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Abstract

This article deals with the problem of testing the equality of the scale parameters in
nonregular Pareto distributions. We propose Bayesian hypothesis testing procedures for
the equality of the scale parameters under the noninformative prior. The noninformative
prior is usually improper which yields a calibration problem that makes the Bayes factor
to be defined up to a multiplicative constant. So we propose the default Bayesian
hypothesis testing procedures based on the fractional Bayes factor and the intrinsic
Bayes factors under the reference priors. Simulation study and a real data example are
provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, Pareto distribution, reference
prior, scale parameter.

1. Introduction

Consider X and Y are independently distributed random variables according to the Pareto
distribution P(α, λ1) with the shape parameter α and the scale parameter λ1, and the Pareto
distribution P(β, λ2) with the shape parameter β and the scale parameter λ2. Then the
Pareto distributions of X and Y are given by

f(x|α, λ1) = αλα1x
−(α+1), x ≥ λ1 > 0, α > 0, (1.1)

and

f(y|β, λ2) = βλβ2y
−(β+1), y ≥ λ2 > 0, β > 0, (1.2)

respectively. The present paper focuses on testing the equality of the scale parameters in
the Pareto distributions.

In Bayesian model selection or testing problem, the Bayes factors under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper
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so that they are only defined up to arbitrary constants which affects the values of Bayes
factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996)
have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used a portion of the
likelihood with a so-called the fraction b. These approaches have shown to be quite useful in
many statistical areas (Kang et al., 2010, 2011; Cho, 2010). An excellent exposition of the
objective Bayesian method to model selection is proposed in Berger and Pericchi (2001).

The Pareto distribution provides a statistical model which has an extensive variety of
applications. It has been found in describing distributions of studies of income, property
values, insurance risk, stock prices fluctuations, migration, size of cities and firms, word fre-
quencies, occurrences of natural resources, business failures, service time in queuing systems,
error clustering in communications circuits and lifetime data, etc (Arnold and Press, 1983;
Fernández, 2008). The Pareto distribution has been used by many authors in a Bayesian
viewpoint (e.g., Arnold and Press, 1983, 1989; Geisser, 1984, 1985; Lwin, 1972; Nigm and
Hamdy, 1987; Tiwari et al., 1996; Ko and Kim, 1999; Fernández, 2008; Kim et al., 2009;
Kang, 2010). For the common scale parameter, Elfessi and Jin (1996) derived a class of
improved estimators which uniformly dominates the MLE under a class of convex scale in-
variant loss functions. In many problems we are interested in comparing the variabilities of
two populations. Usually this can be done by comparing the scales of two populations. How-
ever the problem of testing for the equality of the scale parameters has not been considered.
Therefore there is a necessity for developing hypothesis testing procedure for the equality of
the scale parameters.

In this paper, we propose the objective Bayesian hypothesis testing procedures for the
equality of the scale parameters in Pareto distributions based on the Bayes factors. The
outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian
hypothesis testing based on the Bayes factor. In Section 3, using the reference priors, we
provide the Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factors. In Section 4, simulation study and a real data example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypothesesH1,H2 ,· · · ,Hq are under consideration, with the data x = (x1, x2,
· · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter
vector θi is unknown. Let πi(θi) be the prior distribution of parameter θi under hypothesis
Hi, and let pi be the prior probability of hypothesis Hi,i = 1, 2, · · · , q . Then the posterior
probability of that the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1 , (2.1)
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where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji can be interpreted as the comparative support of the data for Hj versus Hi. The
computation of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often
in Bayesian analysis, one can use noninformative priors πNi . Common choices are the uni-
form prior, Jeffreys’ prior and the reference prior. The noninformative prior πNi is typically
improper. Hence the use of noninformative prior πNi in (2.2) causes the Bji to contain un-
specified constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic
Bayes factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be so used and let x(−l) be the remainder of the
data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In (2.3), the posteriors πNi (θi|x(l)) are well defined. Now, consider the Bayes factor, Bji(l),
with the remainder of the data x(−l), using πNi (θi|x(l)) as the prior:

Bji(l) =

∫
f(x(−l)|θj ,x(l))πNj (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πNi (θi|x(l))dθi

= BNji ·BNij (x(l)) (2.4)

where

BNji = BNji (x) =
mN
j (x)

mN
i (x)

and

BNij (x(l)) =
mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BNij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAIji = BNji ×
1

L

L∑
l=1

BNij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BNji ×ME[BNij (x(l))], (2.6)

where ME indicates the median for all the training sample Bayes factors.
Therefore we can also calculate the posterior probability of Hi using (2.1), where Bji is

replaced by BAIji and BMI
ji from (2.5) and (2.6), respectively.
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The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, b, of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BFji = BNji ·
∫
Lb(x|θi)πNi (θi)dθi∫
Lb(x|θj)πNj (θj)dθj

= BNji ·
mb
i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice of
b is b = m/n, where m is the size of the minimal training sample, assuming that this number
is uniquely defined. See O’Hagan (1995, 1997) and the discussion by Berger and Mortera in
O’Hagan (1995).

3. Bayesian hypothesis testing procedures

Let Xi, i = 1, · · · , n denote observations from the Pareto distribution P(α, λ1), and Yi, i =
1, · · · ,m denote observations from the Pareto distribution P(β, λ2). Then likelihood function
is given by

f(x,y|α, β, λ1, λ2) = αnβmλnα1 λmβ2

n∏
i=1

x
−(α+1)
i

m∏
i=1

y
−(β+1)
i , xi ≥ λ1, yi ≥ λ2, (3.1)

where x = (x1, · · · , xn), y = (y1, · · · , ym), α > 0, β > 0 and λ1, λ2 > 0.
We are interested in testing the hypotheses H1 : λ1 = λ2 versus H2 : λ1 6= λ2 based on

the fractional Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : λ1 = λ2 ≡ λ is

L1(λ, α, β|x,y) = αnβmλnα+mβ
n∏
i=1

x
−(α+1)
i

m∏
i=1

y
−(β+1)
i . (3.2)

And under the hypothesis H1, the reference prior for (λ, α, β) derived by Kang (2010) and
is

πN1 (λ, α, β) ∝ λ−1α−1β−1. (3.3)

Then from the likelihood (3.2) and the reference prior (3.3) , the element mb
1(x,y) of the

FBF under H1 is given by

mb
1(x,y) (3.4)

=

∫ z(1)

0

∫ ∞
0

∫ ∞
0

Lb1(λ, α, β|x,y)πN1 (λ, α, β)dαdβdλ

= Γ[bn]Γ[bm]

n∏
i=1

x−bi

m∏
i=1

y−bi

∫ z(1)

0

λ−1

[
b

n∑
i=1

log
(xi
λ

)]−bn [
b

m∑
i=1

log
(yi
λ

)]−bm
dλ,
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where z(1) = min{x1, · · · , xn, y1, · · · , ym}. For the hypothesis H2 : λ1 6= λ2, the reference
prior for (λ1, λ2, α, β) is

πN (λ1, λ2, α, β) ∝ λ−11 λ−12 α−1β−1. (3.5)

The likelihood function under the hypothesis H2 is

L2(λ1, λ2, α, β|x,y) = αnβmλnα1 λmβ2

n∏
i=1

x
−(α+1)
i

m∏
i=1

y
−(β+1)
i . (3.6)

Thus from the likelihood (3.6) and the reference prior (3.5), the element mb
2(x,y) of FBF

under H2 is given as follows.

mb
2(x,y) =

∫ y(1)

0

∫ x(1)

0

∫ ∞
0

∫ ∞
0

Lb2(λ1, λ2, α, β|x,y)πN2 (λ1, λ2, α, β)dαdβdλ1dλ2

= Γ[bn]Γ[bm]

n∏
i=1

x−bi

m∏
i=1

y−bi

∫ y(1)

0

∫ x(1)

0

λ−11 λ−12

×

[
b

n∑
i=1

log

(
xi
λ1

)]−bn [
b

m∑
i=1

log

(
yi
λ2

)]−bm
dλ1dλ2, (3.7)

where x(1) = min{x1, · · · , xn} and y(1) = min{y1, · · · , ym}. Therefore the element BN21 of
FBF is given by

BN21 =
S2(x,y)

S1(x,y)
, (3.8)

where

S1(x,y) =

∫ z(1)

0

λ−1

[
n∑
i=1

log
(xi
λ

)]−n [ m∑
i=1

log
(yi
λ

)]−m
dλ

and

S2(x,y) =

∫ y(1)

0

∫ x(1)

0

λ−11 λ−12

[
n∑
i=1

log

(
xi
λ1

)]−n [ m∑
i=1

log

(
yi
λ2

)]−m
dλ1dλ2.

