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Abstract

This article deals with the problem of testing for the equality of the shape pa-
rameters in two inverse Weibull distributions. We propose Bayesian hypothesis testing
procedures for the equality of the shape parameters under the noninformative prior.
The noninformative prior is usually improper which yields a calibration problem that
makes the Bayes factor to be defined up to a multiplicative constant. So we propose the
default Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factors under the reference priors. Simulation study and an example
are provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, inverse Weibull distribution,
reference prior, shape parameter.

1. Introduction

Consider X has an inverse Weibull distribution with the scale parameter η and the shape
parameter β. Then the likelihood function is

L(η, β) = βηβx−(β+1) exp

{
−
(η
x

)β}
, x > 0, (1.1)

where η > 0 and β > 0. Drapella (1993) calls the inverse Weibull distribution as the comple-
mentary Weibull distribution and Mudhokar and Kollia (1994) call it the reciprocal Weibull
distribution. The inverse Weibull distribution has the ability to model failure rates which
are quite common in reliability (Keller and Kamath, 1982; Erto, 1989; Calabria and Pulcini,
1989). The density and the hazard function of inverse Weibull can be unimodal or decreas-
ing depending on the choice of the shape parameter. Also the inverse Weibull distribution
becomes the inverse Rayleigh distribution and the inverse exponential distribution for β = 2
and β = 1, respectively.

The present paper focuses on Bayesian testing for the equality of the shape parameters
in two inverse Weibull distributions. In Bayesian model selection or testing problem, the
Bayes factor under proper priors or informative priors have been very successful. However,
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limited information and time constraints often require the use of noninformative priors. Since
noninformative priors such as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989,
1992) are typically improper so that such priors are only defined up to arbitrary constants
which affects the values of Bayes factors. Spiegelhalter and Smith (1982), O’Hagan (1995)
and Berger and Pericchi (1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion
of the likelihood with a so-called the fraction b. These approaches have shown to be quite
useful in many statistical areas (Kang et al., 2012, 2013). An excellent exposition of the
objective Bayesian method to model selection is Berger and Pericchi (2001).

The inverse Weibull distribution has been derived as a suitable model for describing the
degradation phenomena of mechanical components, such as the dynamic components of
diesel engines (Keller and Kamath, 1982). The physical failure process given by Erto (1989)
leads to the inverse Weibull model. Etro (1989) showed that the inverse Weibull distribution
provides a good fit to several data set, such as the times to breakdown of an insulating fluid
subject to the action of a constant tension (Nelson, 1982).

Inference in classical and Bayesian approaches for the inverse Weibull distribution are
given in the literature. Keller and Kamath (1982) studied the shapes of the density and
failure rate functions. Erto (1989) used the least square method for obtaining the estimators
of the parameters and reliability. Calabria and Pulcini (1989) have investigated the statistical
properties of the maximum likelihood estimators of the parameters and reliability. Calabria
and Pulcini (1992) derived the Bayes estimator of the parameters and reliability. Calabria
and Pulcini (1994) studied Bays 2-sample prediction for some future variables. Maswadah
(2003) proposed the conditional inference procedures for estimating the parameters and
reliability. Kundu and Howlader (2010) studied the Bayesian inference and prediction for the
parameters and some future variables. A detailed study of the inverse Weibull distribution
is given by Johnson et al. (1995) and Murthy et al. (2004).

In this paper, we propose the objective Bayesian hypothesis testing procedures for the
equality of the shape parameters of two inverse Weibull distributions based on the Bayes
factors. The outline of the remaining sections is as follows. In Section 2, we introduce the
Bayesian hypothesis testing based on the Bayes factors. In Section 3, under the reference
priors, we provide the Bayesian hypothesis testing procedures based on the fractional Bayes
factor and the intrinsic Bayes factors. In Section 4, simulation study and an example are
given.

