• 제목/요약/키워드: convex of order ${\alpha}$

Search Result 16, Processing Time 0.024 seconds

THIRD HANKEL DETERMINANTS FOR STARLIKE AND CONVEX FUNCTIONS OF ORDER ALPHA

  • Orhan, Halit;Zaprawa, Pawel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.165-173
    • /
    • 2018
  • In this paper we obtain the bounds of the third Hankel determinants for the classes $\mathcal{S}^*({\alpha})$ of starlike functions of order ${\alpha}$ and $\mathcal{K}({\alpha}$) of convex functions of order ${\alpha}$. Moreover,we derive the sharp bounds for functions in these classes which are additionally 2-fold or 3-fold symmetric.

MULTIOBJECTIVE SECOND-ORDER NONDIFFERENTIABLE SYMMETRIC DUALITY INVOLVING (F, $\alpha$, $\rho$, d)-CONVEX FUNCTIONS

  • Gupta, S.K.;Kailey, N.;Sharma, M.K.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1395-1408
    • /
    • 2010
  • In this paper, a pair of Wolfe type second-order nondifferentiable multiobjective symmetric dual program over arbitrary cones is formulated. Weak, strong and converse duality theorems are established under second-order (F, $\alpha$, $\rho$, d)-convexity assumptions. An illustration is given to show that second-order (F, $\alpha$, $\rho$, d)-convex functions are generalization of second-order F-convex functions. Several known results including many recent works are obtained as special cases.

ON THE $FEKETE-SZEG\"{O}$ PROBLEM FOR STRONGLY $\alpha$-LOGARITHMIC CLOSE-TO-CONVEX FUNCTIONS

  • Cho, Nak-Eun
    • East Asian mathematical journal
    • /
    • v.21 no.2
    • /
    • pp.233-240
    • /
    • 2005
  • Let $CS^{\alpha}(\beta)$ denote the class of normalized strongly $\alpha$-logarithmic close-to-convex functions of order $\beta$, defined in the open unit disk $\mathbb{U}$ by $$\|arg\{\(\frac{f(z)}{g(z)}\)^{1-\alpha}\(\frac{zf'(z)}{g(z)\)^{\alpha}\}\|\leq\frac{\pi}{2}\beta,\;(\alpha,\beta\geq0)$$ where $g{\in}S^*$ the class of normalized starlike functions. In this paper, we prove sharp $Fekete-Szeg\"{o}$ inequalities for functions $f{\in}CS^{\alpha}(\beta)$.

  • PDF

ON THE FEKETE-SZEGO PROBLEM FOR CERTAIN ANALYTIC FUNCTIONS

  • Kwon, Oh-Sang;Cho, Nak-Eun
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.265-271
    • /
    • 2003
  • Let $CS_\alpha(\beta)$ denote the class of normalized strongly $\alpha$-close-to-convex functions of order $\beta$, defined in the open unit disk $\cal{U}$ of $\mathbb{C}$${\mid}arg{(1-{\alpha})\frac{f(z)}{g(z)}+{\alpha}\frac{zf'(z)}{g(z)}}{\mid}\;\leq\frac{\pi}{2}{\beta}(\alpha,\beta\geq0)$ such that $g\; \in\;S^{\ask}$, the class of normalized starlike unctions. In this paper, we obtain the sharp Fekete-Szego inequalities for functions belonging to $CS_\alpha(\beta)$.

  • PDF

Certain Subclasses of k-Uniformly Starlike and Convex Functions of Order α and Type β with Varying Argument Coefficients

  • AOUF, MOHAMED KAMAL;MAGESH, NANJUNDAN;YAMINI, JAGADESAN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.383-394
    • /
    • 2015
  • In this paper, we define two new subclass of k-uniformly starlike and convex functions of order ${\alpha}$ type ${\beta}$ with varying argument of coefficients. Further, we obtain coefficient estimates, extreme points, growth and distortion bounds, radii of starlikeness, convexity and results on modified Hadamard products.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

Certain Subclasses of Bi-Starlike and Bi-Convex Functions of Complex Order

  • MAGESH, NANJUNDAN;BALAJI, VITTALRAO KUPPARAOo
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.705-714
    • /
    • 2015
  • In this paper, we introduce and investigate an interesting subclass $M_{\Sigma}({\gamma},{\lambda},{\delta},{\varphi})$ of analytic and bi-univalent functions of complex order in the open unit disk ${\mathbb{U}}$. For functions belonging to the class $M_{\Sigma}({\gamma},{\lambda},{\delta},{\varphi})$ we investigate the coefficient estimates on the first two Taylor-Maclaurin coefficients ${\mid}{\alpha}_2{\mid}$ and ${\mid}{\alpha}_3{\mid}$. The results presented in this paper would generalize and improve some recent works of [1],[5],[9].

SUBORDINATION ON δ-CONVEX FUNCTIONS IN A SECTOR

  • MARJONO, MARJONO;THOMAS, D.K.
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.41-50
    • /
    • 2001
  • This paper concerns with the subclass of normalized analytic function f in D = {z : |z| < 1}, namely a ${\delta}$-convex function in a sector. This subclass is denoted by ${\Delta}({\delta})$, where ${\delta}$ is a real positive. Given $0<{\beta}{\leq}1$ then for $z{\in}D$, the exact ${\alpha}({\beta},\;{\delta})$ is found such that $f{\in}{\Delta}({\delta})$ implies $f{\in}S^*({\beta})$, where $S^*({\beta})$ is starlike of order ${\beta}$ in a sector. This work is a more general version of the result of Nunokawa and Thomas [11].

  • PDF

SOME EXTENSION RESULTS CONCERNING ANALYTIC AND MEROMORPHIC MULTIVALENT FUNCTIONS

  • Ebadian, Ali;Masih, Vali Soltani;Najafzadeh, Shahram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.911-927
    • /
    • 2019
  • Let $\mathscr{B}^{{\eta},{\mu}}_{p,n}\;({\alpha});\;({\eta},{\mu}{\in}{\mathbb{R}},\;n,\;p{\in}{\mathbb{N}})$ denote all functions f class in the unit disk ${\mathbb{U}}$ as $f(z)=z^p+\sum_{k=n+p}^{\infty}a_kz^k$ which satisfy: $$\|\[{\frac{f^{\prime}(z)}{pz^{p-1}}}\]^{\eta}\;\[\frac{z^p}{f(z)}\]^{\mu}-1\| <1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. And $\mathscr{M}^{{\eta},{\mu}}_{p,n}\;({\alpha})$ indicates all meromorphic functions h in the punctured unit disk $\mathbb{U}^*$ as $h(z)=z^{-p}+\sum_{k=n-p}^{\infty}b_kz^k$ which satisfy: $$\|\[{\frac{h^{\prime}(z)}{-pz^{-p-1}}}\]^{\eta}\;\[\frac{1}{z^ph(z)}\]^{\mu}-1\|<1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. In this paper several sufficient conditions for some classes of functions are investigated. The authors apply Jack's Lemma, to obtain this conditions. Furthermore, sufficient conditions for strongly starlike and convex p-valent functions of order ${\gamma}$ and type ${\beta}$, are also considered.