
Journal of the Korean Data & 한국데이터정보과학회지
Information Science Society
2010, 21(2), 297–308

Default Bayesian testing for normal mean
with known coefficient of variation

Sang Gil Kang1 ·Dal Ho Kim2 · Woo Dong Lee3

1Department of Data Information, Sangji University
2Department of Statistics, Kyungpook National University

3Department of Asset Management, Daegu Haany University

Received 27 December 2009, revised 5 March 2010, accepted 10 March 2010

Abstract

This article deals with the problem of testing mean when the coefficient of variation
in normal distribution is known. We propose Bayesian hypothesis testing procedures for
the normal mean under the noninformative prior. The noninformative prior is usually
improper which yields a calibration problem that makes the Bayes factor to be defined
up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing
procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the
reference prior. Specially, we develop intrinsic priors which give asymptotically same
Bayes factor with the intrinsic Bayes factor under the reference prior. Simulation study
and a real data example are provided.

Keywords: Coefficient of variation, fractional Bayes factor, intrinsic Bayes factor, in-
trinsic prior, normal mean, reference prior.

1. Introduction

Normal distribution has been widely used to model various phenomena in agricultural,
biological, environmental and physical sciences. A problem of interest is the inference con-
cerning normal mean when the coefficient of variation is known. The assumption of a known
coefficient of variation is actually common in many clinical chemistry and pharmaceutical
sciences (Gleser and Healy, 1976).

For example, when batches of some substance or chemicals are to be analyzed, if sufficient
batches of the substances are analyzed, their coefficient of variation will be known. In agri-
cultural experiments, it is customary to conduct multi-locational trials. When the results of
a few centers are available, the coefficient of variation is known and it can be used for the
inferential purpose of an experiment to be conducted in a new location. In environmental
studies, such situations arise when the standard deviation of a pollutant is directly related
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to the mean (Bhat and Rao, 2007). Many Researches considered the problem of estimation
of the normal mean when the coefficient of variation is known (Gleser and Healy, 1976; Soofi
and Gokhale, 1991; Arnholt and Hebert, 1995; Guo and Pal, 2003; and the references cited
therein).

Although the problem of estimation of the normal mean has drawn the interest of many
researchers, the tests for normal mean has received a few attention. Hinkley (1977) shows
that the usual t statistic is ancillary for the mean and developed a conditional test for the
one-sided hypothesis. Although Hinkley (1977) advocated the use of the conditional test in
lieu of the locally most powerful one-sided test, the conditional test does not seem to be
popular with the practitioners. So Bhat and Rao (2007) derived the likelihood ratio test and
Wald test for the one-sided and two-sided alternatives, as well as the two-sided version of the
locally most powerful test. They showed that for the two-sided alternatives, the likelihood
ratio test and the Wald test are more powerful than other tests.

However, there is a little work in this problem from the viewpoint of Bayesian framework.
In Bayesian model selection or testing problem, the Bayes factor under proper priors or
informative priors have been very successful. However, limited information and time con-
straints often require the use of noninformative priors. Since noninformative priors such as
Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper so
that such priors are only defined up to arbitrary constants which affects the values of Bayes
factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996)
have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training samples in the con-
text of linear model comparisons to choose the arbitrary constants. But the choice of imag-
inary training sample depends on the models under comparison, and so, there is no guaran-
tee that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper priors. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion
of the likelihood with a so-called the fraction b. These approaches have shown to be quite
useful in many statistical areas (Kang, et al. 2005, 2006, 2007). An excellent exposition of
the objective Bayesian method to model selection is Berger and Pericchi (2001).

