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Intrinsic Priors for Testing Two Exponential Means
with the Fractional Bayes Factor

Seong W. Kim ! and Hyunsoo Kim:?

ABSTRACT

This article addresses the Bayesian hypothesis testing for the comparison
of two exponential means. Conventional Bayes factors with improper non-
informative priors are not well defined. The fractional Bayes factor (FBF)
of O’Hagan (1995) is used to overcome such a difficulty. We derive proper
intrinsic priors, whose Bayes factors are asymptotically equivalent to the
corresponding FBFs. We demonstrate our results with three examples.

Keywords: Default Bayes factor, Fractional Bayes factor, Intrinsic pI‘lOI‘ Nonin-
formative prior.

1. INTRODUCTION

Bayes factors under proper priors or informative priors have been successful
in testing or model selection problems. However, limited information and time
constraints often require the use of noninformative priors such as Jeffreys’s priors
(Jeffreys, 1961) or reference priors (Berger and Bernardo, 1992).

Suppose the data x has a parametric distribution with density f(x|6;), where
0; is a vector of unknown parameters, ¢ = 1,2. Let ©; be the parameter space
for 8;, i = 1,2. Let 7r1N (6;) be the improper prior density. The Bayes factor B3]
of model Hs to model H; is

mj (x) _ Jo, f(x|62)7d (62)d6,
N
i

N _ =
B0 = W) = Jo. (<o) (6r) b

(1.1)

where m{' (x) and md’ (x) are the marginal densities under H; and Hj respec-

tively. Since w¥(6;) (with i bemg 1 or 2) is improper, it is defined only up to
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an arbitrary constant ¢;. Thus, B is defined only up to (co/ci), which is also
arbitrary so that the resulting Bayes factor is not well defined. This issue has
been initially addressed by several authors including Geisser and Eddy (1979),
Spiegelhalter and Smith (1982), and San Martini and Spezzaferri (1984).

Recently two methods have been proposed and often served as default Bayes
factors. These methods are the fractional Bayes factor (FBF) of O’Hagan (1995)
and the intrinsic Bayes factor (IBF) of Berger and Pericchi (1996). These method-
ologies provide fully authentic Bayes factors in the absence of subjective prior
information (possibly proper prior distributions).

The exponential distribution is probably the most commonly used parametric
distribution in life testing, reliability, and other related fields of application. A
fairly common example is to see the difference of two treatment groups where the
response measurements follow exponential distributions, and the main interest is
to compare the means of each group. There are several articles dealing with the
comparison of two exponential means using the IBF (cf. Kim (2000); Kim and
Sun (2000); Kim et al. (2000)). In this article, we conduct a Bayesian test using
the FBF criterion for both one sided and two sided hypotheses testing problems.

The format of the paper is organized as follows. In Section 2, we review the
concept of the fractional Bayes factor and the intrinsic prior. In Section 3, we
derive a class of intrinsic priors for comparing two exponential means. A real
dataset and a simulated dataset are analized in Section 4.

2. PRELIMINARIES

It has been seen that the Bayes factor BY in (1.1) involves arbitrary constants.
One possibility for removing this arbitrariness is to use a portion of the likelihood
with a so-called the fraction 6. O’Hagan (1995) proposed the fractional Bayes
factor (FBF) as a default Bayes factor. The FBF of model H, to model H; is

Bf, = BY . CF A(s), (2.1)
where the correction CFA(0) is defined as

Jo, L8(61)7lY (61)d6,

N
CFA(8) = L .
@) Jo, L5(82)m) (62)d6,

Here, L;(6;) is the likelihood function under model H;, i = 1,2 and § is a fraction
of the likelihood. A commonly suggested choice is § = m/n, where m is the size
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of the minimal training sample advocated by Berger and Pericchi (1996) and n
is the size of the sample. We will use this choice in our problems. However, the
choice of § may vary to specify for obtaining a stable Bayes factor (cf. O’Hagan
(1995); Berger and Pericchi (1998)).

It is of quite interest to find reasonable priors, often called intrinsic priors, so
that the regular Bayes factors under these priors (possibly proper) are asymp-
totically equivalent to the default Bayes factors when the sample size n is large
enough. This issue was initiated by Berger and Pericchi (1996), and several in-
trinsic priors were derived in various settings. See Lingham and Sivaganesan
(1997), Berger and Mortera (1999), and Kim (2000) for related work. ‘

Under the regularity conditions in Berger and Pericchi (1996), a set of intrinsic

priors denoted by (w{,n%) is a solution of the following system of equations:
Wg(qSQ(@l))W{V(@l) _ B*(Ql)
Wév( 2 %))71’{(91) ' 7 : (2_2)
7T2(92)7T1 (¢1(02)) —_ B*(Qz)
3 (02)7{ (41(62)) 2D

where for i = 1, 2,
B} (0;) = lim CFA(J) under H;,

and for 7 # 7,

$:(6;) = lim_Eg7 (6;) under I,

n—co

with 6; being the MLE under H;.

