ON THE FEKETE-SZEGÖ PROBLEM FOR STRONGLY α -LOGARITHMIC CLOSE-TO-CONVEX FUNCTIONS

NAK EUN CHO

ABSTRACT. Let $\mathcal{CS}^{\alpha}(\beta)$ denote the class of normalized strongly α -logarithmic close-to-convex functions of order β , defined in the open unit disk \mathbb{U} by

$$\left| \arg \left\{ \left(\frac{f(z)}{g(z)} \right)^{1-\alpha} \left(\frac{zf'(z)}{g(z)} \right)^{\alpha} \right\} \right| \leq \frac{\pi}{2} \beta, \quad (\alpha, \beta \geq 0)$$

where $g \in \mathcal{S}^*$ the class of normalized starlike functions. In this paper, we prove sharp Fekete-Szegö inequalities for functions $f \in \mathcal{CS}^{\alpha}(\beta)$.

1. Introduction

Let S denote the class of analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are univalent in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Let \mathcal{S}^* be the subclas of \mathcal{S} consisting of all starlike functions in \mathbb{U} .

Received September 23, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 30C45.

Key words and phrases: univalent, starlike, Fekete-Szegö problem, close-to-star, close-to-convex, strongly α -logarithmic close-to-convex.

234 N. E. CHO

A classical result of Fekete and Szeg \ddot{o} [4] determines the maximum value of $|a_3 - \mu a_2^2|$, as a function of the real parameter μ , for $f \in \mathcal{S}$. There are also several reults of this type in the literature, each of them dealing with $|a_3 - \mu a_2^2|$ for various classes of functions (see, e. g., [1,6-10]).

Denote by $\mathcal{K}(\beta)$ the class of strongly close-to -convex functions of order β . Thus $f \in \mathcal{K}(\beta)$ if and only if there exists $g \in \mathcal{S}^*$ such that

$$\left|\arg \frac{zf'(z)}{g(z)}\right| \le \frac{\pi}{2}\beta, \quad (\beta \ge 0; \ z \in \mathbb{U})$$

A great deal of attention has been given in recent years to the class $\mathcal{K}(\beta)$ introduced by Pommerenke [13]. For $0 \leq \beta \leq 1$, the class $\mathcal{K}(\beta)$ is a subclass of close-to-convex functions introduced by Kaplan [6] and hence contains only univalent functions. However, Goodman [5] showed that $\mathcal{K}(\beta)$ can contain functions with infinite valence for $\beta > 1$. The Fekete-Szegő problems for $\mathcal{K}(1)$ and $\mathcal{K}(\beta)$ has been also solved by Keogh and Merkes [7] and London[10], respectively. We now introduce a new class which covers the class $\mathcal{K}(\beta)$ in terms of powers as follows:

DEFINITION. A function $f \in \mathcal{S}$, given by (1.1) is said to be strongly α -logarithmic close-to-convex of order β if there exists a function $g \in \mathcal{S}^*$ such that

$$\left| \arg \left\{ \left(\frac{f(z)}{g(z)} \right)^{1-\alpha} \left(\frac{zf'(z)}{g(z)} \right)^{\alpha} \right\} \right| \le \frac{\pi}{2} \beta, \quad (\alpha, \beta \ge 0; \ z \in \mathbb{U}). \quad (1.2)$$

We denote by $\mathcal{CS}^{\alpha}(\beta)$ the class of strongly α -logarithmic close-to-convex functions of order β . We note that $\mathcal{CS}^{1}(\beta) = \mathcal{K}(\beta)$. In particular, $\mathcal{CS}^{0}(1)$ is the class of close-to-star functions introduced by Reade [15].

The purpose of the present paper is to prove sharp Fekete-Szegö inequalities of the functions belonging to the class $CS^{\alpha}(\beta)$, which extend the results by Abdel-Gawad and Thomas [1], Keogh and Merkes [7] and London [10].

2. Results

In proving our main result, we need the following lemma.