In this paper, we propose the objective Bayesian hypothesis testing procedures based on
the Bayes factors for the mean of the normal distribution with known coefficient of variation.
The outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian
hypothesis testing based on the Bayes factor. In Section 3, using the reference prior, we
provide the Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factor. In Section 4, simulation study and a real data example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypotheses H1,H2 ,· · · ,Hq are under consideration, with the data x =
(x1, x2, · · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The pa-
rameter vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let
pi be the prior probability of hypothesis Hi, i = 1, 2, · · · , q. Then the posterior probability
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that the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1

, (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji interpreted as the comparative support of the data for Hj versus Hi. The computa-
tion of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in Bayesian
analysis, one can use noninformative priors πNi . Common choices are the uniform prior,
Jeffreys’ prior and the reference prior. The noninformative prior πNi is typically improper.
Hence the use of noninformative prior πNi in (2.2) causes the Bji to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic Bayes
factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be so used and let x(−l) be the remainder of the
data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view (2.3), the posteriors πNi (θi|x(l)) are well defined. Now, consider the Bayes
factor,Bji(l), with the remainder of the data x(−l), using πNi (θi|x(l)) as the priors:

Bji(l) =

∫
f(x(−l)|θj ,x(l))πNj (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πNi (θi|x(l))dθi

= BNji ·BNij (x(l)) (2.4)

where

BNji = BNji (x) =
mN
j (x)

mN
i (x)

and

BNij (x(l)) =
mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BNij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAIji = BNji ×
1

L

L∑
l=1

BNij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BNji ×ME[BNij (x(l))], (2.6)
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where ME indicates the median for all the training sample Bayes factors.
Therefore we can also calculate the posterior probability of Hi using (2.1), where Bji is

replaced by BAIji and BMI
ji from (2.5)and (2.6), respectively.

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction,b ,of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BFji = BNji ·
∫
Lb(x|θi)πNi (θi)dθi∫
Lb(x|θj)πNj (θj)dθj

= BNji ·
mb
i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice
of b is b = m/n, where m is the size of the minimal training sample, assuming that this
number is uniquely defined. (O’Hagan, 1995, 1997; the discussion by Berger and Mortera
in O’Hagan, 1995).

3. Bayesian hypothesis testing procedures

Let X1, X2, · · · , Xn be independent and identically distributed random variables from
a normal distribution N(µ, c2µ2), where c is the coefficient of variation. Then the joint
probability density function is

f(x|µ) = (2π)−n/2(|cµ|)−n exp

{
−S

2 + n(x− µ)2

2c2µ2

}
, (3.1)

where x = (x1, x2, · · · , xn), x =
∑n
i=1 xi/n and S2 =

∑n
i=1(xi − x)2.

We are interested in testing the hypotheses H1 : µ = µ0 versus H2 : µ 6= µ0 based on the
fractional Bayes factor and the intrinsic Bayes factor. From the likelihood function (3.1),
the reference prior for is

πN (µ) ∝ |µ|−1

and the posterior under this reference prior is proper (See Appendix 1).

3.1. Bayesian hypothesis testing based on the fractional bayes factor

The likelihood function under the hypothesis H1 : µ = µ0 is

L(µ0|x) = (2π)−n/2(|cµ0|)−n exp

{
−S

2 + n(x− µ0)2

2c2µ2
0

}
. (3.2)

Then from the likelihood (3.2), the element of the FBF under H1 is given by

mb
1(x) = (2π)−bn/2(|cµ0|)−bn exp

{
−b[S

2 + n(x− µ0)2]

2c2µ2
0

}
.

For the hypothesis H2 : µ 6= µ0, the reference prior for µ is

πN2 (µ) ∝ |µ|−1
. (3.3)
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The likelihood function under the hypothesis H2 : µ 6= µ0 is

L(µ|x) = (2π)−n/2(|cµ|)−n exp

{
−S

2 + n(x− µ)2

2c2µ2

}
. (3.4)

Thus from the likelihood (3.4) and the reference prior (3.3), the element of FBF under
H2 : µ 6= µ0 is given as follows.

mb
2(x) =

∫ ∞
−∞

Lb(µ|x)πN2 (µ)dµ

= (2π)−
nb
2 2

nb
2 Γ

(
nb

2

)
[b(S2 + nx2)]−nb/2 exp{− nb

2c2
}

×Hypergeometric1F1

[
nb

2
,

1

2
,

n2bx
2

2c2(S2 + nx2)

]
,

where Hypergeometric1F1[a, b, c] is the Kummer confluent hypergeometric function. There-
fore the element BN21 of FBF is given by

BN21 =
S2(x)

S1(x)
, (3.5)

where

S1(x) = (|cµ0|)−n exp

{
−S

2 + n(x− µ0)2

2c2µ2
0

}
and

S2(x) = 2
n
2 Γ(

n

2
)(S2 + nx2)−n/2 exp{− n

2c2
}Hypergeometric1F1

[
n

2
,

1

2
,

n2x2

2c2(S2 + nx2)

]
.

