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Abstract

In this paper, we consider the problem of testing the equality of the scale parameters
in two parameter exponential distributions. We propose Bayesian testing procedures
for the equality of the scale parameters under the noninformative priors. The nonin-
formative prior is usually improper which yields a calibration problem that makes the
Bayes factor to be defined up to a multiplicative constant. Thus, we propose the default
Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes
factors under the reference priors. Simulation study and an example are provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, reference prior, scale param-
eter, two parameter exponential distribution.

1. Introduction

The exponential distribution plays an important role in the field of life testing and reliabil-
ity. One is referred to Zelen (1966), Johnson and Kotz (1970), Bain (1978) and Lawless and
Singhal (1980). The probability density function of two parameter exponential distribution
E(µ, σ) with the location parameter µ and the scale parameter σ is given by

f(x|µ, σ) =
1

σ
exp

{
−x− µ

σ

}
, x ≥ µ > 0, σ > 0. (1.1)

The decision theoretic estimation of the scale parameter was firstly studied by Arnold
(1970). Zidek (1973), Brewster (1974), Kubokawa (1994) and Petropoulos and Kourouklis
(2002) considered Bayesian estimation of scale parameter based on decision theory. Also,
the estimator of the ratio of the scale parameters from the decision theoretic point of view
was studied by Madi and Tsui (1990), Madi (2008) and Bobotas and Kourouklis (2011). All
the papers mentioned above were focused on Bayesian point estimation.
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The problem of comparison for two scale parameters is not considered by Bayesian view-
point, yet. In this paper, we focus on Bayesian testing procedures for the equality of two
scale parameters.

The equality problem of two scale parameters arises when one wants to know the equality of
the hazard rate of these distributions. For example, experiment with two different conditions
is performed. Usually, an experiment condition changes the hazard rate of a test item. After
performing experiment, we want to know whether the condition changes the hazard rate of
an item or not. At this moment, the equality problem of two scale parameters is of interest.

In Bayesian model selection or testing problem, the Bayes factor under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper
so that such priors are only defined up to arbitrary constants which affects the values of
Bayes factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi
(1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion
of the likelihood with a so-called the fraction b. These approaches have shown to be quite
useful in many statistical areas (Kang et al., 2011, 2012). An excellent exposition of the
objective Bayesian method to model selection is Berger and Pericchi (2001).

The outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian
hypothesis testing based on the Bayes factors. In Section 3, under the reference priors, we
provide the Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factors. In Section 4, simulation study and an example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypothesesH1,H2 ,· · · ,Hq are under consideration, with the data x = (x1, x2,
· · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter
vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let pi be
the prior probability of hypothesis Hi,i = 1, 2, · · · , q . Then, the posterior probability that
the hypothesis Hi is true is

P (Hi|x) =
p(Hi)p(x|Hi)∑q

j=1 p(Hj)p(x|Hj)
=

pi
∫
fi(x|θi)πi(θi)dθi∑q

j=1 pj
∫
fj(x|θj)πj(θj)dθj

=

 q∑
j=1

pj
pi
·Bji

−1 ,
(2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)
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The Bji interpreted as the comparative support of the data for Hj versus Hi. The computa-
tion of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in Bayesian
analysis, one can use noninformative prior πN

i . Common choices are the uniform prior, Jef-
freys’ prior and the reference prior. The noninformative prior πN

i is typically improper.
Hence, the use of noninformative prior πN

i in (2.2) causes the Bji to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996, 1998) proposed the intrinsic
Bayes factor and the median Bayes factor, and O’Hagan (1995) proposed the fractional
Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the training sample and let x(−l) be the remainder of the data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view (2.3), the posteriors πN
i (θi|x(l)) are well defined. Then the idea is to compute the

