{2} from the models (1.1) and (1.2), respectively. We want to test the hypotheses $H_{1}: \xi_{1}=\xi_{2}$ versus $H_{2}: \xi_{1} \neq \xi_{2}$. The posterior probabilities of H_{1} being true are computed assuming equal prior probabilities. Table 4.1 shows the results of the averages and the standard deviations in parentheses of posterior probabilities. In Table 4.1, $P^{F}(\cdot), P^{A I}(\cdot)$ and $P^{M I}(\cdot)$ are the posterior probabilities of the hypothesis H_{1} being true based on FBF, AIBF and MIBF, respectively. We take the fraction b of FBF as $4 / n$. From Table 4.1, the FBF, the AIBF and the MIBF give fairly reasonable answers for all configurations. Also the FBF, the AIBF and the MIBF give a similar behavior for all sample sizes. However for the large values of η_{2}, the AIBF and the MIBF slightly favor the hypothesis H_{1} than the FBF.

Example 4.1 This example is the artificial example. We take random sample of X_{i} with sample size 15 from half-normal $\mathcal{H} \mathcal{N}(1,1)$, and also take random sample of Y_{i} with sample size 15 form half-normal $\mathcal{H} \mathcal{N}(2,3)$. The generated data sets are given by

Group 1: 1.36, 1.30, 2.85, 1.46, 1.85, 1.60, 2.31, 1.82, 2.53, 2.46, 1.46, 1.75, 1.88, 1.09, 1.02. Group 2: 7.08, 4.41, 6.57, 2.03, 2.96, 3.02, 4.01, 4.58, 5.69, 5.60, 4.02, 2.26, 2.67, 6.21, 3.09.
For this data sets, the maximum likelihood estimates of ξ_{1} and η_{1} in group 1 are 1.02 and 0.93, and for group 2, the maximum likelihood estimates of ξ_{2} and η_{2} are 2.03 and 2.75.

We want to test the hypotheses $H_{1}: \xi_{1}=\xi_{2}$ versus $H_{2}: \xi_{1} \neq \xi_{2}$. The values of the Bayes factors and the posterior probabilities of H_{1} are given in Table 4.2. From Table 4.2, the posterior probabilities based on various Bayes factors give the same answer, and select the hypothesis H_{2}. The AIBF has smaller posterior probability of H_{1} than any other posterior probabilities based on the FBF and the MIBF, but the values of three Bayes factors are almost the same.

Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

ξ_{1}	ξ_{2}	(n_{1}, n_{2})	$P^{F}{ }_{\left(H_{1} \mid \mathbf{x}, \mathbf{y}\right)}$	$P^{A I}\left(H_{1} \mid \mathbf{x}, \mathbf{y}\right)$	$P^{M I}\left(H_{1} \mid \mathbf{x}, \mathbf{y}\right)$
			$\eta_{1}=1.0, \eta_{2}=2.0$		
0.0	0.0	5,5	0.651(0.149)	0.662 (0.180)	0.672 (0.180)
		5,10	$0.742(0.154)$	0.738 (0.171)	0.750 (0.170)
		10,10	$0.777(0.151)$	0.788 (0.165)	0.798 (0.164)
		10,20	$0.827(0.148)$	0.825 (0.158)	0.834 (0.155)
	0.5	5,5	0.561(0.156)	0.541 (0.188)	0.553 (0.189)
		5,10	$0.568(0.194)$	0.533 (0.218)	0.546 (0.219)
		10,10	0.524(0.193)	0.509 (0.207)	0.524 (0.209)
		10,20	0.330 (0.206)	0.296 (0.209)	0.309 (0.212)
	1.5	5,5	0.323(0.142)	0.283 (0.153)	0.294 (0.157)
		5,10	$0.131(0.101)$	0.096 (0.090)	0.101 (0.093)
		10,10	0.089(0.074)	0.080 (0.073)	0.084 (0.076)
		10,20	0.004(0.006)	0.003 (0.005)	0.003 (0.005)
	3.5	5,5	0.104(0.072)	0.082 (0.072)	0.084 (0.073)
		5,10	0.006(0.007)	0.003 (0.005)	0.003 (0.005)
		10,10	0.003(0.005)	0.003 (0.005)	0.003 (0.005)
		10,20	$0.000(0.000)$	0.000 (0.000)	0.000 (0.000)
	5.5	5,5	0.045(0.034)	0.033 (0.031)	0.034 (0.032)
		5,10	0.000(0.001)	0.000 (0.000)	0.000 (0.000)
		10,10	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
		10,20	0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
0.0	0.0		$\eta_{1}=1.0, \eta_{2}=3.0$		
		5,5	$0.638(0.145)$	0.647 (0.174)	0.663 (0.177)
		5,10	$0.732(0.161)$	0.734 (0.179)	0.749 (0.178)
		10,10	0.754(0.164)	0.766 (0.176)	0.779 (0.173)
		10,20	0.819(0.143)	0.820 (0.154)	0.832 (0.150)
	0.5	5,5	$0.576(0.151)$	0.569 (0.176)	0.585 (0.178)
		5,10	0.601(0.187)	0.583 (0.208)	0.599 (0.210)
		10,10	$0.585(0.188)$	0.587 (0.199)	0.604 (0.201)
		10,20	0.501(0.192)	0.481 (0.199)	0.501 (0.201)
	1.5	5,5	0.389(0.149)	0.372 (0.168)	0.382 (0.172)
		5,10	$0.235(0.146)$	0.209 (0.151)	0.217 (0.156)
		10,10	$0.196(0.123)$	0.196 (0.133)	0.206 (0.140)
		10,20	$0.027(0.032)$	0.024 (0.030)	0.025 (0.032)
	3.5	5,5	$0.177(0.096)$	0.164 (0.108)	0.168 (0.111)
		5,10	$0.024(0.025)$	0.018 (0.022)	0.018 (0.022)
		10,10	0.018(0.018)	0.019 (0.020)	0.019 (0.020)
		10,20	0.000(0.000)	0.000 (0.000)	0.000 (0.000)
	5.5	5,5	0.091(0.062)	0.082 (0.070)	0.085 (0.073)
		5,10	$0.003(0.004)$	0.002 (0.003)	0.002 (0.003)
		10,10	0.002(0.003)	0.002 (0.003)	0.002 (0.003)
		10,20	0.000(0.000)	0.000 (0.000)	0.000 (0.000)
0.0	0.0		$\eta_{1}=1.0, \eta_{2}=5.0$		
		5,5	0.626(0.141)	0.641 (0.162)	0.661 (0.167)
		5,10	$0.719(0.145)$	0.733 (0.161)	0.751 (0.162)
		10,10	0.730 (0.169)	0.752 (0.175)	0.768 (0.176)
		10,20	0.819(0.147)	0.834 (0.150)	0.847 (0.147)
	0.5	5,5	0.563(0.151)	0.575 (0.168)	0.592 (0.177)
		5,10	$0.643(0.161)$	0.652 (0.175)	0.668 (0.179)
		10,10	$0.621(0.186)$	0.643 (0.191)	0.661 (0.196)
		10,20	0.614(0.196)	0.624 (0.203)	0.644 (0.205)
	1.5	5,5	$0.447(0.148)$	0.462 (0.166)	0.473 (0.174)
		5,10	$0.376(0.166)$	0.378 (0.182)	0.389 (0.188)
		10,10	$0.347(0.160)$	0.376 (0.173)	0.387 (0.179)
		10,20	$0.132(0.092)$	0.137 (0.100)	0.144 (0.105)
	3.5	5,5	0.272(0.119)	0.289 (0.145)	0.297 (0.153)
		5,10	0.098(0.071)	0.095 (0.078)	0.098 (0.081)
		10,10	$0.075(0.059)$	0.090 (0.074)	0.093 (0.076)
		10,20	0.002(0.003)	0.002 (0.003)	0.002 (0.003)
	5.5	5,5	$0.162(0.093)$	0.172 (0.114)	0.177 (0.119)
		5,10	$0.022(0.021)$	0.020 (0.022)	0.020 (0.023)
		10,10	0.015(0.015)	0.019 (0.020)	0.019 (0.021)
		10,20	0.000(0.000)	0.000 (0.000)	0.000 (0.000)
0.0	0.0		$\eta_{1}=1.0, \eta_{2}=10.0$		
		5,5	0.561(0.148)	0.602 (0.156)	0.623 (0.170)
		5,10	$0.669(0.161)$	0.712 (0.168)	0.729 (0.175)
		10,10	$0.665(0.174)$	0.714 (0.172)	0.730 (0.177)
		10,20	0.778(0.163)	0.813 (0.159)	0.828 (0.159)
	0.5	5,5	0.546(0.139)	0.588 (0.148)	0.610 (0.164)
		5,10	$0.632(0.160)$	0.674 (0.166)	0.690 (0.171)
		10,10	$0.623(0.184)$	0.674 (0.183)	0.691 (0.190)
		10,20	0.683(0.182)	0.727 (0.179)	0.744 (0.181)
	1.5	5,5	$0.485(0.134)$	0.535 (0.146)	0.551 (0.160)
		5,10	$0.496(0.161)$	0.545 (0.175)	0.557 (0.181)
		10,10	$0.472(0.173)$	0.540 (0.182)	0.551 (0.189)
		10,20	0.372(0.167)	0.430 (0.184)	0.447 (0.192)
	3.5	5,5	0.356(0.129)	0.410 (0.154)	0.420 (0.163)
		5,10	$0.257(0.128)$	0.298 (0.154)	0.306 (0.159)
		10,10	0.220 (0.113)	0.288 (0.143)	0.298 (0.151)
		10,20	0.059(0.045)	0.078 (0.062)	0.083 (0.066)
	5.5	5,5	$0.274(0.114)$	0.328 (0.145)	0.340 (0.157)
		5,10	$0.120(0.075)$	0.140 (0.095)	0.146 (0.099)
		10,10	$0.102(0.068)$	0.146 (0.096)	0.152 (0.100)
		10,20	0.007(0.008)	0.010 (0.012)	0.011 (0.013)