And the ratio of marginal densities with fraction b is

mb
1(x,y)

mb
2(x,y)

=
S1(x,y; b)

S2(x,y; b)
, (3.9)

where

S1(x,y; b) =

∫ z(1)

0

λ−1

[
n∑
i=1

log
(xi
λ

)]−bn [ m∑
i=1

log
(yi
λ

)]−bm
dλ

and

S2(x,y; b) =

∫ y(1)

0

∫ x(1)

0

λ−11 λ−12

[
n∑
i=1

log

(
xi
λ1

)]−bn [ m∑
i=1

log

(
yi
λ2

)]−bm
dλ1dλ2.
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Thus the FBF of H2 versus H1 is given by

BF21 =
S2(x,y)

S1(x,y)
· S1(x,y; b)

S2(x,y; b)
. (3.10)

Note that the calculation of the FBF of H2 versus H1 requires only two dimensional inte-
gration.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 and H2, respectively. The marginal density of (Xj1 , Xj2) and (Yk1 , Yk2) is finite for all
1 ≤ j1 < j2 ≤ n and 1 ≤ k1 < k2 ≤ m under each hypothesis. Thus we conclude that any
training sample of size 4 is a minimal training sample.

The marginal density mN
1 (xj1 , xj2 , yk1 , yk2) under H1 is given by

mN
1 (xj1 , xj2 , yk1 , yk2) =

∫ z(j1)

0

∫ ∞
0

∫ ∞
0

f(xj1 , xj2 , yk1 , yk2 |λ, α, β)πN1 (λ, α, β)dαdβdλ

=

∫ z(j1)

0

(xj1xj2)−1(yk1yk2)−1λ−1

×
[
log
(xj1
λ

)
+ log

(xj2
λ

)]−2 [
log
(yk1
λ

)
+ log

(yk2
λ

)]−2
dλ,

where z(j1) = min{xj1 , xj2 , yk1 , yk2}, And the marginal density mN
2 (xj1 , xj2 , yk1 , yk2) under

H2 is given by

mN
2 (xj1 , xj2 , yk1 , yk2)

=

∫ y(k1)

0

∫ x(j1)

0

∫ ∞
0

∫ ∞
0

f(xj1 , xj2 , yk1 , yk2 |λ1, λ2, α, β)πN2 (λ1, λ2, α, β)dαdβdλ1dλ2

=

∫ y(k1)

0

∫ x(j1)

0

(xj1xj2)−1(yk1yk2)−1λ−11 λ−12

×
[
log

(
xj1
λ1

)
+ log

(
xj2
λ1

)]−2 [
log

(
yk1
λ2

)
+ log

(
yk2
λ2

)]−2
dλ1dλ2,

where x(j1) = min{xj1 , xj2} and y(k1) = min{yk1 , yk2}. Therefore the AIBF of H2 versus H1

is given by

BAI21 =
S2(x,y)

S1(x,y)

 1

L

n∑
j1,j2

m∑
k1,k2

T1(xj1 , xj2 , yk1 , yk2)

T2(xj1 , xj2 , yk1 , yk2)

 , (3.11)

where L = [nm(n− 1)(m− 1)]/4,

T1(xj1 , xj2 , yk1 , yk2) =

∫ z(j1)

0

λ−1
[
log
(xj1
λ

)
+ log

(xj2
λ

)]−2 [
log
(yk1
λ

)
+ log

(yk2
λ

)]−2
dλ
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and

T2(xj1 , xj2 , yk1 , yk2) =

∫ y(k1)

0

∫ x(j1)

0

λ−11 λ−12

×
[
log

(
xj1
λ1

)
+ log

(
xj2
λ1

)]−2 [
log

(
yk1
λ2

)
+ log

(
yk2
λ2

)]−2
dλ1dλ2.