LEMMA. Let p be analytic in \mathbb{U} and satisfying Re $\{p(z)\} > 0$ for $z \in \mathbb{U}$, with $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$.

$$\mid p_n \mid \leq 2 \tag{2.1}$$

and

$$\left| p_2 - \frac{{p_1}^2}{2} \right| \le 2 - \frac{\left| p_1 \right|^2}{2}.$$
 (2.2)

The inequality (2.1) can be first proved by Carathéodory [2] (also see Duren [3], p.41) and the inequality (2.2) can be found in [14, p.166].

With the help of Lemma, we now derive

THEOREM. Let $f \in \mathcal{CS}^{\alpha}(\beta)$ and be given by (1.1). Then for $\alpha \geq 0$ and $\beta \geq 0$, we have

$$\begin{cases} (1+2\alpha)|a_{3}-\mu a_{2}^{2}| \leq \\ 1+\frac{2(1+\beta)^{2}((1+3\alpha)-2(1+2\alpha)\mu)}{(1+\alpha)^{2}} & \text{if } \mu \leq \frac{(1+\beta)(1+3\alpha)-(1+\alpha)^{2}}{2(1+\beta)(1+2\alpha)}, \\ 1+2\beta+\frac{2((1+3\alpha)-2(1+2\alpha)\mu)}{(1+\alpha)^{2}-\beta((1+3\alpha)-2(1+2\alpha)\mu)} & \text{if } \frac{(1+\beta)(1+3\alpha)-(1+\alpha)^{2}}{2(1+\beta)(1+2\alpha)} \leq \mu \leq \frac{1+3\alpha}{2(1+2\alpha)}, \\ 1+2\beta & \text{if } \frac{1+3\alpha}{2(1+2\alpha)} \leq \mu \leq \frac{(1+\beta)(1+3\alpha)+(1+\alpha)^{2}}{2(1+\beta)(1+2\alpha)}, \\ -1+\frac{2(1+\beta)^{2}(2(1+2\alpha)\mu-(1+3\alpha))}{(1+\alpha)^{2}} & \text{if } \mu \geq \frac{(1+\beta)(1+3\alpha)+(1+\alpha)^{2}}{2(1+\beta)(1+2\alpha)}. \end{cases}$$

For each μ , there are functions in $\mathcal{CS}^{\alpha}(\beta)$ such that equality holds in all cases.

Proof. Let $f \in \mathcal{CS}^{\alpha}(\beta)$. Then it follows from (1.2) that we may write

236 N. E. CHO

$$\left(\frac{f(z)}{g(z)}\right)^{1-\alpha} \left(\frac{zf'(z)}{g(z)}\right)^{\alpha} = p^{\beta}(z),$$

where g is starlike and p has positive real part. Let $g(z) = z + b_2 z^2 + b_3 z + \cdots$, and let be given as in Lemma. Then by equating coefficients, we obtain

$$(\alpha + 1)a_2 = b_2 + \beta p_1$$

and

$$(1+2\alpha)a_3 = b_3 + \frac{\alpha(1-\alpha)}{2(1+\alpha)^2}b_2^2 + \frac{\beta(1+3\alpha)}{(1+\alpha)^2}p_1b_2 + \frac{\beta(\beta(1+3\alpha) - (1+\alpha)^2)}{2(1+\alpha)^2}p_1^2 + \beta p_2.$$

So, with

$$x = \frac{(1+3\alpha) - 2(1+2\alpha)\mu}{(1+\alpha)^2},$$

we have

$$(1+2\alpha)(a_3 - \mu a_2^2) = b_3 + \frac{1}{2}(x-1)b_2^2 + \beta(p_2 + \frac{1}{2}(\beta x - 1)p_1^2) + \beta x p_1 b_2.$$
(2.3)

Since rotations of f also belong to $\mathcal{CS}^{\alpha}(\beta)$, we may assume, without loss of generality, that $a_3 - \mu a_2^2$ is positive. Thus we now estimate $\text{Re}(a_3 - \mu a_2^2)$.