Bayes factors with the remainder of the data x(−l) using πN
i (θi|x(l)) as the priors. The

result is

Bji(l) =

∫
f(x(−l)|θj ,x(l))πN

j (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πN

i (θi|x(l))dθi
= BN

ji ·BN
ij (x(l)) (2.4)

where

BN
ji = BN

ji (x) =
mN

j (x)

mN
i (x)

and

BN
ij (x(l)) =

mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and the training sample
x(l), respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BN

ij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus, the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAI
ji = BN

ji ×
1

L

L∑
l=1

BN
ij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also, the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BN

ji ×ME[BN
ij (x(l))], (2.6)

where ME indicates the median for all the training sample Bayes factors. Therefore, we can
also calculate the posterior probability of Hi using (2.1), where Bji is replaced by BAI

ji and

BMI
ji from (2.5) and (2.6), respectively.
The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind

the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction b of each likelihood function L(θi) = fi(x|θi) with the
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remaining 1−b fraction of the likelihood used for model discrimination. Then, the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BF
ji = BN

ji ×
∫
Lb(x|θi)πN

i (θi)dθi∫
Lb(x|θj)πN

j (θj)dθj
= BN

ji ×
mb

i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice of
b is b = m/n, where m is the size of the minimal training sample, assuming that this number
is uniquely defined. See O’Hagan (1995, 1997) and the discussion by Berger and Mortera in
O’Hagan (1995).

3. Bayesian hypothesis testing

Let xi, i = 1, · · · , n1 denote observations from E(µ1, σ1), and yi, i = 1, · · · , n2 denote
observations from E(µ2, σ2). Then likelihood function is given by

f(x,y|µ1, µ2, σ1, σ2) = σ−n1
1 σ−n2

2 exp

{
−
∑n1

i=1(xi − µ1)

σ1
−
∑n2

i=1(yi − µ2)

σ2

}
, (3.1)

where x = (x1, · · · , xn1
), y = (y1, · · · , yn2

), µ1 > 0, µ2 > 0, σ1 > 0 and σ2 > 0. We are
interested in testing the hypotheses H1 : σ1 = σ2 versus H2 : σ1 6= σ2 based on the fractional
Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : σ1 = σ2 ≡ σ is

L1(σ, µ1, µ2|x,y) = σ−n1−n2 exp

{
− 1

σ

[
n1∑
i=1

(xi − µ1) +

n2∑
i=1

(yi − µ2)

]}
. (3.2)

And under H1, the reference prior for (σ, µ1, µ2) developed by Ghosal (1997) and Kang et
al. (2008) is

πN
1 (σ, µ1, µ2) ∝ σ−1. (3.3)

Then, from the likelihood (3.2) and the reference prior (3.3), the element mb
1(x,y) of the

FBF under H1 is given by

mb
1(x,y) =

∫ ∞
0

∫ y(1)

0

∫ x(1)

0

Lb
1(σ, µ1, µ2|x,y)πN

1 (σ, µ1, µ2)dµ1dµ2dσ

=
b−(n1+n2)b

n1n2
Γ [b(n1 + n2)− 2] (3.4)

×
{

[n1x̄+ n2ȳ − n1x(1) − n2y(1)]−(n1+n2)b+2 + [n1x̄+ n2ȳ]−(n1+n2)b+2

−[n1x̄+ n2ȳ − n1x(1)]−(n1+n2)b+2 − [n1x̄+ n2ȳ − n2y(1)]−(n1+n2)b+2
}
,

where x(1) = min{x1, · · · , xn1
}, y(1) = min{y1, · · · , yn2

}, x̄ =
∑n1

i=1 xi/n1, ȳ =
∑n2

i=1 yi/n2.
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For the hypothesis H2 : σ1 6= σ2, the reference prior for (σ1, σ2, µ1, µ2) is

πN (σ1, σ2, µ1, µ2) ∝ σ−11 σ−12 (3.5)

which is derived by Ghosal (1997). The likelihood function under H2 is

L2(σ1, σ2, µ1, µ2|x,y) = σ−n1
1 σ−n2

2 exp

{
−
∑n1

i=1(xi − µ1)

σ1
−
∑n2

i=1(yi − µ2)2

σ2

}
. (3.6)

Thus, from the reference prior (3.5) and the likelihood (3.6), the element mb
2(x,y) of FBF

under H2 is given as follows.

