Browse > Article
http://dx.doi.org/10.7465/jkdi.2012.23.6.1299

Default Bayesian hypothesis testing for the scale parameters in nonregular Pareto distributions  

Kang, Sang Gil (Department of Computer and Data Information, Sangji University)
Publication Information
Journal of the Korean Data and Information Science Society / v.23, no.6, 2012 , pp. 1299-1308 More about this Journal
Abstract
This article deals with the problem of testing the equality of the scale parameters in nonregular Pareto distributions.We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be de ned up to a multiplicative constant. So we propose the default Bayesia hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and a real data example are provided.
Keywords
Fractional Bayes factor; intrinsic Bayes factor; Pareto distribution; reference prior; scale parameter;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto populations. Journal of Econometrics, 21, 287-306.   DOI   ScienceOn
2 Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84, 1079-1084.   DOI   ScienceOn
3 Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207.   DOI   ScienceOn
4 Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo et al., Oxford University Press, Oxford, 35-60.
5 Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122.   DOI   ScienceOn
6 Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankya B, 60, 1-18.
7 Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 38, edited by P. Lahiri, Beachwood, Ohio, 135-207.
8 Cho, J. S. (2010). Bayesian multiple comparisons in Freund's bivariate exponential populations with type I censored data. Journal of the Korean Data & Information Science Society, 21, 569-574.
9 Dyer, D. (1981). Structural probability bounds for the strong Pareto law. Canadian Journal of Statistics, 9, 71-77.   DOI
10 Elfessi, A. and Jin, C. (1996). On robust estimation of the common scale parameter of several Pareto distributions. Statistics & Probability Letters, 29, 345-352.   DOI   ScienceOn
11 Fernandez, A. J. (2008). Highest posterior density estimation form multiply censored Pareto data. Statistical Papers, 49, 333-341.
12 Geisser, S. (1984). Prediction Pareto and exponential observables. Canadian Journal of Statistics, 12, 143-152.   DOI
13 Geisser, S. (1985). Interval prediction for Pareto and exponential observables. Journal of Econometrics, 29, 173-185.   DOI   ScienceOn
14 Kang, S. G. (2010). Noninformative priors for the common scale parameter in Pareto distributions. Journal of the Korean Data & Information Science Society, 21, 335-343.   과학기술학회마을
15 Ko, J. H. and Kim, Y. H. (1999). Bayesian prediction inference for censored Pareto model. Journal of the Korean Data & Information Science Society, 10, 147-154.   과학기술학회마을
16 Kang, S. G., Kim, D. H. and Lee, W. D. (2010). Default Bayesian testing for normal mean with known coecient of variation. Journal of the Korean Data & Information Science Society, 21, 297-308.
17 Kang, S. G., Kim, D. H. and Lee, W. D. (2011). Default Bayesian testing for the bivariate normal correlation coecient. Journal of the Korean Data & Information Science Society, 22, 1007-1016.
18 Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.   과학기술학회마을
19 Lwin, T. (1972). Estimation of the tail of the Paretian law. Scandinavian Actuarial Journal, 55, 170-178.
20 Nigm, A. M. and Hamdy, H. L. (1987). Bayesian prediction bounds for the Pareto lifetime model. Communications in Statistics: Theory and Methods, 16, 1761-1772.   DOI   ScienceOn
21 O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
22 O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118.   DOI
23 Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
24 Tiwari, R. C., Yang, Y. and Zalkikar, J. N. (1996). Bayes estimation for the Pareto failure-model using gibbs sampling. IEEE Transactions on Reliability, 45, 471-476.   DOI   ScienceOn