And the ratio of marginal densities with fraction b is

mb
1(x)

mb
2(x)

=
S1(x; b)

S2(x; b)
,

where

S1(x; b) = (|cµ0|)−nb exp

{
−b[S

2 + n(x− µ0)2]

2c2µ2
0

}
and

S2(x; b) = 2
nb
2 Γ[

nb

2
][b(S2+nx2)]−

nb
2 exp{− nb

2c2
}Hypergeometric1F1

[
nb

2
,

1

2
,

n2bx2

2c2(S2 + nx2)

]
.

Thus the FBF of H2 versus H1 is given by

BF21 =
S2(x)

S1(x)
· S1(x; b)

S2(x; b)
. (3.6)

Note that the calculations of the FBF of H2 versus H1 requires only one dimensional inte-
gration.
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3.2. Bayesian hypothesis testing based on the intrinsic Bayes factor

The element BN21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 and H2, respectively. The marginal density of Xj is finite for all j,j = 1, 2, · · · , n under
each hypothesis (See Appendix). Thus we conclude that any training sample of size 1 is a
minimal training sample.

The marginal density mN
1 (xj) under H1 is given by

mN
1 (xj) = (2π)−1/2(|cµ0|)−1 exp

{
− (xj − µ0)2

2c2µ2
0

}
.

And the marginal density mN
2 (xj) under H2 is given by

mN
2 (xj) =

∫ ∞
−∞

f(xj |µ)πN2 (µ)dµ

=

∫ ∞
−∞

exp{− (xj−µ)2

2c2µ2 }
√

2π|cµ|
1

|µ|
dµ

= (2π)−
1
2

√
2π

|xj |

=
1

|xj |
.

Therefore the AIBF of H2 versus H1 is given by

BAI21 =
S2(x)

S1(x)

 1

n

n∑
j=1

T1(xj)

T2(xj)

 , (3.7)

where

T1(xj) = (|cµ0|)−1 exp

{
− (xj − µ0)2

2c2µ2
0

}
and

T2(xj) =

√
2π

|xj |
.

And also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x)

S1(x)
ME

[
T1(xj)

T2(xj)

]
. (3.8)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require only one
dimensional integration.

3.3. Bayesian hypothesis testing based on intrinsic prior

Berger and Pericchi (1996) introduced intrinsic prior which gives asymptotically equivalent
to IBF. It is very useful in many ways like dealing with the problems with AIBF such as
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unstableness and coherence problems. But in spite of its merits, on the developing these
prior, there is a problem that the solution to get intrinsic prior may have many solutions.

Moreno, et. al. (1998) proposed an intrinsic limiting procedure to determine an unique
intrinsic prior. Following theirs steps, we develop intrinsic prior for our problem.

It essentially consists in considering a fixed point θ1 and finding the conditional intrinsic
prior πI2(θ2|θ1) which is unique and given by

πI2(θ2|θ1) = πN2 (θ2)EH2

x(l)|θ2 [B̃N12(x(l))],

where

B̃N12(x(l)) =
f1(x(l)|θ1)

mN
2 (x(l))

.

This prior does not depend on any arbitrary constant and it is a probability density function.
Then the arbitrary point of θ1 is integrated out by πN1 (θ1), that is

πI2(θ2) =

∫
πN2 (θ2)EM2

x(l)|θ2 [B̃N12(x(l))]πN1 (θ1)dθ1.

Note that the pair πN1 (θ1) and πI2(θ2), although improper, are well-calibrated in the sense
that both depends on the same arbitrary constant. Further, they are justified by using a
limiting argumentation: even when they are not proper the associated Bayes factor is a well-
defined limit of actual Bayes factors for priors which are probability densities (Moreno et al.,
1998). Interestingly, the intrinsic priors

{
πN1 (θ1), πI2(θ2)

}
have proved to behave extremely

well in a wide variety of problems involving nested models (Bertolino et al., 2000; Moreno
et al., 1999, 2005; Moreno and Liseo, 2003).