2. Intrinsic and fractional Bayes factors

Suppose that hypothesesH1,H2 ,· · · ,Hq are under consideration, with the data x = (x1, x2,
· · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter
vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let pi be
the prior probability of hypothesis Hi,i = 1, 2, · · · , q . Then the posterior probability that
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the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1 , (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji interpreted as the comparative support of the data for Hj versus Hi. The computa-
tion of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in Bayesian
analysis, one can use noninformative priors πNi . Common choices are the uniform prior,
Jeffreys’ prior and the reference prior. The noninformative prior πNi is typically improper.
Hence the use of noninformative prior πNi in (2.2) causes the Bji to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic Bayes
factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be so used and let x(−l) be the remainder of the
data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view (2.3), the posteriors πNi (θi|x(l)) are well defined. Now, consider the Bayes factor
Bji(l) with the remainder of the data x(−l) using πNi (θi|x(l)) as the priors:

Bji(l) =

∫
f(x(−l)|θj ,x(l))πNj (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πNi (θi|x(l))dθi

= BNji ·BNij (x(l)) (2.4)

where

BNji = BNji (x) =
mN
j (x)

mN
i (x)

and

BNij (x(l)) =
mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BNij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAIji = BNji ×
1

L

L∑
l=1

BNij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BNji ×ME[BNij (x(l))], (2.6)
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where ME indicates the median for all the training sample Bayes factors. Therefore we can
also calculate the posterior probability of Hi using (2.1), where Bji is replaced by BAIji and

BMI
ji from (2.5) and (2.6), respectively.
The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind

the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, b, of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BFji = BNji ×
∫
Lb(x|θi)πNi (θi)dθi∫
Lb(x|θj)πNj (θj)dθj

= BNji ×
mb
i (x)

mb
j(x)

, (2.7)

where Lb(x|θi) = [fi(x|θi)]b. O’Hagan (1995) proposed three ways for the choice of the
fraction b. One common choice of b is b = m/n, where m is the size of the minimal training
sample, assuming that this number is uniquely defined. See O’Hagan (1995, 1997) and the
discussion by Berger and Mortera in O’Hagan (1995).

3. Bayesian hypothesis testing procedures

Let x1, x2, · · · , xn1 denote observations from the inverse Weibull distribution with the
parameters β1 and η1, and y1, y2, · · · , yn2 denote observations from the inverse Weibull
distribution with the parameters β2 and η2, respectively. Then likelihood function is given
by

f(x,y|β1, β2, η1, η2) = βn1
1 βn2

2 ηn1β1

1 ηn2β2

2

n1∏
i=1

x
−(β1+1)
i

n2∏
i=1

y
−(β2+1)
i

× exp

−
(

n1∑
i=1

η1
xi

)β1

−

(
n2∑
i=1

η2
yi

)β2

 , (3.1)

where x = (x1, · · · , xn1) and y = (y1, · · · , yn2). We are interested in testing the hypotheses
H1 : β1 = β2 versus H2 : β1 6= β2 based on the fractional Bayes factor and the intrinsic
Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : β1 = β2 ≡ β is

L1(β, η1, η2|x,y) = βn1+n2ηn1β
1 ηn2β

2

n1∏
i=1

x
−(β+1)
i

n2∏
i=1

y
−(β+1)
i

× exp

−
(

n1∑
i=1

η1
xi

)β
−

(
n2∑
i=1

η2
yi

)β . (3.2)

And under the hypothesis H1, the reference prior for (β, η1, η2) derived by Kang et al. (2014)
and is

πN1 (β, η1, η2) ∝ β−1η−11 η−12 . (3.3)
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Then from the likelihood (3.2) and the reference prior (3.3) , the element mb
1(x,y) of the

FBF under H1 is given by

mb
1(x,y) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

Lb1(β, η1, η2|x,y)πN1 (β, η1, η2)dη1dη2dβ

=

∫ ∞
0

Γ[bn1]Γ[bn2]βb(n1+n2)−3
n1∏
i=1

x
−b(β+1)
i

n2∏
i=1

y
−b(β+1)
i

×

(
n1∑
i=1

bx−βi

)−bn1
(

n2∑
i=1

by−βi

)−bn2

dβ. (3.4)