Remark 1. The noninformative priors 7r{" (8;) and 7Y (6;) are called starting
priors. We note that solutions are not necessarily unique nor proper. It is of
interest to find proper intrinsic priors for given starting priors. Once we derive
proper intrinsic priors, the fractional Bayes factor Bi] can be replaced by the
ordinary Bayes factors Bi; computed with intrinsic priors at least asymptotically.

3. TESTING EXPONENTIAL MEANS

Let Ezp(p) denote the exponential distribution with mean p. Suppose that
we have independent observations z;; ~ Ezp(u;), 1 = 1,2; 7 =1,2,...,n;. We
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use the following notation throughout this paper. Let N = n; 4 ng, and let
z; = 371 x5, Assume that ni/N — a as N — oo. Consider the following
testing problems,

Hy 2 p1 = po, vs Hat g # pa,
and
Hy:py = p, vs Hy : py < .

The multiple test including all three hypotheses could be possible. However, we
could not find intrinsic priors in this setting. (This should be the ultimate goal.)
Let p denote the common value of u; under H;. We employ Jeffreys’s priors as
starting priors for each model. They are

' (1) = 1/p1(us0),
o (pa1, pr2) = 1/ (p1p2) Ly 00
7"57%\7(/117M2) = 1/(M1/‘L2)1(u1<#2)'

3.1 Test for H, versus H,

Note that the minimal training sample is size of 2. So, the correction factor
at § = Z/N is
2 1 a:f?“/ng?”/N

CFA12(N) = T'(2n1/N)T'(2ny/N) ' (1. +22)2

Thus, the fractional Bayes factor BE of H, to H is
2
BY, =B - CFAn(y),

where the Bayes factor for the full sample is

F(nl)I‘(ng) (.’L‘l. + $2.)N

BN = .
ATTTWN) e

We need to compute Bf (1) and Bj(u1, po).
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Proposition 1. The quantities Bf(u) and Bj(u1, u2) are given by

B*( ) B a2ab2b -
VT Taa)T(28)” (3:2)
and
a2a62b MZ(LMQI)
B} = : 12 :
2(:“’17.“’2) F(2G)I‘(2b) (a',u’l i b,Ll,Q)Z’ (3 3)

where b=1—a.
Proof: The result immediately follows from the strong law of large numbers.

Lemma 1. B3(u1,p2) = Bi(p) as (p1, p2) = (4, 1)

Proof: Since p2°u2’/(aps +bu2)? — 1 as (u1, p2) — (i, 1) in (3.3), we have the
result. O
After taking the limit, the system of equations (2.2) becomes

73 (p1, p2)/(ap1 + bug)

= B;(ﬂlaﬂ?)v M1, 2 > Oa

i (apy + b
wél((u lﬁ)/u 2)/ (w1p2) - (3.4)
’ *
— 72 =Bilu), p>0
i () /u? ’ '
where 7} are intrinsic priors for ¢ = 1,2, and B} and B} are given respectively

by (3.2) and (3.3).
Theorem 1. For any proper density function g(t), t > 0, the system of priors

{ m (1) = g(u), 0 < p < oo,

apy + bus ‘
Ty, o) = —I%T;‘B;(M,M)W{(aul +bug), 0°< p, pa < 0o,

(3.5)

is a solution of (3.4), where B} is given by (3.3). Furthermore, 7} is a proper

density.

Proof: By Lemma 3.1, (3.5) is a solution of (3.4). To prove a propriety, let
s = p1/pe, t = pz. Then

oo pOO I . oo 008211—1
| mhspdmdn = B [ [ g(t{as +b))dtds
0o Jo o Jo as+b

foe) 820.—1
= B*/ s
) PP
= 1.
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Here, the last equality follows from the kernel of the Beta distribution by the
appropriate transformation. 0

Corollary 1. When g(-) is the probability density function of Inverse Gamma(\,n),
the set of intrinsic priors is

I U i
m (p) = o) eXP{—;}» 0 <p<oo,

A B*
n 5 (1, p2) expl n

T(\) pipzlaps +bua)* ~ © aps + bug

(3.6)
}, 0 < py, pg < co.