Table 4.2 Bayes factor and posterior probabilities of $H_{1}: \xi_{1}=\xi_{2}$					
B_{21}^{F}	$P^{F}\left(H_{1} \mid \mathbf{x}, \mathbf{y}\right)$	$B_{21}^{A I}$	$P^{A I}\left(H_{1} \mid \mathbf{x}, \mathbf{y}\right)$	$B_{21}^{M I}$	$P^{M I}\left(H_{1} \mid \mathbf{x}, \mathbf{y}\right)$
2.754	0.266	2.767	0.265	2.642	0.275

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors for the equality of the location parameters in half-normal distributions under the reference priors. From our numerical results, the developed hypothesis testing procedures give fairly reasonable answers for all parameter configurations. However the AIBF and the MIBF slightly favors the hypothesis H_{1} than the AIBF for the large values of η_{2}. From our simulation and example, we recommend the use of the FBF than the AIBF and MIBF for practical application in view of its simplicity and ease of implementation.

References

Aigner, D. J., Lovell, C. A. K. and Schmidt, P. (1977). Formulation and estimation of stochastic frontier production models. Journal of Econometrics, 6, 21-37.
Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207.
Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J.M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122.
Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankya B, 60, 1-18.
Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 38, edited by P. Lahiri, 135-207, Beachwood Ohio.
Dobzhansky, T. and Wright, S. (1943). Genetics of natural populations X. Dispersion rates in Drosophila pseudoobscura. Genetics, 28, 304-340.
Haberle, J. G. (1991). Strength and failure mechanisms of unidirectional carbon fibre-reinforced plastics under axial compression, Unpublished Ph.D. thesis, Imperial College, London, U.K.
Kang, S. G., Kim, D. H. and Lee, W. D. (2006). Bayesian one-sided testing for the ratio of Poisson means. Journal of Korean Data \& Information Science Society, 17, 619-631.
Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Bayesian model selection for inverse Gaussian populations with heterogeneity. Journal of Korean Data \mathcal{G} Information Science Society, 19, 621-634.
Kang, S. G., Kim, D. H. and Lee, W. D. (2010). Noninformative priors for the common location parameter in half-normal distributions. Journal of the Korean Data \mathcal{E}^{\prime} Information Science Society, 21, 757-764.
Meeusen, W. J. and van den Broeck, J. (1977). Efficiency estimation from Cobb Douglas production functions with composed error. International Economic Review, 8, 435-444.
O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118.
Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
Pewsey, A. (2002). Large-sample inference for the general half-normal distribution. Communications in Statistics - Theory and Methods, 31, 1045-1054.
Pewsey, A. (2004). Improved likelihood based inference for the general half-normal distribution. Communications in Statistics - Theory and Methods, 33, 197-204.
Wiper, M. P., Girón, F. J. and Pewsey, A. (2008). Objective Bayesian inference for the half-normal and half-t distributions. Communications in Statistics - Theory and Methods, 37, 3165-3185.

[^0]: ${ }^{1}$ Associate professor, Department of Computer and Data Information, Sangji University, Wonju 220-702, Korea.
 ${ }^{2}$ Professor, Department of Statistics, Kyungpook National University, Daegu 702-701, korea.
 ${ }^{3}$ Corresponding author: Professor, Department of Asset Management, Daegu Haany University, Kyungsan 712-715, Korea. E-mail: wdlee@dhu.ac.kr