For the hypothesis H2 : β1 6= β2, the reference prior for (β1, β2, η1, η2) is

πN2 (β1, β2, η1, η2) ∝ β−11 β−12 η−11 η−12 (3.5)

and derived by Kim et al. (2014). The likelihood function under the hypothesis H2 is

L2(β1, β2, η1, η2|x) = βn1
1 βn2

2 ηn1β1

1 ηn2β2

2

n1∏
i=1

x
−(β1+1)
i

n2∏
i=1

y
−(β2+1)
i

× exp

−
(

n1∑
i=1

η1
xi

)β1

−

(
n2∑
i=1

η2
yi

)β2

 . (3.6)

Thus from the likelihood (3.6) and the reference prior (3.5), the element mb
2(x,y) of FBF

under H2 is given as follows.

mb
2(x,y) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Lb2(β1, β2, η1, η2|x)πN2 (β1, β2, η1, η2)dη1dη2dβ1dβ2

=

∫ ∞
0

∫ ∞
0

Γ[bn1]Γ[bn2]βbn1−2
1 βbn2−2

2

n1∏
i=1

x
−b(β1+1)
i

n2∏
i=1

y
−b(β2+1)
i

×

(
n1∑
i=1

bx−β1

i

)−bn1
(

n2∑
i=1

by−β2

i

)−bn2

dβ1dβ2. (3.7)

Therefore the element BN21 of FBF is given by

BN21 =
S2(x,y)

S1(x,y)
, (3.8)

where

S1(x,y) =

∫ ∞
0

β(n1+n2)−3
n1∏
i=1

x−βi

n2∏
i=1

y−βi

(
n1∑
i=1

x−βi

)−n1
(

n2∑
i=1

y−βi

)−n2

dβ

and

S2(x,y) =

∫ ∞
0

∫ ∞
0

βn1−2
1 βn2−2

2

n1∏
i=1

x−β1

i

n2∏
i=1

y−β2

i

(
n1∑
i=1

x−β1

i

)−n1
(

n2∑
i=1

y−β2

i

)−n2

dβ1dβ2.
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And the ratio of marginal densities with fraction b is

mb
1(x,y)

mb
2(x,y)

=
S1(x,y; b)

S2(x,y; b)
, (3.9)

where

S1(x,y; b) =

∫ ∞
0

βb(n1+n2)−3
n1∏
i=1

x−bβi

n2∏
i=1

y−bβi

(
n1∑
i=1

x−βi

)−bn1
(

n2∑
i=1

y−βi

)−bn2

dβ

and

S2(x,y; b) =

∫ ∞
0

∫ ∞
0

βbn1−2
1 βbn2−2

2

n1∏
i=1

x−bβ1

i

n2∏
i=1

y−bβ2

i

×

(
n1∑
i=1

x−β1

i

)−bn1
(

n2∑
i=1

y−β2

i

)−bn2

dβ1dβ2.

Thus the FBF of H2 versus H1 is given by

BF21 =
S2(x,y)

S1(x,y)
· S1(x,y; b)

S2(x,y; b)
. (3.10)

Note that the calculations of the FBF of H2 versus H1 requires only one dimensional inte-
gration.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 and H2, respectively. The marginal density of (Xj1 , Xj2 , Yk1 , Yk2) is finite for all 1 ≤ j1 <
j2 ≤ n1 and 1 ≤ k1 < k2 ≤ n2 under each hypothesis (Kim et al., 2014). Thus we conclude
that any training sample of size 4 is a minimal training sample.

The marginal density mN
1 (xj1 , xj2 , yk1 , yk2) under H1 is given by

mN
1 (xj1 , xj2 , yk1 , yk2)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

f(xj1 , xj2 , yk1 , yk2 |β, η1, η2)πN1 (β, η1, η2)dη1dη2dβ

=

∫ ∞
0

β(xj1xj2yk1yk2)−(β+1)
(
x−βj1 + x−βj2

)−2 (
y−βk1 + y−βk2

)−2
dβ.