mb
2(x,y) =

∫ ∞
0

∫ ∞
0

∫ y(1)

0

∫ x(1)

0

Lb
2(σ1, σ2, µ1, µ2|x,y)πN

2 (σ1, σ2, µ1, µ2)dµ1dµ2dσ1dσ2

=
b−(n1+n2)b

n1n2
Γ [bn1 − 1] Γ [bn2 − 1]

{
[n1(x̄− x(1))]−(bn1−1) − [n1x̄]−(bn1−1)

}
×

{
[n2(ȳ − y(1))]−(bn2−1) − [n2ȳ]−(bn2−1)

}
. (3.7)

Therefore, the element BN
21 of FBF is given by

BN
21 =

Γ [n1 + n2 − 2]

Γ [n1 − 1] Γ [n2 − 1]

S2(x,y)

S1(x,y)
, (3.8)

where

S1(x,y) =
{

[n1x̄+ n2ȳ − n1x(1) − n2y(1)]−(n1+n2)+2 + [n1x̄+ n2ȳ]−(n1+n2)+2

−[n1x̄+ n2ȳ − n1x(1)]−(n1+n2)+2 − [n1x̄+ n2ȳ − n2y(1)]−(n1+n2)+2
}

and

S2(x,y) =
{

[n1(x̄− x(1))]−(n1−1) − [n1x̄]−(n1−1)
}{

[n2(ȳ − y(1))]−(n2−1) − [n2ȳ]−(n2−1)
}
.

And the ratio of marginal densities with fraction b is

mb
1(x,y)

mb
2(x,y)

=
Γ [bn1 − 1] Γ [bn2 − 1]

Γ [b(n1 + n2)− 2]

S1(x,y; b)

S2(x,y; b)
, (3.9)

where

S1(x,y; b) =
{

[n1x̄+ n2ȳ − n1x(1) − n2y(1)]−b(n1+n2)+2 + [n1x̄+ n2ȳ]−b(n1+n2)+2

−[n1x̄+ n2ȳ − n1x(1)]−b(n1+n2)+2 − [n1x̄+ n2ȳ − n2y(1)]−b(n1+n2)+2
}

and

S2(x,y; b) =
{

[n1(x̄− x(1))]−(bn1−1) − [n1x̄]−(bn1−1)
}

×
{

[n2(ȳ − y(1))]−(bn2−1) − [n2ȳ]−(bn2−1)
}
.

Thus, the FBF of H2 versus H1 is given by

BF
21 =

Γ [bn1 − 1] Γ [bn2 − 1] Γ [n1 + n2 − 2]

Γ [n1 − 1] Γ [n2 − 1] Γ [b(n1 + n2)− 2]

S2(x,y)S1(x,y; b)

S1(x,y)S2(x,y; b)
. (3.10)
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3.2. Bayesian hypothesis testing based on the intrinsic Bayes factor

The element BN
21 of the intrinsic Bayes factor (IBF) is given in (3.8). To obtain IBF, we

only calculate the marginal densities of a minimal training sample under the hypotheses H1

and H2. The marginal density of (Xj1 , Xj2) and (Yk1
, Yk2

) is finite for all 1 ≤ j1 < j2 ≤ n1
and 1 ≤ k1 < k2 ≤ n2 under hypotheses H1 and H2. Thus we conclude that any training
sample of size 4, which is 2 sample from each population, is a minimal training sample.

The marginal density mN
1 (xj1 , xj2 , yk1

, yk2
) under H1 is given by

mN
1 (xj1 , xj2 , yk1

, yk2
)

=

∫ ∞
0

∫ z(k1)

0

∫ z(j1)

0

f(xj1 , xj2 , yk1
, yk2
|σ, µ1, µ2)πN

1 (σ, µ1, µ2)dµ1dµ2dσ

=
1

16

{[
xj1 + xj2 + yk1

+ yk2

2
− z(j1) − z(k1)

]−2
+

[
xj1 + xj2 + yk1

+ yk2

2

]−2
−
[
xj1 + xj2 + yk1 + yk2

2
− z(j1)