Also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x,y)

S1(x,y)
ME

[
T1(xj1 , xj2 , yk1 , yk2)

T2(xj1 , xj2 , yk1 , yk2)

]
. (3.12)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require only two
dimensional integration.

4. Numerical studies

4.1. Simulation study

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (α, λ1), (β, λ2) and (n,m). In particular, for fixed
(α, λ1) and (β, λ2), we take 1,000 independent random samples of Xi and Yi with sample
size n and m from the models (1.1) and (1.2), respectively. We want to test the hypotheses
H1 : λ1 = λ2 versus H2 : λ1 6= λ2. The posterior probabilities of H1 being true are computed
assuming equal prior probabilities. Table 4.1 shows the results of the averages and the
standard deviations in parentheses of posterior probabilities. In Table 4.1, PF (·),PAI(·) and
PMI(·) are the posterior probabilities of the hypothesis H1 being true based on FBF, AIBF
and MIBF, respectively. From Table 4.1, the FBF, the AIBF and the MIBF give fairly
reasonable answers for all configurations. Also the FBF, the AIBF and the MIBF give a
similar behavior for all sample sizes. However the FBF and the AIBF slightly favor the
hypothesis H2 than the MIBF.

4.2. Example

This example taken from Arnold and Press (1989). Dyer (1981) reported annual wage
data (in multiples of 100 US dollars) of a random sample of 30 production line workers in a
large industrial firm for which the Pareto distribution appeared to be adequate. To test the
equality of the scale parameters, we randomly divided this data into two groups. The data
sets are given by

Group 1: 119, 112, 156, 123, 115, 119, 132, 107, 103, 105, 158, 111, 101, 157, 112.
Group 2: 112, 154, 108, 103, 107, 125, 128, 151, 104, 116, 140, 108, 104, 119, 115.

For this data sets, the maximum likelihood estimates of α and λ1 in group 1 are 5.6323 and
101.0, and for group 2, the maximum likelihood estimates of β and λ2 are 7.1022 and 103.0.

We want to test the hypotheses H1 : λ1 = λ2 versus H2 : λ1 6= λ2. The values of the Bayes
factors and the posterior probabilities of H1 are given in Table 4.2. From the results of
Table 4.2, the posterior probabilities based on various Bayes factors give the same answer,
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Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

λ1 λ2 (n,m) PF (H1|x, y) PAI (H1|x, y) PMI (H1|x, y)

α = 0.5, β = 2.0

5.0 1.0

5,5 0.2604(0.1350) 0.3274 (0.1614) 0.3406 (0.1697)
5,10 0.2449(0.1412) 0.3298 (0.1588) 0.3419 (0.1639)
10,10 0.0538(0.0586) 0.0809 (0.0848) 0.0863 (0.0897)
10,20 0.0523(0.0568) 0.0827 (0.0830) 0.0889 (0.0889)

5.0 3.5

5,5 0.5753(0.1509) 0.6033 (0.1486) 0.6363 (0.1568)
5,10 0.5847(0.1895) 0.5844 (0.1661) 0.6190 (0.1729)
10,10 0.5457(0.1877) 0.5760 (0.1879) 0.6190 (0.1936)
10,20 0.5850(0.1961) 0.5791 (0.1889) 0.6219 (0.1950)

5.0 4.8

5,5 0.6615(0.1539) 0.6762 (0.1573) 0.7180 (0.1650)
5,10 0.7156(0.1610) 0.6937 (0.1504) 0.7364 (0.1551)
10,10 0.7806(0.1518) 0.7890 (0.1495) 0.8271 (0.1449)
10,20 0.8007(0.1705) 0.7808 (0.1679) 0.8188 (0.1634)