From now on, we develop intrinsic priors
{
πN1 (θ1), πI2(θ2)

}
for our problem. Since,

EH2

x(l)|µ1
[B̃N12(x(l))] = (2π)−1/2|cµ0|−1EH2

x(l)|µ1

[
|Xj | exp

{
− (Xj − µ0)2

2c2µ2
0

}]
,

after some calculation, we can find that

EH2

x(l)|µ

[
|Xj | exp

{
−(Xj − µ0)2

2c2µ2
0

}]
=

1√
2π|cµ|

{
c2e−c

−2

(µµ0)2

µ2 + µ2
0

(
2 + e

(µ+µ0)2

2c2(µ2+µ20)
√

2π

√
(µ+ µ0)2

c2(µ2 + µ2
0)
Erf

[√
(µ+ µ0)2

2c2(µ2 + µ2
0)

])}
,

where

Erf(a) =
2√
π

∫ a

0

e−t
2

dt.

And the conditional intrinsic prior is given by

πI2(µ|µ0) = πN2 (µ)× EH2

x(l)|µ[B̃N12(x(l))]

=

√
2

π

|c|(µµ0)2

(µ2 + µ2
0)
e−

1
c2 +

(µµ0)2|µ+ µ0|
(µ2 + µ2

0)3/2
e
− (µ−µ0)2

2c2(µ2+µ20)Erf

[√
(µ+ µ0)2

2c2(µ2 + µ2
0)

]
.
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Since, πN1 (µ) = I(µ = µ0), then πI2(µ1) = πI2(µ1|µ0).
Now, we apply these intrinsic priors to calculate Bayes factor for our testing problem. For

testing H2 verses H1, the Bayes factor under intrinsic priors is

BIP21 =
mIP

2 (x)

mIP
1 (x)

, (3.9)

where

mIP
1 (x) = (2π)−n/2(|cµ0|)−n exp

{
−s

2 + n(x− µ0)2

2c2µ2
0

}
and

mIP
2 (x) =

∫ ∞
−∞

(2π)−n/2(|cµ|)−ne−
s2+n(x−µ)2

2c2µ2

×

(√
2

π

|c|(µµ0)2

(µ2 + µ2
0)
e−

1
c2 +

(µµ0)2|µ+ µ0|
(µ2 + µ2

0)3/2
e
− (µ−µ0)2

2c2(µ2+µ20)Erf

[√
(µ+ µ0)2

2c2(µ2 + µ2
0)

])
dµ.

It needs only one dimensional integration to evaluate the Bayes factor based on intrinsic
priors.

4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (c, µ) and n. In particular, for fixed (c, µ), we take
1,000 independent random samples of Xi with sample size n from the model (3.1). We want
to test the hypotheses H1 : µ = 5 versus H2 : µ 6= 5. The posterior probabilities of H1 being
true are computed assuming equal prior probabilities. Tables 4.1 and 4.2 show the results
of the averages and the standard deviations in parentheses of posterior probabilities. From
Tables 4.1 and 4.2, the FBF, the AIBF, the MIBF and intrinsic priors give fairly reasonable
answers for all configurations. Also the AIBF, the MIBF and intrinsic priors give a similar
behavior for all sample sizes, and the FBF favors the hypothesis H2 than the AIBF, the
MIBF and intrinsic priors.
Example. In a bioequivalence study of two formulations of a drug product presented in

Wu and Jiang (2001), we now consider the period 1 data (Cmax data) presented in their
Table 3. Wu and Jiang (2001) showed that the Cmax data follow the normal distribution.
These data are as follows;

18.25, 37.99, 24.09, 36.47, 24.60, 29.25, 28.27, 32.77 25.79, 32.50, 32.41, 19.52, 31.13

For this data, the sample mean is 28.695, the sample standard deviation are 5.803 and
coefficient of variation is 0.202. So we put c = 0.202. We want to test the hypotheses
H1 : µ = 29 versus H2 : µ 6= 29. The p-value based on the likelihood ratio test (Bhat
and Rao, 2007) and the values of the Bayes factor and the posterior probabilities of H1

are given in Table 4.2. In Table 4.2, PF (·),PAI(·), PMI(·) and P IP (·) are the posterior
probabilities of the hypothesis H1 being true based on FBF, AIBF, MIBF and intrinsic
priors, respectively. From the results of Table 4.2, the p-value and posterior probabilities
based on various Bayes factors give the same answer, and select the hypothesis H1. The
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Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