And the marginal density mN
2 (xj1 , xj2 , yk1 , yk2) under H2 is given by

mN
2 (xj1 , xj2 , yk1 , yk2)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

f(xj1 , xj2 , yk1 , yk2 |β1, β2, η1, η2)πN2 (β1, β2, η1, η2)dη1dη2dβ1dβ2

=
x−1j1 x

−1
j2

2|log(xj2/xj1)|
y−1k1 y

−1
k2

2|log(yk2/yk1)|
.
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Therefore the AIBF of H2 versus H1 is given by

BAI21 =
S2(x,y)

S1(x,y)

 1

L

n1∑
j1<j2

n2∑
k1<k2

T1(xj1 , xj2 , yk1 , yk2)

T2(xj1 , xj2 , yk1 , yk2)

 , (3.11)

where L = n1n2(n1 − 1)(n2 − 1)/4,

T1(xj1 , xj2 , yk1 , yk2) =

∫ ∞
0

β(xj1xj2yk1yk2)−β
(
x−βj1 + x−βj2

)−2 (
y−βk1 + y−βk2

)−2
dβ

and

T2(xj1 , xj2 , yk1 , yk2) = 4−1| log(xj2/xj1)|−1| log(yk2/yk1)|−1.

Also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x,y)

S1(x,y)
ME

[
T1(xj1 , xj2 , yk1 , yk2)

T2(xj1 , xj2 , yk1 , yk2)

]
. (3.12)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require only one
dimensional integration.

4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (β1, η1), (β2, η2) and (n1, n2). In particular, for fixed
(β1, η1), (β2, η2) and (n1, n2), we take 500 independent random samples of X and Y with
sample sizes n1 and n2 from the model (1.1), respectively. We want to test the hypotheses
H1 : β1 = β2 versus H2 : β1 6= β2. The posterior probabilities of H1 being true are computed
assuming equal prior probabilities. Tables 4.1 and 4.2 show the results of the averages and
the standard deviations in parentheses of posterior probabilities. In Tables 4.1 and 4.2,
PF (·),PAI(·) and PMI(·) are the posterior probabilities of the hypothesis H1 being true
based on FBF, AIBF and MIBF, respectively. From result of tables, the FBF, the AIBF
and the MIBF give fairly reasonable answers for all configurations. Also the FBF, the AIBF
and the MIBF give a similar behavior. However the AIBF and the MIBF slightly favor the
hypothesis H1 than the FBF.

Example 4.1 This example is taken from Maswadah (2003). The data set is given in
Dumonceaus and Antle (1973) and represents the maximum flood levels (in millions of
cubic feet per second) of the Susquehenna River at Harrisburg, Pennsylvenia over 20 four-
year periods (1980-1969) as: 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379,
0.324, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265. Maswadah (2003)
showed that the inverse Weibull distribution gives a good fit for this data set.

For testing of the equality of the shape parameters, we randomly divided this data into
two groups. The data sets are given by

Group 1: 0.654, 0.449, 0.402, 0.423, 0.379, 0.269, 0.412, 0.416, 0.484, 0.265
Group 2: 0.613, 0.315, 0.297, 0.379, 0.324, 0.740, 0.418, 0.494, 0.338, 0.392
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Table 4.1 The averages and the standard deviations (in parentheses) of posterior probabilities

η1 η2 β1 β2 n1 n2 PF (H1|x, y) PAI (H1|x, y) PMI (H1|x, y)

0.5 1.0 0.5

0.2

5 5 0.377 (0.199) 0.462 (0.240) 0.456 (0.228)
5 10 0.336 (0.207) 0.448 (0.246) 0.440 (0.235)
10 10 0.256 (0.224) 0.343 (0.271) 0.333 (0.263)
10 15 0.194 (0.200) 0.297 (0.256) 0.287 (0.248)