For some functions $h(z) = 1 + k_1 z + k_2 z^2 + \cdots (z \in \mathbb{U})$ with positive real part, we have zg'(z) = g(z)h(z). Hence, by equating coefficients, $b_2 = k_1$ and $b_3 = (k_2 + k_1^2)/2$. So, by using Lemma and letting $k_1 = 2\rho e^{i\phi} (0 \le \rho \le 1, \ 0 \le \phi \le 2\pi)$ and $p_1 = 2re^{i\theta} (0 \le r \le 1, \ 0 \le \theta \le 2\pi)$ in (2.3), we obtain

$$Re(1 + 2\alpha)(a_3 - \mu a_2^2) \le 1 - \rho^2 + (1 + 2x)\rho^2 \cos 2\phi + 2\beta(1 - r^2) + 2\beta^2 x r^2 \cos 2\theta + 4\beta x r \rho \cos(\theta + \phi)$$
 (2.4)

and we now proceed to maximize the right-hand side of (2.4). This function will be denote ψ whenever all parameters except x are held constant.

Assume that

$$\frac{(1+\beta)(1+3\alpha) - (1+\alpha)^2}{2(1+\beta)(1+2\alpha)} \le \mu \le \frac{1+3\alpha}{2(1+2\alpha)},$$

so that $0 \le x \le 1/(1+\beta)$. The expression $-t^2 + t^2\beta x \cos 2\theta + 2xt$ is the largest when $t + x/(\beta x \cos 2\theta)$, we have

$$\psi(x) \le 1 + 2x + 2\beta \left(1 + \frac{x^2}{1 - \beta x} \right)$$
$$= 1 + 2\beta + \frac{2((1 + 3\alpha) - 2(1 + 2\alpha)\mu)}{(1 + \alpha)^2 - \beta((1 + 3\alpha) - 2(1 + 2\alpha)\mu)}$$

and with (2.4) this estiablishes the second inequality in the theorem. Equality occurs if and only if

$$p_1 = \frac{2((1+3\alpha)-2(1+2\alpha)\mu)}{(1+\alpha)^2 - \beta((1+3\alpha)-2(1+2\alpha)\mu)}, \ p_2 = b_2 = 2, \ b_3 = 3$$

and the corresponding function f is defined by

$$f(z)^{1-\alpha}(zf'(z))^{\alpha} = \frac{z}{(1-z)^2} \left(\lambda \frac{1+z}{1-z} + (1-\lambda) \frac{1-z}{1+z} \right)^{\beta},$$

where

238 N. E. CHO

$$\lambda = \frac{(1+\alpha)^2 + (1-2\beta)((1+3\alpha) - 2(1+2\alpha)\mu)}{2((1+\alpha)^2 - \beta((1+3\alpha) - 2(1+2\alpha)\mu))}.$$

We now to prove the first inequality. Let

$$\mu \le \frac{(1+\beta)(1+3\alpha) - (1+\alpha)^2}{2(1+\beta)(1+2\alpha)},$$

so that $x \ge 1/(1+\beta)$. With $x_0 = 1/(1+\beta)$, we have

$$\psi(x) \le \psi(x_0) + 2(x - x_0)(1 + \beta)^2$$

$$\le 1 + \frac{2(1 + \beta)^2((1 + 3\alpha) - 2(1 + 2\alpha)\mu)}{(1 + \alpha)^2},$$

as required. Equality occurs only if $p_1 = p_2 = 2$, $b_2 = 2$, $b_3 = 3$ and the corresponding function f is defined by

$$(f(z))^{1-\alpha}(zf'(z))^{\alpha} = \frac{z}{(1-z)^2} \left(\frac{1+z}{1-z}\right)^{\beta}.$$