µ n PF (H1|x) PAI(H1|x) PMI(H1|x) P IP (H1|x)
c = 0.1

5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
1.5 10 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

3.5 10 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 0.255 (0.203) 0.277 (0.228) 0.277 (0.221) 0.283 (0.233)

4.5 10 0.101 (0.149) 0.115 (0.170) 0.111 (0.163) 0.117 (0.172)
15 0.032 (0.079) 0.037 (0.091) 0.035 (0.087) 0.038 (0.093)
20 0.011 (0.045) 0.013 (0.054) 0.012 (0.051) 0.013 (0.053)
5 0.606 (0.115) 0.664 (0.132) 0.651 (0.138) 0.680 (0.127)

5.0 10 0.669 (0.126) 0.728 (0.128) 0.712 (0.131) 0.735 (0.127)
15 0.704 (0.135) 0.760 (0.134) 0.744 (0.137) 0.765 (0.133)
20 0.727 (0.136) 0.781 (0.133) 0.765 (0.136) 0.784 (0.131)
5 0.287 (0.233) 0.309 (0.259) 0.305 (0.254) 0.319 (0.267)

5.5 10 0.125 (0.185) 0.141 (0.208) 0.135 (0.201) 0.143 (0.210)
15 0.054 (0.123) 0.063 (0.140) 0.060 (0.135) 0.064 (0.142)
20 0.025 (0.081) 0.030 (0.095) 0.028 (0.090) 0.030 (0.095)
5 0.000 (0.001) 0.000 (0.001) 0.000 (0.002) 0.000 (0.001)

6.5 10 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

8.5 10 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

c = 0.5
5 0.004 (0.006) 0.006 (0.011) 0.009 (0.029) 0.004 (0.007)

1.5 10 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 0.390 (0.194) 0.444 (0.215) 0.454 (0.212) 0.454 (0.221)

3.5 10 0.235 (0.205) 0.281 (0.234) 0.281 (0.228) 0.283 (0.234)
15 0.131 (0.160) 0.164 (0.191) 0.161 (0.186) 0.164 (0.190)
20 0.072 (0.115) 0.094 (0.142) 0.092 (0.139) 0.093 (0.141)
5 0.597 (0.150) 0.667 (0.165) 0.660 (0.166) 0.683 (0.165)

4.5 10 0.632 (0.179) 0.703 (0.184) 0.689 (0.183) 0.709 (0.184)
15 0.643 (0.195) 0.711 (0.197) 0.696 (0.197) 0.716 (0.196)
20 0.631 (0.214) 0.699 (0.214) 0.682 (0.215) 0.703 (0.213)
5 0.616 (0.128) 0.688 (0.140) 0.679 (0.141) 0.705 (0.138)

5.0 10 0.681 (0.142) 0.751 (0.144) 0.737 (0.145) 0.759 (0.142)
15 0.720 (0.140) 0.787 (0.136) 0.772 (0.137) 0.791 (0.135)
20 0.751 (0.133) 0.814 (0.126) 0.800 (0.129) 0.817 (0.125)
5 0.587 (0.163) 0.661 (0.181) 0.656 (0.180) 0.674 (0.181)

5.5 10 0.620 (0.193) 0.693 (0.199) 0.680 (0.199) 0.699 (0.199)
15 0.631 (0.220) 0.701 (0.224) 0.687 (0.224) 0.705 (0.224)
20 0.629 (0.238) 0.696 (0.241) 0.680 (0.242) 0.699 (0.241)
5 0.431 (0.242) 0.491 (0.275) 0.492 (0.273) 0.500 (0.278)

6.5 10 0.334 (0.277) 0.386 (0.307) 0.378 (0.303) 0.391 (0.309)
15 0.251 (0.272) 0.294 (0.304) 0.285 (0.298) 0.296 (0.305)
20 0.188 (0.259) 0.222 (0.290) 0.214 (0.283) 0.223 (0.291)
5 0.149 (0.215) 0.170 (0.249) 0.180 (0.256) 0.171 (0.252)