0.3

5 5 0.505 (0.159) 0.601 (0.186) 0.586 (0.176)
5 10 0.502 (0.191) 0.614 (0.200) 0.598 (0.193)
10 10 0.483 (0.228) 0.585 (0.250) 0.569 (0.245)
10 15 0.466 (0.239) 0.569 (0.260) 0.552 (0.256)

0.4

5 5 0.554 (0.144) 0.651 (0.169) 0.634 (0.162)
5 10 0.598 (0.145) 0.694 (0.149) 0.675 (0.146)
10 10 0.618 (0.162) 0.720 (0.166) 0.702 (0.164)
10 15 0.628 (0.176) 0.730 (0.176) 0.712 (0.175)

0.5

5 5 0.572 (0.117) 0.668 (0.136) 0.650 (0.132)
5 10 0.627 (0.129) 0.709 (0.135) 0.690 (0.133)
10 10 0.648 (0.142) 0.748 (0.144) 0.730 (0.144)
10 15 0.682 (0.135) 0.774 (0.131) 0.757 (0.132)

0.7

5 5 0.557 (0.137) 0.645 (0.159) 0.629 (0.153)
5 10 0.587 (0.165) 0.647 (0.185) 0.630 (0.180)
10 10 0.591 (0.181) 0.685 (0.189) 0.667 (0.187)
10 15 0.593 (0.209) 0.669 (0.223) 0.652 (0.221)

1.0

5 5 0.479 (0.188) 0.549 (0.218) 0.537 (0.208)
5 10 0.486 (0.226) 0.516 (0.252) 0.503 (0.245)
10 10 0.418 (0.254) 0.493 (0.282) 0.479 (0.275)
10 15 0.374 (0.268) 0.425 (0.296) 0.412 (0.289)

1.5

5 5 0.363 (0.203) 0.413 (0.239) 0.409 (0.228)
5 10 0.326 (0.251) 0.329 (0.272) 0.323 (0.263)
10 10 0.186 (0.207) 0.225 (0.243) 0.218 (0.235)
10 15 0.152 (0.217) 0.170 (0.243) 0.165 (0.236)

0.5 5.0 0.5

0.2

5 5 0.385 (0.195) 0.472 (0.235) 0.463 (0.223)
5 10 0.355 (0.204) 0.474 (0.239) 0.465 (0.229)
10 10 0.240 (0.211) 0.325 (0.257) 0.315 (0.249)
10 15 0.192 (0.196) 0.292 (0.249) 0.283 (0.241)

0.3

5 5 0.513 (0.154) 0.611 (0.180) 0.598 (0.171)
5 10 0.512 (0.180) 0.626 (0.188) 0.610 (0.181)
10 10 0.499 (0.224) 0.602 (0.245) 0.586 (0.240)
10 15 0.490 (0.234) 0.597 (0.248) 0.579 (0.245)

0.4

5 5 0.555 (0.130) 0.653 (0.153) 0.636 (0.146)
5 10 0.590 (0.154) 0.688 (0.157) 0.669 (0.153)
10 10 0.610 (0.170) 0.713 (0.176) 0.695 (0.175)
10 15 0.635 (0.177) 0.735 (0.178) 0.718 (0.177)

0.5

5 5 0.570 (0.122) 0.665 (0.142) 0.648 (0.138)
5 10 0.618 (0.136) 0.701 (0.141) 0.683 (0.138)
10 10 0.660 (0.130) 0.760 (0.132) 0.743 (0.132)
10 15 0.683 (0.141) 0.773 (0.139) 0.756 (0.139)

0.7

5 5 0.547 (0.151) 0.633 (0.174) 0.617 (0.165)
5 10 0.588 (0.177) 0.646 (0.199) 0.629 (0.194)
10 10 0.601 (0.178) 0.696 (0.185) 0.678 (0.183)
10 15 0.612 (0.197) 0.689 (0.207) 0.671 (0.205)

1.0

5 5 0.492 (0.172) 0.567 (0.200) 0.557 (0.191)
5 10 0.486 (0.239) 0.516 (0.266) 0.503 (0.257)
10 10 0.410 (0.245) 0.486 (0.272) 0.472 (0.266)
10 15 0.370 (0.261) 0.421 (0.289) 0.407 (0.282)

