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Abstract. For functions f(z) = z + a2z
2 + a3z

3 + · · · with |a2| = 2b, b ≥ 0, sharp

radii of starlikeness of order α (0 ≤ α < 1), convexity of order α (0 ≤ α < 1), parabolic

starlikeness and uniform convexity are derived when |an| ≤ M/n2 or |an| ≤ Mn2 (M > 0).

Radii constants in other instances are also obtained.

1. Introduction

Let A be the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anzn

that are analytic in the open unit disk D := {z ∈ C : |z| < 1}. Let S be the subclass
of A consisting of univalent functions. It is well-known that the Taylor coefficients
of functions f ∈ S satisfy |an| ≤ n for n ≥ 2. The function f(z) = 2z − z/(1− z)2

shows that the inequality |an| ≤ n (n ≥ 2) is not a sufficient criterion for univalence.
Gavrilov [6] determined the radius of univalence of functions satisfying the inequality
|an| ≤ n (n ≥ 2), which also turned out to be their radius of starlikeness, a result
proved by Yamashita [25]. Ravichandran [20] and Ali et al. [4] worked in the
similar direction and obtained several radii constants for functions with fixed second
coefficient. In this paper, we continue to investigate the related radius problems for
the following classes of analytic functions.
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For 0 ≤ α < 1, let S∗(α) and C(α) be the subclasses of S consisting of starlike
functions of order α and convex functions of order α, respectively, defined analyti-
cally by the equivalences

f ∈ S∗(α) ⇔ Re
(

zf ′(z)
f(z)

)
> α and f ∈ C(α) ⇔ Re

(
zf ′′(z)
f ′(z)

+ 1
)

> α.

These classes were introduced by Robertson [22]. The classes S∗ := S∗(0) and
C := C(0) are the familiar classes of starlike and convex functions respectively. Let
S∗α and Cα be the subclasses of S∗(α) and C(α) defined as

S∗α =
{

f ∈ A :
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ < 1− α

}

and

Cα =
{

f ∈ A :
∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ < 1− α

}
.

Goodman [8] introduced the class UCV of uniformly convex functions f ∈ A, which
map every circular arc γ contained in D with center ζ ∈ D onto a convex arc. For
f ∈ A, the equivalence

f ∈ UCV ⇔ Re
(

zf ′′(z)
f ′(z)

+ 1
)

>

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈ D)

was independently proved by Rønning [23] and Ma and Minda [15]. Rønning [23]
considered the class SP of parabolic starlike functions f ∈ A satisfying

Re
(

zf ′(z)
f(z)

)
>

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ .

Note that the class SP consists of functions f = zF ′ where F ∈ UCV. Moreover,
C1/2 ⊂ UCV and S∗1/2 ⊂ SP (see [1]).

Two more classes of analytic functions will be needed in our investigation. One
of them is the class L(α, β) defined as

L(α, β) =
{

f ∈ A :
αz2f ′′(z)

f(z)
+

zf ′(z)
f(z)

≺ 1 + (1− 2β)z
1− z

, β ∈ R\{1}, α ≥ 0
}

This class includes a variety of well known classes of analytic functions (see [11, 13,
14, 18, 19, 24]). Li and Owa [12] proved that L(α, β) ⊂ S∗ for −α/2 ≤ β < 1. The
other one is the class ST[A,B] of Janowski [9] starlike functions:

ST[A,B] =
{

f ∈ A :
zf ′(z)
f(z)

≺ 1 + Az

1 + Bz
,−1 ≤ B < A ≤ 1

}
.

The following two lemmas provide a sufficient condition for a function f ∈ A to
be in the classes L(α, β) and ST[A,B].
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Lemma 1.1.([14],[24]) Let β ∈ R\{1} and α ≥ 0. If f(z) = z +
∑∞

n=2 anzn ∈ A

satisfies the inequality

∞∑
n=2

(αn2 + (1− α)n− β)|an| ≤ |1− β|,

then f ∈ L(α, β).

Lemma 1.2.([7]) Let −1 ≤ B < A ≤ 1. If f(z) = z +
∑∞

n=2 anzn ∈ A satisfies the
inequality

∞∑
n=2

((1−B)n− (1−A))|an| ≤ A−B,

then f ∈ ST[A,B].
For b ≥ 0, let Ab denote the class of functions f given by (1.1) with |a2| = 2b.