5.0 5.0

5,5 0.6589(0.1526) 0.6737 (0.1534) 0.7159 (0.1600)
5,10 0.7061(0.1792) 0.6875 (0.1671) 0.7292 (0.1733)
10,10 0.7805(0.1630) 0.7906 (0.1628) 0.8270 (0.1594)
10,20 0.8190(0.1660) 0.8019 (0.1654) 0.8370 (0.1613)

5.0 5.2

5,5 0.6623(0.1517) 0.6704 (0.1610) 0.7154 (0.1656)
5,10 0.7134(0.1710) 0.6850 (0.1644) 0.7291 (0.1688)
10,10 0.7690(0.1592) 0.7768 (0.1606) 0.8170 (0.1541)
10,20 0.7999(0.1763) 0.7766 (0.1828) 0.8157 (0.1763)

5.0 6.5

5,5 0.5731(0.1921) 0.5692 (0.2159) 0.6123 (0.2187)
5,10 0.5549(0.2681) 0.5144 (0.2788) 0.5569 (0.2872)
10,10 0.4578(0.2988) 0.4418 (0.3135) 0.4863 (0.3172)
10,20 0.3524(0.3676) 0.3272 (0.3646) 0.3528 (0.3780)

5.0 9.0

5,5 0.3938(0.2359) 0.3689 (0.2617) 0.4111 (0.2671)
5,10 0.2711(0.3096) 0.2428 (0.3051) 0.2653 (0.3219)
10,10 0.1134(0.1996) 0.1015 (0.2005) 0.1182 (0.2153)
10,20 0.0575(0.1955) 0.0530 (0.1879) 0.0573 (0.1986)

α = 1.0, β = 1.0

5.0 1.0

5,5 0.1548(0.1128) 0.1628 (0.1272) 0.1920 (0.1380)
5,10 0.1224(0.1052) 0.1495 (0.1233) 0.1799 (0.1366)
10,10 0.0066(0.0116) 0.0072 (0.0135) 0.0091 (0.0163)
10,20 0.0056(0.0106) 0.0075 (0.0142) 0.0096 (0.0174)

5.0 3.5

5,5 0.5555(0.1804) 0.5408 (0.2047) 0.5872 (0.2020)
5,10 0.5594(0.1994) 0.5185 (0.2042) 0.5741 (0.2014)
10,10 0.4214(0.2247) 0.3998 (0.2337) 0.4526 (0.2405)
10,20 0.4024(0.2066) 0.3610 (0.2011) 0.4177 (0.2121)

5.0 4.8

5,5 0.6779(0.1488) 0.6752 (0.1698) 0.7182 (0.1653)
5,10 0.7476(0.1704) 0.7192 (0.1819) 0.7628 (0.1743)
10,10 0.7784(0.1671) 0.7737 (0.1805) 0.8124 (0.1707)
10,20 0.8302(0.1574) 0.8058 (0.1721) 0.8412 (0.1598)

5.0 5.0

5,5 0.6753(0.1565) 0.6750 (0.1768) 0.7192 (0.1741)
5,10 0.7474(0.1691) 0.7200 (0.1852) 0.7632 (0.1772)
10,10 0.7950(0.1587) 0.7909 (0.1712) 0.8285 (0.1601)
10,20 0.8364(0.1577) 0.8127 (0.1734) 0.8471 (0.1612)

5.0 5.2

5,5 0.6743(0.1603) 0.6739 (0.1816) 0.7174 (0.1792)
5,10 0.7556(0.1571) 0.7264 (0.1750) 0.7693 (0.1676)
10,10 0.7851(0.1621) 0.7813 (0.1760) 0.8197 (0.1662)
10,20 0.8357(0.1512) 0.8117 (0.1666) 0.8471 (0.1536)

5.0 6.5

5,5 0.5918(0.1685) 0.5782 (0.1954) 0.6256 (0.1910)
5,10 0.5918(0.2173) 0.5486 (0.2346) 0.5930 (0.2345)
10,10 0.5389(0.2230) 0.5194 (0.2360) 0.5731 (0.2354)
10,20 0.3794(0.2696) 0.3319 (0.2694) 0.3753 (0.2793)