1.5

5 5 0.375 (0.210) 0.427 (0.247) 0.422 (0.234)
5 10 0.306 (0.255) 0.309 (0.276) 0.302 (0.267)
10 10 0.184 (0.212) 0.223 (0.247) 0.216 (0.239)
10 15 0.112 (0.172) 0.127 (0.195) 0.122 (0.188)

1.0 5.0 0.5

0.2

5 5 0.390 (0.198) 0.478 (0.238) 0.472 (0.225)
5 10 0.351 (0.205) 0.467 (0.244) 0.458 (0.233)
10 10 0.244 (0.218) 0.331 (0.264) 0.321 (0.256)
10 15 0.207 (0.203) 0.312 (0.250) 0.302 (0.242)

0.3

5 5 0.517 (0.152) 0.617 (0.177) 0.600 (0.169)
5 10 0.503 (0.184) 0.616 (0.191) 0.599 (0.184)
10 10 0.508 (0.219) 0.612 (0.238) 0.595 (0.233)
10 15 0.470 (0.233) 0.577 (0.251) 0.560 (0.247)

0.4

5 5 0.550 (0.139) 0.648 (0.163) 0.630 (0.156)
5 10 0.584 (0.162) 0.680 (0.166) 0.663 (0.161)
10 10 0.617 (0.174) 0.718 (0.183) 0.700 (0.181)
10 15 0.628 (0.180) 0.728 (0.179) 0.710 (0.179)

0.5

5 5 0.565 (0.127) 0.660 (0.149) 0.643 (0.144)
5 10 0.629 (0.138) 0.712 (0.146) 0.694 (0.142)
10 10 0.659 (0.137) 0.757 (0.139) 0.739 (0.138)
10 15 0.686 (0.133) 0.776 (0.130) 0.759 (0.131)

0.7

5 5 0.556 (0.139) 0.645 (0.160) 0.629 (0.153)
5 10 0.604 (0.157) 0.664 (0.176) 0.645 (0.172)
10 10 0.573 (0.203) 0.665 (0.215) 0.648 (0.212)
10 15 0.600 (0.201) 0.678 (0.211) 0.660 (0.210)

1.0

5 5 0.476 (0.185) 0.548 (0.215) 0.537 (0.204)
5 10 0.500 (0.229) 0.531 (0.254) 0.518 (0.246)
10 10 0.408 (0.242) 0.484 (0.269) 0.470 (0.263)
10 15 0.390 (0.263) 0.443 (0.290) 0.429 (0.284)

1.5

5 5 0.361 (0.208) 0.409 (0.243) 0.406 (0.231)
5 10 0.321 (0.253) 0.324 (0.273) 0.317 (0.265)
10 10 0.170 (0.200) 0.207 (0.236) 0.202 (0.229)
10 15 0.135 (0.200) 0.152 (0.225) 0.147 (0.219)
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Table 4.2 The averages and the standard deviations (in parentheses) of posterior probabilities

η1 η2 β1 β2 n1 n2 PF (H1|x, y) PAI (H1|x, y) PMI (H1|x, y)

0.5 1.0 2.0

0.5

5 5 0.266 (0.206) 0.292 (0.231) 0.295 (0.221)
5 10 0.189 (0.181) 0.237 (0.205) 0.239 (0.197)
10 10 0.079 (0.139) 0.092 (0.160) 0.090 (0.154)
10 15 0.050 (0.100) 0.053 (0.103) 0.052 (0.099)

1.0

5 5 0.490 (0.186) 0.554 (0.208) 0.542 (0.197)
5 10 0.491 (0.221) 0.547 (0.226) 0.534 (0.217)
10 10 0.400 (0.246) 0.468 (0.270) 0.453 (0.263)
10 15 0.401 (0.257) 0.444 (0.276) 0.430 (0.270)