Recent work in the study of univalent functions in Ab (0 ≤ b ≤ 1) include those of
[2, 3, 10, 16]. In [20], Ravichandran obtained the sharp radii of starlikeness of order
α, convexity of order α, uniform convexity and parabolic starlikeness for functions
f ∈ Ab satisfying |an| ≤ n, |an| ≤ M or |an| ≤ M/n (M > 0) for n ≥ 3. Ali,
Nargesi and Ravichandran [4] obtained sharp L(α, β)-radius and ST[A, B]-radius
for functions f ∈ Ab satisfying |an| ≤ cn + d (c, d ≥ 0) or |an| ≤ c/n (c > 0) and
deduced the results of Ravichandran [20] and Yamashita [25] as particular cases.
Recently, Nagpal and Ravichandran [17] obtained radii of starlikeness and convexity
of order α for harmonic functions satisfying similar coefficient inequalities.

If f ∈ A given by (1.1), satisfy Re(f ′(z) + zf ′′(z)) > 0 for z ∈ D, then |an| ≤
2/n2 (see [5]). But the converse does not hold. To see this, consider the function
φ(z) = z + 2zn/n2 and observe that the analytic function zφ′′(z) + φ′(z) vanishes
inside D. Reade [21] proved that a close-to-star function f ∈ A given by (1.1)
satisfies |an| ≤ n2 for n ≥ 2. However, the function ψ(z) = z + n2zn is not
close-to-star since

∫ z

0
(ψ(t)/t) dt is not even univalent (see [21, p. 61]). This paper

determines sharp S∗α, Cα, S∗(α), C(α), UCV, SP , L(α, β) and ST[A,B] radii for
functions f(z) = z +

∑∞
n=2 anzn ∈ Ab satisfying either |an| ≤ M/n2 or |an| ≤ Mn2

(M > 0).

2. Radius Constants Concerning |an| ≤ M/n2

In this section, the sharp radius constants are obtained for functions f ∈ Ab

satisfying the condition |an| ≤ M/n2 (M > 0) for n ≥ 3.

Theorem 2.1. Let f ∈ Ab be given by (1.1) with |an| ≤ M/n2 (M > 0) for n ≥ 3.
Then we have the following.

(i) f satisfies the inequality

Re(f ′(z) + zf ′′(z)) > 0
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in |z| < r0, where r0 is the real root in (0, 1) of the equation

(2.1) (8b−M)r2 − (8b + 1)r + 1 = 0.

(ii) f satisfies the inequality
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ < 1− α

in |z| < r1 where r1 = r1(α) is the real root in (0, 1) of the equation

(8b−M)(2− α)r2 − 4(1− α)(1 + M)r
−4M log(1− r)− 4MαLi2(r) = 0.

(2.2)

where Li2(z) is the polylogarithm function of order 2 defined by the power
series

Li2(z) =
∞∑

n=1

zn

n2
= z +

z2

4
+

z3

9
+ · · · (z ∈ D).

The number r1(α) is also the radius of starlikeness of order α. The number
r1(1/2) is the radius of parabolic starlikeness of the given functions.

(iii) f satisfies the inequality ∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ < 1− α

in |z| < r2 where r2 = r2(α) is the real root in (0, 1) of the equation

(M − 8b)(2− α)r3 + ((8b + 1)(2− α)− α(1 + M))r2

+ 2(α(1 + M)− 1)r + 2αM(1− r) log(1− r) = 0.

(2.3)

The number r2(α) is also the radius of convexity of order α. The number
r2(1/2) is the radius of uniform convexity of the given functions.

All these results are sharp.

Proof. (i) Using |a2| = 2b for the function f ∈ Ab and the inequality |an| ≤ M/n2

for n ≥ 3, a calculation shows that, for |z| < r0,

f ′(z) + zf ′′(z) = 1 +
∞∑

n=2

nanzn−1 +
∞∑

n=2

n(n− 1)anzn−1

= 1 +
∞∑

n=2

n2anzn−1

= 1 + 8bz +
∞∑

n=3

n2anzn−1
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so that

Re(f ′(z) + zf ′′(z)) > 1− 8br0 −
∞∑

n=3

Mrn−1
0

= 1− 8br0 − Mr2
0

1− r0
= 0,

where r0 is the real root of (2.1) in (0, 1). The result is sharp by considering the
function f0 given by

(2.4) f0(z) = z − 2bz2 −
∞∑

n=3

M

n2
zn.