]−2
−
[
xj1 + xj2 + yk1 + yk2

2
− z(k1)

]−2}
, (3.11)

where z(j1) = min{xj1 , xj2} and z(k1) = min{yk1
, yk2
}. And under H2 the marginal density

mN
2 (xj1 , xj2 , yk1 , yk2) is given by

mN
2 (xj1 , xj2 , yk1 , yk2) =

∫ ∞
0

∫ ∞
0

∫ z(k1)

0

∫ z(j1)

0

f(xj1 , xj2 , yk1 , yk2 |σ1, σ2, µ1, µ2)

× πN
2 (σ1, σ2, µ1, µ2)dµ1dµ2dσ1dσ2

=
1

16

{[
(xj1 + xj2)/2− z(j1)

]−1 − [(xj1 + xj2)/2]
−1
}

×
{[

(yk1 + yk2)/2− z(k1)

]−1 − [(yk1 + yk2)/2]
−1
}
. (3.12)

Therefore, the AIBF of H2 versus H1 is given by

BAI
21 =

Γ [n1 + n2 − 2]

Γ [n1 − 1] Γ [n2 − 1]

S2(x,y)

S1(x,y)

 1

L

n1∑
j1<j2

n2∑
k1<k2

T1(xj1 , xj2 , yk1
, yk2

)

T2(xj1 , xj2 , yk1 , yk2)

 , (3.13)

where L = [n1n2(n1 − 1)(n2 − 1)]/4,
T1(xj1 , xj2 , yk1 , yk2)

=
{[

(xj1 + xj2 + yk1
+ yk2

)/2− z(j1) − z(k1)

]−2
+ [(xj1 + xj2 + yk1

+ yk2
)/2]

−2

−
[
(xj1 + xj2 + yk1

+ yk2
)/2− z(j1)

]−2 − [(xj1 + xj2 + yk1
+ yk2

)/2− z(k1)

]−2}
and

T2(xj1 , xj2 , yk1
, yk2

) =
{[

(xj1 + xj2)/2− z(j1)
]−1 − [(xj1 + xj2)/2]

−1
}

×
{[

(yk1
+ yk2

)/2− z(k1)

]−1 − [(yk1
+ yk2

)/2]
−1
}
.

From the marginal densities (3.11) and (3.12), the MIBF of H2 versus H1 is given by

BMI
21 =

Γ [n1 + n2 − 2]

Γ [n1 − 1] Γ [n2 − 1]

S2(x,y)

S1(x,y)
ME

[
T1(xj1 , xj2 , yk1

, yk2
)

T2(xj1 , xj2 , yk1
, yk2

)

]
. (3.14)
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4. Numerical studies

In order to assess the developed Bayesian hypothesis testing procedures, we evaluate the
posterior probability for several configurations of (µ1, σ1), (µ2, σ2) and (n1, n2). In particular,
for fixed (µ1, σ1) and (µ2, σ2), we take 2,000 independent random samples of Xi and Yi with
sample size n1 and n2 from the model (1.1), respectively. We want to test the hypotheses
H1 : σ1 = σ2 versus H2 : σ1 6= σ2. The posterior probabilities of the hypothesis H1 being true
are computed assuming equal prior probabilities. Table 4.1 shows the results of the averages
and the standard deviations of posterior probabilities. In Table 4.1, PF (·),PAI(·) and PMI(·)
are the posterior probabilities of H1 being true based on FBF, AIBF and MIBF, respectively.
From results of Table 4.1, the FBF, the AIBF and the MIBF give fairly reasonable answers
for all configurations, and indicate that for values of σ2 that are far from σ1 they select the
hypothesis H2. Also the FBF, the AIBF and the MIBF give a similar behavior for all sample
sizes, and the results of table are not much sensitive to the change of the values of (µ1, µ2).
But the AIBF and the MIBF slightly favor H1 than the FBF. The FBF gives exact answer
even when the difference between σ1 and σ2 is small. The behavior of FBF is more desirable.

Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

σ1 σ2 (n1, n2) PF (H1|x, y) PAI (H1|x, y) PMI (H1|x, y)
µ1 = 1.0, µ2 = 1.0

1.0

1.0

5,5 0.528 (0.116) 0.611 (0.139) 0.594 (0.135)
5,10 0.566 (0.128) 0.647 (0.139) 0.629 (0.137)
10,10 0.601 (0.131) 0.696 (0.138) 0.678 (0.138)
10,20 0.641 (0.140) 0.724 (0.142) 0.707 (0.142)

2.0

5,5 0.471 (0.151) 0.540 (0.184) 0.530 (0.175)
5,10 0.469 (0.179) 0.537 (0.201) 0.523 (0.193)
10,10 0.432 (0.221) 0.509 (0.251) 0.495 (0.245)
10,20 0.416 (0.234) 0.488 (0.258) 0.473 (0.253)

3.0

5,5 0.398 (0.178) 0.448 (0.219) 0.444 (0.205)
5,10 0.355 (0.196) 0.403 (0.225) 0.397 (0.214)
10,10 0.260 (0.218) 0.309 (0.256) 0.301 (0.248)
10,20 0.199 (0.197) 0.240 (0.228) 0.231 (0.221)

5.0

5,5 0.275 (0.185) 0.294 (0.224) 0.302 (0.213)
5,10 0.201 (0.170) 0.221 (0.195) 0.224 (0.186)
10,10 0.090 (0.138) 0.105 (0.165) 0.104 (0.160)
10,20 0.046 (0.088) 0.056 (0.107) 0.055 (0.103)

7.0

5,5 0.203 (0.167) 0.205 (0.198) 0.219 (0.190)
5,10 0.119 (0.130) 0.126 (0.147) 0.134 (0.143)
10,10 0.037 (0.084) 0.041 (0.100) 0.042 (0.097)
10,20 0.012 (0.035) 0.014 (0.044) 0.014 (0.043)

µ1 = 1.0, µ2 = 5.0

1.0

1.0

5,5 0.548 (0.116) 0.625 (0.136) 0.609 (0.132)
5,10 0.586 (0.125) 0.669 (0.135) 0.651 (0.132)
10,10 0.627 (0.131) 0.712 (0.134) 0.693 (0.134)
10,20 0.655 (0.139) 0.739 (0.139) 0.721 (0.140)

2.0

5,5 0.498 (0.151) 0.552 (0.187) 0.544 (0.176)
5,10 0.490 (0.182) 0.553 (0.205) 0.542 (0.195)
10,10 0.468 (0.217) 0.527 (0.245) 0.514 (0.239)
10,20 0.450 (0.235) 0.518 (0.256) 0.504 (0.250)

3.0

5,5 0.411 (0.181) 0.442 (0.222) 0.443 (0.208)
5,10 0.368 (0.202) 0.410 (0.231) 0.407 (0.219)
10,10 0.278 (0.225) 0.310 (0.256) 0.304 (0.248)
10,20 0.226 (0.215) 0.264 (0.244) 0.257 (0.236)

5.0

5,5 0.284 (0.186) 0.286 (0.220) 0.299 (0.209)
5,10 0.211 (0.180) 0.226 (0.203) 0.234 (0.194)
10,10 0.101 (0.152) 0.109 (0.172) 0.110 (0.168)
10,20 0.051 (0.098) 0.059 (0.114) 0.059 (0.111)

7.0

5,5 0.208 (0.176) 0.198 (0.202) 0.215 (0.195)
5,10 0.124 (0.137) 0.127 (0.153) 0.138 (0.150)
10,10 0.039 (0.084) 0.040 (0.093) 0.042 (0.092)
10,20 0.012 (0.036) 0.013 (0.041) 0.013 (0.041)

µ1 = 1.0, µ2 = 10.0

1.0

1.0

5,5 0.565 (0.110) 0.637 (0.129) 0.619 (0.124)
5,10 0.585 (0.128) 0.670 (0.139) 0.651 (0.136)
10,10 0.636 (0.138) 0.714 (0.143) 0.696 (0.142)
10,20 0.657 (0.141) 0.741 (0.141) 0.723 (0.142)