1.5

5 5 0.574 (0.138) 0.645 (0.175) 0.629 (0.168)
5 10 0.617 (0.177) 0.685 (0.156) 0.667 (0.152)
10 10 0.632 (0.175) 0.702 (0.183) 0.685 (0.180)
10 15 0.638 (0.198) 0.709 (0.192) 0.691 (0.191)

2.0

5 5 0.597 (0.123) 0.669 (0.136) 0.652 (0.132)
5 10 0.668 (0.140) 0.711 (0.135) 0.692 (0.132)
10 10 0.681 (0.126) 0.749 (0.144) 0.731 (0.144)
10 15 0.721 (0.126) 0.775 (0.131) 0.758 (0.132)

2.5

5 5 0.583 (0.132) 0.662 (0.146) 0.645 (0.140)
5 10 0.661 (0.148) 0.677 (0.162) 0.660 (0.157)
10 10 0.641 (0.166) 0.724 (0.159) 0.706 (0.158)
10 15 0.689 (0.159) 0.722 (0.184) 0.705 (0.184)

3.5

5 5 0.525 (0.176) 0.588 (0.203) 0.575 (0.193)
5 10 0.590 (0.206) 0.579 (0.231) 0.565 (0.225)
10 10 0.496 (0.240) 0.575 (0.261) 0.561 (0.256)
10 15 0.500 (0.254) 0.531 (0.282) 0.516 (0.277)

5.0

5 5 0.428 (0.202) 0.484 (0.231) 0.478 (0.221)
5 10 0.438 (0.261) 0.428 (0.275) 0.419 (0.267)
10 10 0.288 (0.251) 0.339 (0.277) 0.330 (0.269)
10 15 0.243 (0.245) 0.278 (0.288) 0.271 (0.282)

0.5 5.0 2.0

0.5

5 5 0.265 (0.195) 0.297 (0.227) 0.300 (0.217)
5 10 0.186 (0.180) 0.254 (0.204) 0.256 (0.196)
10 10 0.077 (0.130) 0.081 (0.154) 0.079 (0.149)
10 15 0.040 (0.083) 0.053 (0.111) 0.052 (0.107)

1.0

5 5 0.485 (0.186) 0.565 (0.202) 0.555 (0.192)
5 10 0.464 (0.225) 0.559 (0.214) 0.545 (0.206)
10 10 0.412 (0.251) 0.489 (0.272) 0.476 (0.266)
10 15 0.393 (0.260) 0.472 (0.277) 0.458 (0.272)

1.5

5 5 0.584 (0.127) 0.646 (0.159) 0.629 (0.152)
5 10 0.622 (0.170) 0.677 (0.167) 0.659 (0.163)
10 10 0.628 (0.183) 0.693 (0.193) 0.676 (0.190)
10 15 0.643 (0.191) 0.715 (0.194) 0.698 (0.192)

2.0

5 5 0.609 (0.104) 0.667 (0.142) 0.650 (0.138)
5 10 0.668 (0.138) 0.702 (0.141) 0.685 (0.137)
10 10 0.677 (0.134) 0.762 (0.132) 0.744 (0.132)
10 15 0.710 (0.134) 0.774 (0.138) 0.757 (0.139)

2.5

5 5 0.588 (0.130) 0.652 (0.162) 0.635 (0.153)
5 10 0.655 (0.149) 0.673 (0.177) 0.656 (0.173)
10 10 0.648 (0.164) 0.736 (0.150) 0.718 (0.150)
10 15 0.661 (0.187) 0.740 (0.166) 0.722 (0.166)

3.5

5 5 0.520 (0.174) 0.609 (0.181) 0.596 (0.174)
5 10 0.578 (0.215) 0.575 (0.242) 0.562 (0.235)
10 10 0.493 (0.240) 0.575 (0.250) 0.560 (0.246)
10 15 0.496 (0.259) 0.531 (0.278) 0.516 (0.273)