(ii) We need to show that the function f(r1z)/r1 ∈ S∗α where r1 is the real root
of (2.2) in (0, 1). In view of Lemma 1.2, it is sufficient to verify the inequality

∞∑
n=2

(n− α)|an|rn−1
1 ≤ 1− α

(by setting A = 1− α, B = 0). Using the identities
∞∑

n=3

rn−1
1

n
= − log(1− r1)

r1
− 1− r1

2
and

∞∑
n=3

rn−1
1

n2
=

Li2(r1)
r1

− 1− r1

4

it follows that
∞∑

n=2

(n− α)|an|rn−1
1 = 2(2− α)br1 +

∞∑
n=3

(n− α)|an|rn−1
1

≤ 2(2− α)br1 + M

∞∑
n=3

rn−1
1

n
− αM

∞∑
n=3

rn−1
1

n2

=
1
4
(2− α)(8b−M)r1 − (1− α)M

− M

r1
log(1− r1)− αM

r1
Li2(r1)

= 1− α.

Thus f ∈ S∗α for |z| < r1 where r1 is the real root of (2.2) in (0, 1). For sharpness,
the function f0 defined by (2.4) satisfies

zf ′0(z)
f0(z)

− 1 = − (8b−M)z2 − 4M log(1− z)− 4MLi2(z)
4(1 + M)z − (8b−M)z2 − 4MLi2(z)

.

At the point z = r1, where r1 is the real root of (2.2) in (0, 1), we obtain

(2.5) Re
zf ′0(z)
f0(z)

= 1− (8b−M)r2
1 − 4M log(1− r1)− 4MLi2(r1)

4(1 + M)r1 − (8b−M)r2
1 − 4MLi2(r1)

= α.
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Note that

(8b−M)r2
1 − 4M log(1− r1)− 4MLi2(r1)

= (8b−M)r2
1 + 4M

∞∑
n=2

(
n− 1
n2

)
rn
1

> (8b−M)r2
1 + Mr2

1 = 8br2
1 ≥ 0,

and since α < 1, (2.5) shows that the denominator of the rational expression in the
middle is positive. Thus, it follows that, at the point z = r1,

(2.6)
∣∣∣∣
zf ′0(z)
f0(z)

− 1
∣∣∣∣ =

(8b−M)r2
1 − 4M log(1− r1)− 4MLi2(r1)

4(1 + M)r1 − (8b−M)r2
1 − 4MLi2(r1)

= 1− α.

This shows that the radius r1 given by (2.2) is sharp.
Since S∗α ⊂ S∗(α), it is easily seen that the radius of starlikeness of order α is

at least r1(α). However, (2.5) shows that this radius is sharp for the same function
f0.

Also, since S∗1/2 ⊂ SP , the radius of parabolic starlikeness is at least r1(1/2).
But (2.5) and (2.6) with α = 1/2 shows that, at the point z = r1(1/2),

∣∣∣∣
zf ′0(z)
f0(z)

− 1
∣∣∣∣ =

1
2

=
zf ′0(z)
f0(z)

.

Hence the radius of parabolic starlikeness is also sharp.
(iii) If r2 is the real root of (2.3) in (0, 1), then it suffices to show that f(r2z/r2) ∈

Cα. By Lemma 1.2 and using the equivalence f ∈ Cα if and only if zf ′ ∈ S∗α, it is
sufficient to establish the inequality

∞∑
n=2

n(n− α)|an|rn−1
2 ≤ 1− α.

Observe that
∞∑

n=2

n(n− α)|an|rn−1
2

= 4(2− α)br2 +
∞∑

n=3

n(n− α)|an|rn−1
2

≤ 4(2− α)br2 + M

∞∑
n=3

rn−1
2 − αM

∞∑
n=3

rn−1
2

n

= 4(2− α)br2 +
Mr2

2

1− r2
− αM

(
− log(1− r2)

r2
− 1− r2

2

)

= 1− α.
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To prove the sharpness, consider the function f0 defined by (2.4). For this function,
a calculation shows that

zf ′′0 (z)
f ′0(z)

=
4bz + M

∑∞
n=3

(
n−1

n

)
zn−1

4bz + M
∑∞

n=3
zn−1

n − 1

In particular, at the point z = r2, we have

(2.7) Re
zf ′′0 (z)
f ′0(z)

=
4br2 + M

∑∞
n=3

(
n−1

n

)
rn−1
2

4br2 + M
∑∞

n=3
rn−1
2
n − 1

= α− 1.

