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Abstract

This article deals with the problem of testing the equality of the scale parameters
in the half logistic distributions. We propose Bayesian hypothesis testing procedures
for the equality of the scale parameters under the noninformative priors. The nonin-
formative prior is usually improper which yields a calibration problem that makes the
Bayes factor to be defined up to a multiplicative constant. Thus we propose the default
Bayesian hypothesis testing procedures based on the fractional Bayes factor and the
intrinsic Bayes factors under the reference priors. Simulation study and an example are
provided.

Keywords: Fractional Bayes factor, half logistic distribution, intrinsic Bayes factor, ref-
erence prior, scale parameter.

1. Introduction

The half logistic distribution as the distribution of an absolute logistic distribution is
introduced as a probability model by Balakrishnan (1985). Since the support of half logistic
distribution is non-negative and has increasing hazard rate, this distribution can be applied
to model the data from quality control or reliability study. Application of the half-logistic
distribution to life testing has been well demonstrated by Balakrishnan (1985) who derived
some recurrence relations for the moments and product moments of order statistics.

Balakrishnan and Puthenpura (1986) obtained the coefficient of the best linear unbiased
estimators for the location and scale parameters based on complete and censored samples.
Balakrishnan and Wong (1991) obtained the approximate maximum likelihood estimators
for the location and scale parameters. Adatia (1997) derived the approximate best linear
unbiased estimators of the parameters. Kang and Park (2005) derived the approximate
maximum likelihood estimators of the scale parameter based on multiply type-II censored
samples. Kim and Han (2010) obtained the maximum likelihood estimator and Bayes esti-
mator for the scale parameter of the half-logistic distribution based on a progressively type
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II censored sample assuming a natural conjugate prior. Recently, Rao and Kantam (2012)
developed control charts of the mean and range for the half logistic distribution with fixed
scale parameter. Kang et al. (2012) derived the noninformative priors for the ratio of scale
parameters in the the half-logistic distributions. But, the problem of comparison for two
scale parameters is not considered yet.

In Bayesian model selection or testing problem, the Bayes factor under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper
so that such priors are only defined up to arbitrary constants which affects the values of
Bayes factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi
(1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion
of the likelihood with a so-called the fraction b. These approaches have shown to be quite
useful in many statistical areas (Kang et al., 2011, 2012). An excellent exposition of the
objective Bayesian method to model selection is Berger and Pericchi (2001).

An objective Bayesian inference for the equality of the scale parameters in two independent
half logistic distributions cab be performed by using the noninformative prior developed by
Kang et al. (2012). We will use the above noninformative prior for testing the equality of
the scale parameters. This equality problem is important when two independent groups of
data are collected and one wants to know whether these two groups are identical or not.
Therefore we develop hypothesis testing procedures for comparison of the scale parameters.

In this paper, we propose the objective Bayesian hypothesis testing procedures for the
equality of the scale parameters in half logistic distributions based on the Bayes factors.
The outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian
hypothesis testing procedures based on the Bayes factors. In Section 3, under the reference
priors, we provide the Bayesian hypothesis testing procedures based on the fractional Bayes
factor and the intrinsic Bayes factors. In Section 4, simulation study and an example are
given.

2. Intrinsic and fractional Bayes factors

Consider X and Y are independently distributed random variables according to the half-
logistic distribution HL(σ1) with the scale parameter σ1, and the half-logistic distribution
HL(σ2) with the scale parameter σ2. Then the half logistic distributions of X and Y are
given by

f(x|σ1) =
2

σ1

exp {−x/σ1}
[1 + exp {−x/σ1}]2

, x ≥ 0, σ1 > 0, (2.1)
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and

f(y|σ2) =
2

σ2

exp {−y/σ2}
[1 + exp {−y/σ2}]2

, y ≥ 0, σ2 > 0, (2.2)

respectively. The present paper focuses on testing the equality of the scale parameters in
the half logistic distributions.

Suppose that hypotheses H1, H2, · · · , Hq are under consideration, with the data x =
(x1, x2, · · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The pa-
rameter vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let
pi be the prior probability of hypothesis Hi,i = 1, 2, · · · , q. Then the posterior probability
that the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1 , (2.3)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.4)

The Bji interpreted as the comparative support of the data for Hj versus Hi. The com-
putation of Bji needs specification of the prior distribution πi(θi) and πj(θj). When the
noninformative priors πNi (θi) and πNj (θj) are used in (2.4), the undefined constants in prior
distributions cause the indeterminacy problem in Bji.