5.0

5 5 0.427 (0.202) 0.496 (0.240) 0.490 (0.228)
5 10 0.434 (0.265) 0.402 (0.280) 0.393 (0.272)
10 10 0.295 (0.240) 0.335 (0.275) 0.327 (0.267)
10 15 0.229 (0.241) 0.235 (0.257) 0.227 (0.249)

1.0 5.0 2.0

0.5

5 5 0.263 (0.199) 0.306 (0.232) 0.310 (0.222)
5 10 0.193 (0.182) 0.250 (0.208) 0.251 (0.200)
10 10 0.081 (0.139) 0.085 (0.154) 0.083 (0.149)
10 15 0.046 (0.093) 0.060 (0.115) 0.058 (0.111)

1.0

5 5 0.480 (0.188) 0.567 (0.201) 0.554 (0.192)
5 10 0.488 (0.212) 0.546 (0.216) 0.533 (0.207)
10 10 0.420 (0.247) 0.502 (0.270) 0.488 (0.264)
10 15 0.390 (0.263) 0.446 (0.268) 0.431 (0.261)

1.5

5 5 0.575 (0.145) 0.641 (0.169) 0.624 (0.162)
5 10 0.618 (0.179) 0.670 (0.175) 0.654 (0.169)
10 10 0.630 (0.174) 0.702 (0.197) 0.685 (0.194)
10 15 0.650 (0.174) 0.705 (0.198) 0.688 (0.197)

2.0

5 5 0.599 (0.116) 0.662 (0.149) 0.645 (0.144)
5 10 0.672 (0.138) 0.713 (0.146) 0.696 (0.142)
10 10 0.674 (0.142) 0.758 (0.139) 0.740 (0.138)
10 15 0.716 (0.128) 0.777 (0.130) 0.760 (0.131)

2.5

5 5 0.577 (0.147) 0.663 (0.148) 0.646 (0.142)
5 10 0.668 (0.140) 0.693 (0.149) 0.675 (0.146)
10 10 0.635 (0.173) 0.704 (0.185) 0.687 (0.184)
10 15 0.676 (0.176) 0.733 (0.163) 0.716 (0.164)

3.5

5 5 0.536 (0.164) 0.588 (0.201) 0.577 (0.191)
5 10 0.593 (0.207) 0.590 (0.228) 0.576 (0.222)
10 10 0.494 (0.240) 0.576 (0.248) 0.561 (0.244)
10 15 0.526 (0.248) 0.551 (0.271) 0.536 (0.267)

5.0

5 5 0.445 (0.193) 0.480 (0.233) 0.475 (0.221)
5 10 0.441 (0.261) 0.421 (0.279) 0.413 (0.271)
10 10 0.287 (0.237) 0.319 (0.270) 0.311 (0.263)
10 15 0.239 (0.246) 0.260 (0.276) 0.252 (0.269)
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For this data sets, the maximum likelihood estimates of β1 and β2 are 4.06 and 4.81,
respectively.

We want to test the hypotheses H1 : β1 = β2 versus H2 : β1 6= β2. The values of the
Bayes factors and the posterior probabilities of H1 are given in Table 4.3. From the results
of Table 4.3, the posterior probabilities based on various Bayes factors give the same answer,
and select the hypothesis H1. The posterior probabilities of H1 based on the AIBF and the
MIBF are larger than the FBF, and the values of two intrinsic Bayes factors are almost the
same.

Table 4.3 Bayes factor and posterior probabilities of H1 : β1 = β2

BF
21 PF (H1|x,y) BAI

21 PAI(H1|x,y) BMI
21 PMI(H1|x,y)

0.316 0.760 0.192 0.839 0.214 0.824

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the equality of the shape
parameters in two inverse Weibull distributions under the reference priors. From our numer-
ical results, the developed hypothesis testing procedures give fairly reasonable answers for
all parameter configurations. Also we note that the results of tables are not sensitive to the
change of the values of the scale parameters. But the FBF slightly favors the hypothesis H2

than the AIBF and the MIBF. From our simulation and example, we recommend the use
of the FBF than the AIBF and the MIBF for practical application in view of its simplicity
and ease of implementation.
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