Wé(/ll,ﬂz) =

3.2 Test for H, versus H;

It can be easily seen that the FBF of Hy to Hj is

2
BE =B - CFA(p),
where the Bayes factor for the full sample is
1 no—1
BY = a:.+£L'.N/ S — -
3 = (@1 2) o (z1. + zo2.m)V "
and the correction factor is

2 1 1 S2n2/N—1 -1
CFAF (L) = / ds|
13(N) (z1. + z2.)? [ 0 (z1.+z2.5)? S]

Let us compute B} (6;) for i =1, 3.

Proposition 2. The quantities B} (1) and Bj(u1, p2) are given by

1 421 -1
Bi(n) = [/0 (—;ﬁd} , (3.8)

and

. ] 1 g2b—1 !
) = — [ T :
3 (p1, p2) CETE [/0 (ap1 + bugs)? 3} (3.9)
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Proof: The result immediately follows from the strong law of large numbers.
For the simplicity we assume that n; = ng. Then we have the following
system of equations:

2md un, o) (i i) g

fnfr((m +p2)/2)/(pap2)  p1t p2 ’ (3.10)
my(p,p)/p 1 .
Z3VmBITE -, B> 0,

()~ 2

! are intrinsic priors for 4 = 1, 3.

where

Theorem 2. For any proper density function g(t), t > 0, the system of priors

71 () = g(p), 0 < p < oo,

I
1

1 1 3.11)

{ We{(ﬂl»#z)=%ﬂf(§(m +p2)), 0< p1 < p2 < oo, (3:11)

is a solution of (3.10). Furthermore, 7r§ 1s a proper density. Here, the normalizing
constant is ¢ = 1/log 2 with ¢ = [ [ 7k (1, po)durdus.

Proof: By Lemma 3.2, (3.11) is a solution of (3.10). To prove the propriety, let
s'= p1/pg, t = po. Then ‘

1 pooq |
/ / —g(t(as + b))dtds
0o Jo 2
= log2.

oo ri2 I
/0 /0 w3 (1, p2)dp1dps

O

Corollary 2. When g(-) is the probability density function of Inverse Gamma(\,n),
the set of intrinsic priors is

A
I n Ui
(@) = exp{——}, 0 < pu < o0,
00 F(A)“lm by { “}1 (3.12)
I n i
T , = exp{— , 0 < g, po < oo,
3(#‘1 :u’2) 2/142 1‘\()\) (,J‘]. +/.L2)A+1 p{ i _+_#2} H1, 12

4. NUMERICAL RESULTS
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Example 1. The data in Table 1, given by Lawless (1982), are failure times
(in minutes) for two types of electrical insulation in which the insulation was
subjected to an increasing voltage stress. The original dataset is assumed to
have two-parameter exponential distributions. We subtracted from the data to
the MLE for the location parameter. So we may assume that the transformed
data follow one parameter exponential distributions heuristically.

Table 1: The failure times for two types of electrical insulation.

Type A 9.5, 58.4, 12.1, 126.3, 139.6, 63.0, 83.2, 85.8, 30.9, 16.3, 34.6
Type B 200.8, 60.9, 67.5, 131.7, 3.2, 103.4, 22.0, 128.6, 16.6, 23.8, 30.2

Let @1 and po denote the mean failure times for Type A and Type B re-
spectively. Suppose that we want to test Hy : py = pg versus Ho 1 py # us.
Here (n1,n9, fi1, fiz) = (11,11, 55.0,65.7), where fi; is the MLE of u;, for i = 1, 2.
We computed the fractional Bayes factor and the Bayes factors using the set of
intrinsic priors given by (3.6) with three choices of (A, 7). They are (0.01,0.01),
(0.1,0.1), and (1.0,1.0). These computations were done using IMSL routines. The
numerical values are reported in Table 2. The Bayes factors with intrinsic priors
are quite close to the fractional Bayes factor. Since the Bayes factors are less
than 1, one may conclude that the difference between the two types of electrical
insulation is fairly small. Furthermore, there is not much difference between each
value of (A, 7). Therefore, the Bayes factors using intrinsic priors are quite robust
in terms of the hyperparameters (\, 7).