8.5 10 0.029 (0.102) 0.035 (0.120) 0.035 (0.118) 0.035 (0.119)
15 0.003 (0.024) 0.004 (0.030) 0.004 (0.031) 0.004 (0.031)
20 0.001 (0.018) 0.002 (0.023) 0.002 (0.023) 0.002 (0.022)
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Table 4.2 The averages and the standard deviations in parentheses of posterior probabilities

µ n PF (H1|x) PAI(H1|x) PMI(H1|x) P IP (H1|x)
c = 1

5 0.067 (0.073) 0.091 (0.097) 0.120 (0.138) 0.083 (0.086)
1.5 10 0.002 (0.007) 0.003 (0.012) 0.005 (0.020) 0.003 (0.008)

15 0.000 (0.000) 0.000 (0.000) 0.000 (0.001) 0.000 (0.000)
20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 0.533 (0.189) 0.616 (0.203) 0.638 (0.206) 0.628 (0.206)

3.5 10 0.454 (0.232) 0.538 (0.250) 0.552 (0.251) 0.542 (0.250)
15 0.376 (0.248) 0.457 (0.272) 0.464 (0.271) 0.460 (0.271)
20 0.291 (0.236) 0.365 (0.268) 0.370 (0.269) 0.366 (0.267)
5 0.634 (0.137) 0.722 (0.145) 0.724 (0.148) 0.740 (0.147)

4.5 10 0.676 (0.176) 0.760 (0.176) 0.759 (0.171) 0.765 (0.175)
15 0.712 (0.168) 0.792 (0.163) 0.789 (0.162) 0.795 (0.162)
20 0.713 (0.188) 0.791 (0.179) 0.786 (0.180) 0.794 (0.178)
5 0.642 (0.143) 0.735 (0.152) 0.744 (0.159) 0.749 (0.151)

5.0 10 0.716 (0.129) 0.800 (0.123) 0.794 (0.126) 0.809 (0.119)
15 0.757 (0.124) 0.835 (0.113) 0.829 (0.115) 0.839 (0.111)
20 0.775 (0.125) 0.849 (0.110) 0.843 (0.110) 0.852 (0.110)
5 0.630 (0.144) 0.728 (0.150) 0.732 (0.156) 0.744 (0.149)

5.5 10 0.680 (0.172) 0.772 (0.166) 0.770 (0.166) 0.776 (0.166)
15 0.703 (0.183) 0.790 (0.173) 0.786 (0.174) 0.792 (0.173)
20 0.715 (0.197) 0.796 (0.187) 0.790 (0.188) 0.799 (0.186)
5 0.538 (0.218) 0.633 (0.239) 0.647 (0.239) 0.647 (0.242)

6.5 10 0.509 (0.277) 0.598 (0.295) 0.603 (0.293) 0.602 (0.296)
15 0.434 (0.302) 0.518 (0.327) 0.521 (0.325) 0.520 (0.328)
20 0.403 (0.317) 0.481 (0.343) 0.481 (0.340) 0.482 (0.344)
5 0.308 (0.278) 0.374 (0.327) 0.401 (0.333) 0.378 (0.330)

8.5 10 0.162 (0.246) 0.202 (0.289) 0.208 (0.292) 0.204 (0.290)
15 0.075 (0.169) 0.099 (0.208) 0.105 (0.215) 0.099 (0.208)
20 0.028 (0.102) 0.039 (0.128) 0.041 (0.132) 0.039 (0.128)

c = 5
5 0.120 (0.108) 0.149 (0.130) 0.166 (0.145) 0.149 (0.135)

1.5 10 0.010 (0.021) 0.014 (0.028) 0.016 (0.031) 0.014 (0.029)
15 0.001 (0.002) 0.001 (0.003) 0.001 (0.004) 0.001 (0.003)
20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 0.508 (0.182) 0.589 (0.200) 0.597 (0.200) 0.608 (0.207)