To solve this problem, Berger and Pericchi (1996) and O’Hagan (1995) proposed the
intrinsic Bayes factor and the fractional Bayes factor, respectively.

The intrinsic Bayes factor of Berger and Pericchi (1996) uses the part of the data as
a training sample to cancel undefined constants in (2.4). The fractional Bayes factor of
O’Hagan (1995) uses a fraction of likelihood function for the same purpose of canceling
undefined constants. For details, see Berger and Pericchi (1996), O’Hagan (1995), Kang et
al. (2011, 2012).

3. Bayesian hypothesis testing procedures

Let Xi, i = 1, · · · , n1 denote observations from the half logistic distribution HL(σ1), and
Yi, i = 1, · · · , n2 denote observations from the half logistic distribution HL(σ2). Then like-
lihood function is given by

f(x,y|σ1, σ2) = 2n1+n2σ−n1
1 σ−n2

2 exp

{
−
∑n1

i=1 xi
σ1

−
∑n2

i=1 yi
σ2

}
×

n1∏
i=1

(1 + exp{−xi/σ1})−2
n2∏
i=1

(1 + exp{−yi/σ2})−2 , (3.1)

where x = (x1, · · · , xn1
), y = (y1, · · · , yn2

), σ1 > 0 and σ2 > 0. We are interested in testing
the hypotheses H1 : σ1 = σ2 versus H2 : σ1 6= σ2 based on the fractional Bayes factor and
the intrinsic Bayes factors.
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3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : σ1 = σ2 ≡ σ is

L1(σ|x,y) = 2n1+n2σ−(n1+n2) exp

{
−n1x̄+ n2ȳ

σ

}
×

n1∏
i=1

(1 + exp{−xi/σ})−2
n2∏
i=1

(1 + exp{−yi/σ})−2 . (3.2)

And under the hypothesis H1, the reference prior for σ is

πN1 (σ) ∝ σ−1. (3.3)

Then from the likelihood (3.2) and the reference prior (3.3), the element mb
1(x,y) of the

fractional Bayes factor (FBF) under H1 is given by

mb
1(x,y) =

∫ ∞
0

Lb1(σ|x,y)πN1 (σ)dσ

= 2b(n1+n2)

∫ ∞
0

σ−b(n1+n2)−1 exp

{
−b(n1x̄+ n2ȳ)

σ

}
×

n1∏
i=1

(1 + exp{−xi/σ})−2b
n2∏
i=1

(1 + exp{−yi/σ})−2b dσ, (3.4)

where x̄ =
∑n1

i=1 xi/n1 and ȳ =
∑n2

i=1 yi/n2. For the hypothesis H2 : σ1 6= σ2, the reference
prior for (σ1, σ2) is

πN (σ1, σ2) ∝ σ−11 σ−12 . (3.5)

Note that the derivation of the above reference priors (3.3) and (3.5), and the propriety of the
posterior distribution are given in Appendix. The likelihood function under the hypothesis
H2 is

L2(σ1, σ2|x,y) = 2n1+n2σ−n1
1 σ−n2

2 exp

{
−n1x̄
σ1
− n2ȳ

σ1

}
×

n1∏
i=1

(1 + exp{−xi/σ1})−2
n2∏
i=1

(1 + exp{−yi/σ2})−2 . (3.6)

Thus from the likelihood (3.6) and the reference prior (3.5), the element mb
2(x,y) of FBF

under H2 is given as follows.

mb
2(x,y) =

∫ ∞
0

∫ ∞
0

Lb2(σ1, σ2|x,y)πN2 (σ1, σ2)dσ1dσ2

= 2b(n1+n2)

∫ ∞
0

∫ ∞
0

σ−bn1−1
1 σ−bn2−1

2 exp

{
−bn1x̄

σ1
− bn2ȳ

σ1

}
×

n1∏
i=1

(1 + exp{−xi/σ1})−2b
n2∏
i=1

(1 + exp{−yi/σ2})−2b dσ1dσ2. (3.7)
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Using equation (3.4) and (3.7), the FBF of H2 versus H1 is given by

BF21 =
m1

2(x,y)

m1
1(x,y)

· m
b
1(x,y)

mb
2(x,y)

,

usually b = 1/m, and m is the number of minimal training sample of Berger and Pericchi
(1996).