Table 2: Bayes factors for testing Hy : p1 = ug versus Ho : g # pio

(A\n) (0.01,0.01) (0.1,0.1) (1.0,1.0)
FBF Bl Bl Bl
0.293  0.280 0.279 0.265

Example 2. We performed a simulation study for testing H; versus H,. We
examined the cases when p1 = po = 1, and p1 = 1, up = 2 for some choices
of n; and ny. We computed the average of the relative differences between the
FBF and the Bayes factors with intrinsic priors for three choices of (,7) given by
(3.6). We used three different replications to see the stability of numerical values.
They are 100, 200, and 400. We also computed the standard deviations of relative
differences based on each replication. The numerical values are reported in Table
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3. The relative differences are quite small for each simulated dataset. Especially,
as the sample size increases, the relative difference decreases. This is what we
would expect from the theoretical results. We also note that the values are quite

stable as the number of the replication increases.

Table 3: Relative difference |BS, — B4;|/BJ] for estimating the fractional Bayes

factor. The relative difference (R.D.) is averaged over 100, 200, and 400
replications. The numbers in parentheses are the standard deviations of the

relative differences, based on each replication (rep.).

(1) (.01,.00) (1,.1) (1.0,1.0)
(n1,m2)  rep. R.D. R.D. R.D.
p1=1.0 (10,10) 100 0.0421(0.0067) 0.0422(0.0067) 0.0428(0.0111)
1o = 1.0 200 0.0423(0.0069) 0.0424(0.0068) 0.0436(0.0109)
400 0.0423(0.0074) 0.0424(0.0074) 0.0433(0.0113)
(10,20) 100 0.0305(0.0070) 0.0306(0.0071) 0.0314(0.0089)
200 0.0302(0.0071) 0.0302(0.0071) 0.0309(0.0088)
400 0.0304(0.0077) 0.0305(0.0077) 0.0314(0.0091)
(20,20) 100" 0.0225(0.0028) 0.0226(0.0028) 0.0231(0.0041)
200 0.0229(0.0021) 0.0229(0.0022) 0.0232(0.0039)
400 0.0227(0.0024) 0.0227(0.0024) 0.0230(0.0040)
(30,30) 100 0.0157(0.0009) 0.0157(0.0009) 0.0158(0.0021)
200  0.0156(0.0012) 0.0156(0.0012) 0.0157(0.0021)
400 0.0157(0.0010) 0.0157(0.0010) 0.0161(0.0022)
pi=10 (10,10) 100 0.0345(0.0115) 0.0356(0.0117). 0.0456(0.0145)
[z = 2.0 200  0.0209(0.0137) 0.0308(0.0141) 0.0402(0.0174)
400  0.0304(0.0140) 0.0313(0.0143) 0.0404(0.0169)
(10,20) 100 0.0139(0.0097) 0.0145(0.0100) 0.0206(0.0127)
| 200 0.0157(0.0094) 0.0163(0.0097) 0.0225(0.0125)
400 0.0160(0.0092) 0.0166(0.0095) 0.0229(0.0123)
(20,20) 100 0.0152(0.0066) 0.0158(0.0067) 0.0209(0.0080)
200  0.0153(0.0062) 0.0159(0.0063) 0.0212(0.0074)
400  0.0161(0.0060) 0.0166(0.0061) 0.0219(0.0071)
(30,30) 100  0.0106(0.0036) 0.0110(0.0037) 0.0146(0.0042)
200 0.0106(0.0035) 0.0110(0.0036) 0.0147(0.0041)
400 0.0105(0 0036) 0.0109(0.0036) 0.0146(0.0042)
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Example 3. Let p; and po denote the mean failure times for Type A and Type
B respectively in Table 1 of Example 1. Suppose that we want to test Hy : uy = po
versus Hi : py < pg. Here (ni,no, i1, fi2) = (11,11,55.0,65.7), where [i; is the
MLE of pu;, for ¢ = 1,2. We computed the fractional Bayes factor and the Bayes
factors using the set of intrinsic priors given by (3.12) with four choices of (A, 7).
They are (0.01,0.01), (0.1,0.1), (1.0,1.0), and (10,10). The numerical values are
reported in Table 4. There is a little difference between the fractional Bayes factor
and the Bayes factors using intrinsic priors. Since the normalizing constant for
7 (p1, p2) is 1/ log 2, this causes a calibration problem mentioned by Kim (2000).
We can see from Table 4 that the Bayes factors computed by intrinsic priors are
close to each other for (A,n) = (0.01,0.01),(0.1,0.1),(1.0,1.0). Meanwhile, the
Bayes factor using intrinsic priors approximates accurately the fractional Bayes
factor for (A\,n) = (10, 10).

Table 4: Bayes factors for testing Hy : p1 = po versus Hy @ py < o

(A\,m) (0.01,0.01) (0.1,0.1) (1.0,1.0) (10,10)

FBF B} B B B},
0.354 0.448 0.447 0.434 0.353
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