Since α < 1 and the numerator of the rational function in the middle of (2.7) is
positive, it follows that the denominator is negative. Hence, at z = r2, where r2 is
the real root of (2.3) in (0, 1),

(2.8)
∣∣∣∣
zf ′′0 (z)
f ′0(z)

∣∣∣∣ =
4br2 + M

∑∞
n=3

(
n−1

n

)
rn−1
2

1− 4br2 −M
∑∞

n=3
rn−1
2
n

= 1− α.

Using the fact that Cα ⊂ C(α), the radius of convexity of order α is at least
r2(α). But, (2.7) shows that this radius is sharp for the function f0.

As C1/2 ⊂ UCV, the radius of uniform convexity is at least r2(1/2). With
α = 1/2, (2.7) and (2.8) shows that, at the point z = r2(1/2),

∣∣∣∣
zf ′′0 (z)
f ′0(z)

∣∣∣∣ =
1
2

= Re
(

1 +
zf ′′0 (z)
f ′0(z)

)
.

Therefore, the radius of uniform convexity is also sharp. 2

The logarithm in (2.2) and (2.3) is the branch that takes the value 1 at z = 0.
Setting M = 2 and b = 1/4 in Theorem 2.1, we obtain the sharp radii constants for
functions f ∈ A satisfying |an| ≤ 2/n2 for n ≥ 2.

Corollary 2.2. Let F be the class of functions f ∈ A given by (1.1) with |an| ≤ 2/n2

for n ≥ 2. Then we have the following.

(i) A function f ∈ F satisfies the inequality Re(f ′(z) + zf ′′(z)) > 0 in |z| < 1/3.

(ii) The radius of starlikeness of order α of the class F is the real root r1 = r1(α)
of the equation

3(1− α)r + 2 log(1− r) + 2αLi2(r) = 0

in (0, 1). In particular, the radius of starlikeness is the root r1(0) ≈ 0.582812
of the equation 3r + 2 log(1 − r) = 0 and the radius of parabolic starlikeness
is the root r1(1/2) ≈ 0.442017 of the equation 3r +4 log(1− r)+2Li2(r) = 0.
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(iii) The radius of convexity of order α of the class F is the real root r2 = r2(α)
of the equation

3(1− α)r2 + (3α− 1)r + 2α(1− r) log(1− r) = 0

in (0, 1). In particular, the radius of convexity is 1/3 and the radius of uni-
form convexity is the root r2(1/2) ≈ 0.244312 of the equation 3r2 + r + 2(1−
r) log(1− r) = 0.

The results are sharp.
If the second coefficient in the Taylor series expansion of f ∈ A is zero, then the

results of Corollary 2.2 can be further improved, as seen by the following corollary.

Corollary 2.3. Let F0 be the class of functions f ∈ A given by (1.1) with a2 = 0
and |an| ≤ 2/n2 for n ≥ 3. Then we have the following.

(i) A function f ∈ F0 satisfies the inequality Re(f ′(z)+zf ′′(z)) > 0 in |z| < 1/2.

(ii) The radius of starlikeness of order α of the class F0 is the real root r1 = r1(α)
of the equation

(2− α)r2 + 6(1− α)r + 4 log(1− r) + 4αLi2(r) = 0

in (0, 1). In particular, the radius of starlikeness is the root r1(0) ≈ 0.76088 of
the equation r2+3r+2 log(1−r) = 0 and the radius of parabolic starlikeness is
the root r1(1/2) ≈ 0.648957 of the equation 3r2+6r+8 log(1−r)+4Li2(r) = 0.

(iii) The radius of convexity of order α of the class F0 is the real root r2 = r2(α)
of the equation

(2− α)r3 + (1− 2α)r2 + (3α− 1)r + 2α(1− r) log(1− r) = 0

in (0, 1). In particular, the radius of convexity is 1/2 and the radius of uni-
form convexity is the root r2(1/2) ≈ 0.41368 of the equation 3r3 + r + 2(1−
r) log(1− r) = 0.