5.0 9.0

5,5 0.4388(0.1867) 0.4191 (0.2073) 0.4668 (0.2064)
5,10 0.2826(0.2228) 0.2419 (0.2242) 0.2751 (0.2368)
10,10 0.1925(0.1595) 0.1784 (0.1620) 0.2140 (0.1788)
10,20 0.0323(0.0935) 0.0254 (0.0840) 0.0309 (0.0948)

α = 1.0, β = 3.0

5.0 1.0

5,5 0.1228(0.0936) 0.1676 (0.1246) 0.1782 (0.1319)
5,10 0.1024(0.0895) 0.1635 (0.1190) 0.1732 (0.1245)
10,10 0.0045(0.0076) 0.0076 (0.0128) 0.0082 (0.0140)
10,20 0.0044(0.0081) 0.0082 (0.0141) 0.0088 (0.0150)

5.0 3.5

5,5 0.4893(0.1634) 0.5110 (0.1724) 0.5440 (0.1772)
5,10 0.4987(0.1960) 0.4930 (0.1801) 0.5286 (0.1851)
10,10 0.3216(0.1786) 0.3461 (0.1891) 0.3827 (0.2008)
10,20 0.3578(0.1955) 0.3511 (0.1905) 0.3884 (0.2023)

5.0 4.8

5,5 0.6613(0.1610) 0.6610 (0.1690) 0.7056 (0.1705)
5,10 0.7376(0.1694) 0.6957 (0.1624) 0.7399 (0.1619)
10,10 0.7725(0.1601) 0.7728 (0.1648) 0.8138 (0.1571)
10,20 0.8197(0.1575) 0.7836 (0.1611) 0.8237 (0.1553)

5.0 5.0

5,5 0.6833(0.1574) 0.6849 (0.1673) 0.7288 (0.1706)
5,10 0.7428(0.1719) 0.7010 (0.1703) 0.7459 (0.1701)
10,10 0.7849(0.1664) 0.7829 (0.1721) 0.8230 (0.1632)
10,20 0.8401(0.1467) 0.8065 (0.1559) 0.8444 (0.1464)

5.0 5.2

5,5 0.6709(0.1567) 0.6728 (0.1692) 0.7179 (0.1676)
5,10 0.7369(0.1686) 0.6912 (0.1741) 0.7355 (0.1728)
10,10 0.7767(0.1603) 0.7735 (0.1707) 0.8156 (0.1619)
10,20 0.7943(0.1857) 0.7491 (0.2039) 0.7928 (0.1939)

5.0 6.5

5,5 0.4919(0.2259) 0.4624 (0.2521) 0.5107 (0.2537)
5,10 0.3869(0.3102) 0.3313 (0.3081) 0.3637 (0.3223)
10,10 0.2371(0.2524) 0.2116 (0.2542) 0.2450 (0.2691)
10,20 0.1193(0.2610) 0.1039 (0.2476) 0.1141 (0.2609)

5.0 9.0

5,5 0.2158(0.1929) 0.1835 (0.2012) 0.2195 (0.2114)
5,10 0.0874(0.2021) 0.0694 (0.1853) 0.0781 (0.1986)
10,10 0.0187(0.0666) 0.0145 (0.0616) 0.0186 (0.0694)
10,20 0.0047(0.0576) 0.0041 (0.0545) 0.0045 (0.0568)
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Table 4.2 Bayes factor and posterior probabilities of H1 : λ1 = λ2

BF
21 PF (H1|x,y) BAI

21 PAI(H1|x,y) BMI
21 PMI(H1|x,y)

0.2752 0.7842 0.3253 0.7545 0.2412 0.8057

and select the hypothesis H1. The AIBF has the smallest posterior probability than any
other posterior probabilities based on the FBF and the MIBF. The MIBF slightly seems to
favor the complex hypothesis than the AIBF and the FBF.

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the equality of the scale
parameters in Pareto distributions under the reference priors. From our numerical results,
the developed hypothesis testing procedures give fairly reasonable answers for all parameter
configurations. However the FBF and the AIBF slightly favor the hypothesis H2 than the
MIBF. From our simulation and example, we recommend the use of the FBF and the AIBF
than the MIBF for practical application in view of its simplicity and ease of implementation.
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