2.0

5,5 0.513 (0.151) 0.558 (0.188) 0.550 (0.175)
5,10 0.501 (0.183) 0.564 (0.206) 0.553 (0.196)
10,10 0.493 (0.220) 0.544 (0.248) 0.531 (0.241)
10,20 0.445 (0.236) 0.511 (0.258) 0.498 (0.252)

3.0

5,5 0.438 (0.178) 0.459 (0.220) 0.461 (0.206)
5,10 0.382 (0.204) 0.423 (0.233) 0.422 (0.220)
10,10 0.317 (0.232) 0.342 (0.261) 0.337 (0.252)
10,20 0.232 (0.218) 0.268 (0.248) 0.263 (0.240)

5.0

5,5 0.294 (0.192) 0.284 (0.224) 0.301 (0.214)
5,10 0.218 (0.178) 0.230 (0.200) 0.241 (0.192)
10,10 0.111 (0.157) 0.114 (0.173) 0.115 (0.169)
10,20 0.052 (0.094) 0.059 (0.110) 0.060 (0.107)

7.0

5,5 0.226 (0.183) 0.208 (0.207) 0.227 (0.199)
5,10 0.131 (0.140) 0.132 (0.155) 0.146 (0.153)
10,10 0.041 (0.095) 0.040 (0.102) 0.042 (0.100)
10,20 0.014 (0.042) 0.015 (0.048) 0.016 (0.047)
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Example 4.1 This example taken from Wu and Wu (2005). In a clinical trial, comparing
the duration of remission achieved by four drugs used in the treatment of leukemia, four
groups of 20 patients each were used. We used the duration of remission achieved by two
drugs, and the data sets are given by

Group 1 : 1.034, 2.344, 1.266, 1.563, 1.169, 4.118, 1.013, 1.509, 1.109, 1.965, 5.136, 1.533,

1.716, 2.778, 2.546, 2.626, 3.413, 1.929, 2.061, 2.951

Group 2 : 4.158, 4.025, 5.170, 11.909, 4.912, 4.629, 3.955, 6.735, 3.140, 12.446, 8.777,

6.321, 3.256, 8.250, 3.759, 5.205, 3.071, 3.147, 9.773, 10.218.

For this data sets, the maximum likelihood estimates of σ1 in group 1 is 1.176, and for
group 2, the maximum likelihood estimates of σ1 is 3.072. The estimate of group2 is greater
than two times of the estimate of group 1. This fact suggests that there is a strong evidence
of favoring H2.

We want to test the hypotheses H1 : σ1 = σ2 versus H2 : σ1 6= σ2. The values of the Bayes
factors and the posterior probabilities of the hypothesis H1 are given in Table 4.2. From the
results of Table 4.2, the posterior probabilities under various Bayes factors give the same
answer, and select the hypothesis H2. The FBF has the smallest posterior probability of H1,
but the values of three Bayes factors are almost the same.

Table 4.2 Bayes factor and posterior probabilities of H1 : σ1 = σ2

BF
21 PF (H1|x,y) BAI

21 PAI(H1|x,y) BMI
21 PMI(H1|x,y)

13.079 0.071 10.309 0.088 10.679 0.086

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the equality of the scale
parameters in two parameter exponential distributions under the reference priors. From our
numerical results, the developed hypothesis testing procedures give fairly reasonable answers
for all parameter configurations.

When the difference between scale parameters are small and the sample size is small, the
posterior probabilities of H1 based on the FBF are smaller than 0.5. Based on this fact, we
can conclude that the FBF gives more reasonable answer than the IBF. When the hypothesis
H1 is true, the posterior probabilities based on the IBF or FBF are greater than 0.5. But the
posterior probabilities based on the FBF is smaller than that of the IBF. This fact suggests
that the AIBF and the MIBF slightly favors the hypothesis H1 than the FBF.

From results of our simulation and example, we recommend the use of the FBF than
the AIBF and the MIBF for practical application in view of its simplicity and ease of
implementation.

For further study, to develop the intrinsic prior or expected posterior prior in this model
will be an interesting topic.
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