The results are sharp.
The sharp L(α, β) and ST[A,B] radii of functions f ∈ Ab satisfying the coeffi-

cient inequality |an| ≤ M/n2 are obtained in the following theorem.

Theorem 2.4. Let β ∈ R\{1}, α ≥ 0 and −1 ≤ B < A ≤ 1. Then

(a) The L(α, β)-radius of functions f ∈ Ab given by (1.1) satisfying the coefficient
inequality |an| ≤ M/n2, n ≥ 3, is the real root t0 = t0(α, β) in (0, 1) of the
equation

(2α + 2− β)(M − 8b)t3

+ (M(2− 2α− 3β) + 8b(2α + 2− β) + 4|1− β|)t2
+ 4(M(α + β − 1)− |1− β|)t

= 4M(1− t)((1− α) log(1− t) + βLi2(t)).

(2.9)
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(b) The ST[A,B] radius for functions f ∈ Ab given by (1.1) satisfying the coeffi-
cient inequality |an| ≤ M/n2 for n ≥ 3, is the real root t1 = t1(A,B) in (0, 1)
of the equation

(8b−M)(1 + A− 2B)t2 − 4(A−B)(M + 1)t
= 4M((1−B) log(1− t) + (1−A)Li2(t)).

(2.10)

The results are all sharp.

Proof. (a) By Lemma 1.1, it is sufficient to verify the inequality
∞∑

n=2

(αn2 + (1− α)n− β)|an|tn−1
0 ≤ |1− β|

where t0 is the real root of (2.9) in (0, 1). Using |a2| = 2b and the inequality
|an| ≤ M/n2 for n ≥ 3, we deduce that

∞∑
n=2

(αn2 + (1− α)n− β)|an|tn−1
0

≤ 2(2α + 2− β)bt0 + Mα

∞∑
n=3

tn−1
0

+ M(1− α)
∞∑

n=3

tn−1
0

n
−Mβ

∞∑
n=3

tn−1
0

n2

= 2(2α + 2− β)bt0 +
Mαt20
1− t0

+ M(1− α)
(
− log(1− t0)

t0
− 1− t0

2

)

−Mβ

(
Li2(t0)

t0
− 1− t0

4

)

= |1− β|.
For β < 1, the function f0 defined by (2.4) satisfies

Re
(

αz2f ′′0 (z)
f0(z)

+
zf ′0(z)
f0(z)

)

=
1− 4b(1 + α)t0 − αMt20

1−t0
+ (α− 1)M

∑∞
n=3

tn−1
0
n

1− 2bt0 −M
∑∞

n=3
tn−1
0
n2

= β

at the point z = t0, where t0 is the real root of (2.9) in (0, 1). This shows that t0
is the sharp L(α, β)-radius for f ∈ Ab. For the case β > 1, the function

F0(z) = z + 2bz2 +
∞∑

n=3

M

n2
zn
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verifies the sharpness of the result.
(b) If t1 is the real root of (2.10) in (0, 1), then by Lemma 1.2, it suffices to

show that
∞∑

n=2

((1−B)n− (1−A))|an|tn−1
1 ≤ A−B.

A simple calculation shows that

∞∑
n=2

((1−B)n− (1−A))|an|tn−1
1

≤ 2(2(1−B)− (1−A))bt1

+ (1−B)M
∞∑

n=3

tn−1
1

n
− (1−A)M

∞∑
n=2

tn−1
1

n2

=
1
4
(8b−M)(1 + A− 2B)t1 + (B −A)M

− M

t1
((1−B) log(1− t1) + (1−A)Li2(t1))

= A−B.

The function f0 given by (2.4) shows that the result is sharp. Indeed,
∣∣∣∣
zf ′0(z)
f0(z)

− 1
∣∣∣∣ =

∣∣∣∣A−B
zf ′0(z)
f0(z)

∣∣∣∣ (−1 ≤ B < A ≤ 1; z = t1). 2

Remark 2.5. If either α = 0, 0 ≤ β < 1 in Theorem 2.4(a), or A = 1−2β, B = −1
in Theorem 2.4(b), we obtain the result of Theorem 2.1(ii).