Note that the calculations of the FBF of H2 versus H1 requires tow dimensional integra-
tion. This can be evaluated by the numerical method such as Gaussian quadrature.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 and H2, respectively. The marginal density of Xj and Yk is finite for all 1 ≤ j ≤ n1 and
1 ≤ k ≤ n2 under each hypothesis. Thus we conclude that any training sample of size 2 is a
minimal training sample.

The marginal density mN
1 (xj , yk) under H1 is given by

mN
1 (xj , yk) =

∫ ∞
0

f(xj , yk|σ)πN1 (σ)dσ

=

∫ ∞
0

4σ−3 (1 + exp{−xj/σ})−2 (1 + exp{−yk/σ})−2 exp

{
−xj + yk

σ

}
dσ.

And the marginal density mN
2 (xj , yk) under H2 is given by

mN
2 (xj , yk) =

∫ ∞
0

∫ ∞
0

f(xj , yk|σ1, σ2)πN2 (σ1, σ2)dσ1dσ2

=
1

xjyk
.

Therefore the arithmetic intrinsic Bayes factor (AIBF) of H2 versus H1 is given by

BAI21 =
m1

2(x,y)

m1
1(x,y)

 1

L

n1∑
j=1

n2∑
k=1

T1(xj , yk)

T2(xj , yk)

 ,
where L = n1n2,

T1(xj , yk) =

∫ ∞
0

σ−3 (1 + exp{−xj/σ})−2 (1 + exp{−yk/σ})−2 exp

{
−xj + yk

σ

}
dσ

and

T2(xj , yk) =
1

4xjyk
.

Also the median intrinsic Bayes factor (MIBF) of H2 versus H1 is given by

BMI
21 =

m1
2(x,y)

m1
1(x,y)

ME

[
T1(xj , yk)

T2(xj , yk)

]
,

where ME indicates the median. Note that the calculations of the AIBF and the MIBF of
H2 versus H1 require only one dimensional integration.
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4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (σ1, σ2) and (n1, n2). In particular, for fixed (σ1, σ2),
we take 1,000 independent random samples of Xi and Yi with sample size n1 and n2 from
the models (2.1) and (2.2), respectively. We want to test the hypotheses H1 : σ1 = σ2 versus
H2 : σ1 6= σ2. The posterior probabilities of H1 being true are computed assuming equal
prior probabilities. Table 4.1 shows the results of the averages and the standard deviations
in parentheses of posterior probabilities. In Table 4.1, PF (·), PAI(·) and PMI(·) are the
posterior probabilities of the hypothesis H1 being true based on FBF, AIBF and MIBF,
respectively. From the results of Table 4.1, the FBF, the AIBF and the MIBF give fairly
reasonable answers for all configurations. Also the FBF, the AIBF and the MIBF give a
similar behavior for all sample sizes. However the AIBF and the MIBF slightly favor the
hypothesis H1 than the FBF.

Table 4.1 The averages and the standard deviations (in parentheses) of posterior probabilities

σ1 σ2 (n1, n2) PF (H1|x,y) PAI(H1|x,y) PMI(H1|x,y)

1.0

1.0

5,5 0.630 (0.124) 0.694 (0.137) 0.681 (0.135)
5,10 0.671 (0.139) 0.720 (0.145) 0.706 (0.142)
10,10 0.690 (0.141) 0.751 (0.144) 0.736 (0.144)
10,20 0.734 (0.135) 0.780 (0.133) 0.765 (0.133)

2.0

5,5 0.502 (0.197) 0.556 (0.219) 0.550 (0.213)
5,10 0.504 (0.220) 0.547 (0.235) 0.539 (0.229)
10,10 0.437 (0.256) 0.490 (0.276) 0.478 (0.271)
10,20 0.408 (0.266) 0.451 (0.281) 0.439 (0.276)