3.5 10 0.500 (0.229) 0.585 (0.242) 0.586 (0.240) 0.595 (0.244)
15 0.475 (0.261) 0.557 (0.274) 0.555 (0.274) 0.565 (0.276)
20 0.422 (0.272) 0.502 (0.291) 0.500 (0.290) 0.508 (0.292)
5 0.595 (0.143) 0.689 (0.151) 0.690 (0.152) 0.709 (0.157)

4.5 10 0.659 (0.181) 0.745 (0.179) 0.744 (0.178) 0.756 (0.180)
15 0.703 (0.189) 0.784 (0.180) 0.782 (0.181) 0.790 (0.179)
20 0.728 (0.188) 0.804 (0.176) 0.801 (0.178) 0.809 (0.175)
5 0.593 (0.142) 0.692 (0.151) 0.693 (0.154) 0.709 (0.155)

5.0 10 0.677 (0.167) 0.768 (0.160) 0.766 (0.162) 0.777 (0.161)
15 0.725 (0.163) 0.808 (0.147) 0.805 (0.149) 0.814 (0.147)
20 0.758 (0.160) 0.833 (0.144) 0.830 (0.146) 0.838 (0.143)
5 0.594 (0.146) 0.696 (0.153) 0.697 (0.156) 0.716 (0.155)

5.5 10 0.650 (0.187) 0.745 (0.181) 0.743 (0.181) 0.754 (0.181)
15 0.701 (0.188) 0.789 (0.175) 0.786 (0.177) 0.794 (0.174)
20 0.725 (0.193) 0.806 (0.178) 0.804 (0.178) 0.811 (0.178)
5 0.521 (0.202) 0.621 (0.223) 0.622 (0.224) 0.639 (0.227)

6.5 10 0.542 (0.252) 0.638 (0.264) 0.637 (0.264) 0.647 (0.264)
15 0.518 (0.292) 0.607 (0.306) 0.605 (0.306) 0.612 (0.307)
20 0.495 (0.313) 0.579 (0.327) 0.575 (0.327) 0.584 (0.327)
5 0.332 (0.257) 0.408 (0.302) 0.411 (0.304) 0.419 (0.310)

8.5 10 0.236 (0.269) 0.296 (0.313) 0.296 (0.312) 0.301 (0.316)
15 0.159 (0.243) 0.202 (0.286) 0.201 (0.285) 0.205 (0.288)
20 0.100 (0.200) 0.130 (0.239) 0.129 (0.239) 0.132 (0.241)
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Table 4.3 p-value, Bayes factor and posterior probabilities of H1 : µ = 29 being true

p-value BF
21 PF (H1|x) BAI

21 PAI(H1|x) BMI
21 PMI(H1|x) BIP

21 P IP (H1|x)
0.847 0.126 0.888 0.028 0.973 0.031 0.970 0.027 0.974

FBF has the smallest posterior probability than any other posterior probabilities based on
the AIBF, the MIBF and intrinsic priors. The FBF seems to favor the complex hypothesis.
As we expected, Bayes factors and posterior probabilities based on AIBF and intrinsic prior
are similar.

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based on
the fractional Bayes factor and the intrinsic Bayes factor for the normal mean with known
coefficient of variation under the reference prior. From our numerical results, the developed
hypothesis testing procedures give fairly reasonable answers for all parameter configurations.
However the FBF slightly favours the hypothesis H2 than the AIBF, the MIBF and intrinsic
priors. Therefore from our simulation and example, we recommend the use of the AIBF,
the MIBF and intrinsic priors than the FBF in practical application.

Appendix: The propriety of posterior distribution

We prove the propriety of posterior distribution based on the reference prior. Under the
reference prior, the posterior for µ given x is

π(µ|x) ∝ (|cµ|)−n|µ|−1 exp

{
−S

2 + n(x− µ)2

2c2µ2

}
,

where x =
∑n
i=1 xi/n . Then∫ ∞
−∞

π(µ|x)dµ ∝ 2
n
2 Γ
(n

2

) [
S2 + nx2

]−n2 exp
{
− n

2c2

}
×Hypergeometric1F1

[
n

2
,

1

2
,

n2x2

2c2(S2 + nx2)

]
,

where Hypergeometric1F1[a, b, c] is the Kummer confluent hypergeometric function and this
value of integral is proper if n ≥ 1. This completes the proof.
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