3. Radius Constants Concerning |an| ≤ Mn2

In this section, we obtain the sharp radius constants for functions f ∈ Ab

satisfying the coefficient inequality |an| ≤ Mn2 (M > 0) for n ≥ 3.

Theorem 3.1. Let f ∈ Ab be given by (1.1) with |an| ≤ Mn2 (M > 0) for n ≥ 3.
Then we have the following.

(i) f is close-to-star in |z| < s0, where s0 is the real root in (0, 1) of the equation

(3.1) 2(b− 2M)s4 +(11M − 6b− 1)s3 +(6b+3− 9M)s2− (2b+3)s+1 = 0.

(ii) f satisfies the inequality
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ < 1− α
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in |z| < s1 where s1 = s1(α) is the real root in (0, 1) of the equation

(2(2− α)(b− 2M)s− (1− α)(1 + M))(1− s)4

+M(s2(1 + α) + 4s + 1− α) = 0.

(3.2)

The number s1(α) is also the radius of starlikeness of order α. The number
s1(1/2) is the radius of parabolic starlikeness of the given functions.

(iii) f satisfies the inequality ∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ < 1− α

in |z| < s2 where s2 = s2(α) is the real root in (0, 1) of the equation

(4(2− α)(b− 2M)s− (1 + M)(1− α))(1− s)5

+ M((1 + α)s3 + (11 + 3α)s2 + (11− 3α)s + (1− α)) = 0.

(3.3)

The number s2(α) is also the radius of convexity of order α. The number
s2(1/2) is the radius of uniform convexity of the given functions.

All these results are sharp.

Proof. (i) Recall that [21] a function f ∈ A is close-to-star if and only if the
function

∫ z

0
(f(t)/t) dt is close-to-convex. Consequently, the coefficient inequality∑∞

n=2 |an| ≤ 1 is a sufficient condition for a function f ∈ A given by (1.1) to be
close-to-star. Therefore, it suffices to show that

∞∑
n=2

|an|sn−1
0 ≤ 1

where s0 is the real root of (3.1) in (0, 1). Using the coefficient bounds |a2| = 2b
and |an| ≤ Mn2 for n ≥ 3, we obtain

∞∑
n=2

|an|sn−1
0 ≤ 2bs0 + M

∞∑
n=3

n2sn−1
0

= 2(b− 2M)s0 +
M(1 + s0)
(1− s0)3

−M = 1

provided s0 is the real root of (3.1) in (0, 1). For sharpness, we consider the function

(3.4) g0(z) = z − 2bz2 −M

∞∑
n=3

n2zn = (1 + M)z + 2(2M − b)z2 − Mz(1 + z)
(1− z)3

,

which satisfies the hypothesis of the theorem. Observe that

h0(z) =
∫ z

0

g0(t)
t

dt = (1 + M)z + (2M − b)z2 − Mz

(1− z)2



406 R. Mendiratta, S. Nagpal and V. Ravichandran

and its derivative h′0 vanishes at z = s0, where s0 is the real root of (3.1) in (0, 1).
This shows that the function h0 is not univalent in |z| < r if r > s0 and hence, g0

is not close-to-star in |z| < r if r > s0. This establishes the sharpness of the result.
(ii) Following the method of the proof of Theorem 2.1(ii) and using the identities

∞∑
n=3

n2sn−1
1 =

1 + s1

(1− s1)3
− 1− 4s1 and

∞∑
n=3

n3sn−1
1 =

1 + 4s1 + s2
1

(1− s1)4
− 1− 8s1,

it is easy to deduce that

∞∑
n=2

(n− α)|an|sn−1
1 ≤ 2(2− α)bs1 + M

∞∑
n=3

n3sn−1
1 − αM

∞∑
n=3

n2sn−1
1

= 2(2− α)(b− 2M)s1 + M
1 + 4s1 + s2

1

(1− s1)4

− αM
1 + s1

(1− s1)3
− (1− α)M

= 1− α

where s1 is the real root of (3.2) in (0, 1). For sharpness, the function g0 defined by
(3.4) satisfies

zg′0(z)
g0(z)

− 1 = −
2(b− 2M)z + 2Mz(z+2)

(1−z)4

(1 + M) + 2(2M − b)z − M(1+z)
(1−z)3

.