Let $x_1 = -1/(1+\beta)$. We note that $\psi(x_1) \le 1 + 2\beta$. Then $\psi(x)$ satisfies

$$\psi(x) \le \psi(x_1) + 2|x - x_1|(1+\beta)^2$$

$$\le -1 + \frac{2(1+\beta)^2(2(1+2\alpha)\mu - (1+3\alpha))}{(1+\alpha)^2},$$

if $x \leq x_1$, that is,

$$\mu \ge \frac{(1+\beta)(1+3\alpha) + (1+\alpha)^2}{2(1+\beta)(1+2\alpha)}.$$

Equality occurs only if $p_1=2i, p_2=-2, b_2=2i, b_3=-3$ and the corresponding function f is defined by

$$(f(z))^{1-\alpha}(zf'(z))^{\alpha} = \frac{z}{(1-iz)^2} \left(\frac{1+iz}{1-iz}\right)^{\beta}.$$

Finally, since

$$\psi(\lambda x_1) = \lambda \psi(x_1) + (1 - \lambda)\psi(0) \le 1 + 2\beta$$

for $0 \le \lambda \le 1$, we obtain $\psi(x) \le 1 + 2\beta$ for $x_1 \le x \le 0$, i.e.,

$$\frac{1+3\alpha}{2(1+2\alpha)} \le \mu \le \frac{(1+\beta)(1+3\alpha) + (1+\alpha)^2}{2(1+\beta)(1+2\alpha)}.$$

Equality occurs only if $p_1 = b_2 = 0$, $p_2 = 2$, $b_3 = 1$ and the corresponding function f is defined by

$$(f(z))^{1-\alpha}(zf'(z))^{\alpha} = \frac{z(1+z^2)^{\beta}}{(1-z^2)^{1+\beta}}.$$

Therefore we complete the proof of Theorem.

From Theorem, we have immediately the following

COROLLARY. Let $f \in \mathcal{CS}^0(\beta)$ and be given by (1.1). Then for $\beta \geq 0$, we have

$$|a_3 - \mu a_2^2| \le \begin{cases} 1 + 2(1+\beta)^2(1-2\mu) & \text{if } \mu \le \frac{\beta}{2(1+\beta)}, \\ 1 + 2\beta + \frac{2(1-2\mu)}{1-\beta(1-2\mu)} & \text{if } \frac{\beta}{2(1+\beta)} \le \mu \le \frac{1}{2}, \\ 1 + 2\beta & \text{if } \frac{1}{2} \le \mu \le \frac{2+\beta}{2(1+\beta)}, \\ -1 + 2(1+\beta)^2(2\mu - 1) & \text{if } \mu \ge \frac{2+\beta}{2(1+\beta)}. \end{cases}$$

For each μ , there are functions in $CS^0(\beta)$ such that equality holds in all cases.

REMARK. If we take $\alpha = 1$ in Theorem, then we have the result by London [10], which covers the results of Keogh and Merkes [7] and Abdel-Gawad and Thomas [1].

REFERENCES

- H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., 114(1992), 345-349.
- [2] C. Carathéodory, Uber den ariabilitatsbbereich der fourierschen konstanten von positiven harmonischen funktionen, Rend. Circ. Math. Palermo 32(1911), 193-217.
- [3] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
- [4] M. Fekete and G. Szegö, Eine Bermerkung über ungerade schlichte function, J. London Math. Soc., 8(1933), 85-89.
- [5] A. W. Goodman, On close-to-convex functions of higher order, Ann. Univ. Sci. Badapest Eötvös Sect. Math., 15(1972), 17-30.
- [6] W. Kalplan, Close-to-convex schlicht functions, Michigan Math. J., 1(1952), 169-185.
- [7] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
- [8] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101(1987), 89-95.
- [9] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Arch. Math., 49(1987), 420-433.
- [10] R. R. London, Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117(1993), 947-950.
- [11] A. Pfluger, The Fekete-Szegö inequality for complex parameters, Complex Variables Theory Appl., 7(1986), 149-160.
- [12] A. Pfluger, On the functional $|a_3 \lambda a_2^2|$ in the class S, Complex Variables Theory Appl., $\mathbf{10}(1988)$, 83-95.
- [13] Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc., 114(1965), 176-186.
- [14] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
- [15] M. O. Reade, On close-to-convex univalent functions, Michigan Math. J., 3(1984), 59-62.

Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Pusan 608-737, Korea