3.0

5,5 0.344 (0.225) 0.378 (0.254) 0.377 (0.247)
5,10 0.303 (0.220) 0.333 (0.241) 0.333 (0.235)
10,10 0.180 (0.210) 0.208 (0.237) 0.204 (0.231)
10,20 0.116 (0.160) 0.134 (0.181) 0.130 (0.175)

5.0

5,5 0.167 (0.185) 0.181 (0.210) 0.187 (0.208)
5,10 0.116 (0.145) 0.129 (0.163) 0.133 (0.162)
10,10 0.030 (0.080) 0.035 (0.093) 0.035 (0.090)
10,20 0.011 (0.041) 0.013 (0.049) 0.013 (0.047)

10.0

5,5 0.037 (0.079) 0.038 (0.090) 0.044 (0.095)
5,10 0.015 (0.037) 0.016 (0.042) 0.019 (0.047)
10,10 0.001 (0.003) 0.001 (0.004) 0.001 (0.004)
10,20 0.000 (0.000) 0.000 (0.001) 0.000 (0.001)

Example 4.1 This example taken from Balakrishnan and Puthenpura (1986). The data
is failure times, in minutes, for a specific type of electrical insulation in an experiment in
which the insulation was subjected to a continuously increasing voltage stress. For this data,
Balakrishnan and Puthenpura (1986) concluded that the half logistic distribution fits the
data better than an exponential distribution. To test the equality of the scale parameters,
we randomly divided this data into two groups. The data sets are given by

Group 1: 21.8, 70.7, 151.9, 75.3, 12.3, 28.6.
Group 2: 24.4, 138.6, 95.5, 98.1, 43.2, 46.9.

For this data sets, the maximum likelihood estimates of σ1 in group 1 is 43.285 and for
group 2, the maximum likelihood estimates of σ2 is 51.188.
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We want to test the hypotheses H1 : σ1 = σ2 versus H2 : σ1 6= σ2. The values of the
Bayes factors and the posterior probabilities of H1 are given in Table 4.2. From the results
of Table 4.2, the posterior probabilities based on various Bayes factors give the same answer,
and select the hypothesis H1. The FBF has the smallest posterior probability of H1 than
any other posterior probabilities based on the AIBF and the MIBF, but the values of three
posterior Bayes factors are almost the same results.

Table 4.2 Bayes factors and posterior probabilities of H1 : σ1 = σ2

BF
21 PF (H1|x,y) BAI

21 PAI(H1|x,y) BMI
21 PMI(H1|x,y)

0.4069 0.7108 0.2797 0.7814 0.3243 0.7551

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the equality of the scale
parameters in half logistic distributions under the reference priors. From our numerical
results, the developed hypothesis testing procedures give fairly reasonable answers for all
parameter configurations. However the AIBF and the MIBF slightly favor the hypothesis
H1 than the FBF. From our simulation and example, we recommend the use of the FBF
than the AIBF and MIBF for practical application in view of its simplicity and ease of
implementation.

To test hypotheses about this problem, a classical test needs exact or asymptotic distri-
bution of test function. But the proposed Bayesian testing procedures can be used without
resorting the distribution of test function.

When the sample size and the difference between parameters are small, the proposed
procedures fail to choose correct model. This problem is hard to overcome.

For the further study, developing the intrinsic prior for this problem is an important and
interesting work which is worthy to consider. The intrinsic prior is a proper prior which can
make the computation of Bayes factor without splitting the data into two parts. And based
on the intrinsic prior, the value of Bayes factor is asymptotically equivalent to AIBF.

Appendix

The likelihood function of parameters σ1 for the model (2.1) is given by

L(σ1) ∝ σ−11

exp {−x/σ1}
[1 + exp {−x/σ1}]2

.

From the above likelihood function, the Fisher information is 3+π2

9σ2
1

. Thus the reference prior

is given by
π(σ1) ∝ σ−11 .

And the posterior distribution for σ1 given x is

π(σ1|x) ∝ σ−n1−1
1

exp {−n1x̄/σ1}∏n1

i=1[1 + exp {−xi/σ1}]2
.
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Thus ∫ ∞
0

π(σ1|x) ≤
∫ ∞
0

σ−n1−1
1 exp {−n1x̄/σ1} <∞,

if n1 ≥ 1.
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