In particular, at the point z = s1, where s1 is the real root of (3.2) in (0, 1), we
obtain

(3.5) Re
zg′0(z)
g0(z)

= 1−
2(b− 2M)s1 + 2Ms1(s1+2)

(1−s1)4

(1 + M) + 2(2M − b)s1 − M(1+s1)
(1−s1)3

= α.

Also, observe that the function (2+r)/(1−r)4 is an increasing function of r ∈ (0, 1),
so that

2(b− 2M)s1 +
2Ms1(s1 + 2)

(1− s1)4
> 2(b− 2M)s1 + 4Ms1 = 2bs1 ≥ 0.

Using this fact, (3.5) shows that the denominator of the rational expression in the
middle is positive, as α < 1. This leads to the following equality:

(3.6)
∣∣∣∣
zg′0(z)
g0(z)

− 1
∣∣∣∣ =

2(b− 2M)s1 + 2Ms1(s1+2)
(1−s1)4

(1 + M) + 2(2M − b)s1 − M(1+s1)
(1−s1)3

= 1− α.

at the point z = s1, where s1 is the real root of (3.2) in (0, 1).
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Equations (3.5) and (3.6), together with inclusions S∗α ⊂ S∗(α) and S∗1/2 ⊂ SP ,
show that the numbers s1(α) and s1(1/2) are sharp radius of starlikeness of order
α and parabolic starlikeness, respectively.

(iii) A straightforward calculation shows that

∞∑
n=2

n(n− α)|an|sn−1
2 ≤ 4(2− α)bs2 + M

∞∑
n=3

n4sn−1
2 − αM

∞∑
n=3

n3sn−1
2

= 4(2− α)(b− 2M)s2 −M(1− α)

+ M
(1 + s2)(1 + 10s2 + s2

2)
(1− s2)5

−Mα
1 + 4s2 + s2

2

(1− s2)4

= 1− α,

where s2 is the real root of (3.3) in (0, 1). Thus f ∈ Cα for |z| < s2. To prove the
sharpness, consider the function g0 defined by (3.4). For this function, a calculation
shows that

zg′′0 (z)
g′0(z)

=
4(2M − b)z − 2Mz(4+7z+z2)

(1−z)5

1 + M + 4(2M − b)z − M(1+4z+z2)
(1−z)4

Using the similar analysis, it is easy to see that, at the point z = s2, where s2 is
the real root of (3.3) in (0, 1), we have

∣∣∣∣
zg′′0 (z)
g′0(z)

∣∣∣∣ = 1− α and Re
(

1 +
zg′′0 (z)
g′0(z)

)
= α.

Using these observations and the inclusions Cα ⊂ C(α), C1/2 ⊂ UCV, it follows that
Cα, C(α) and UCV-radii are all sharp. 2

The particular cases b = 2 and b = 0 (with M = 1) of Theorem 3.1 are stated
in the following two corollaries.

Corollary 3.2. Let G be the class of functions f ∈ A given by (1.1) with |an| ≤ n2

for n ≥ 2. Then we have the following.

(i) A function f ∈ G is close-to-star in |z| < s0, where s0 is given by

s0 = 1 +
1

62/3
((
√

300− 18)1/3 − (
√

330 + 18)1/3) ≈ 0.164878.

(ii) The radius of starlikeness of order α of the class G is the real root s1 = s1(α)
of the equation

2(1− α)s4 − 8(1− α)s3 + (11− 13α)s2 − 4(3− 2α)s + (1− α) = 0

in (0, 1). In particular, the radius of starlikeness is the root s1(0) ≈ 0.0903331
of the equation 2s4 − 8s3 + 11s2 − 12s + 1 = 0 and the radius of parabolic
starlikeness is the root s1(1/2) ≈ 0.064723 of the equation 2r4 − 8s3 + 9s2 −
16s + 1 = 0.
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(iii) The radius of convexity of order α of the class G is the real root s2 = s2(α)
of the equation

2(1−α)s5−10(1−α)s4+(21−19α)s3−(9−23α)s2+(21−13α)s−(1−α) = 0

in (0, 1). In particular, the radius of convexity is the root s2(0) ≈ 0.0485162
of the equation 2r5−10s4 +21s3−9s2 +21s−1 = 0 and the radius of uniform
convexity is the root s2(1/2) ≈ 0.0342491 of the equation 2s5− 10s4 + 23s3 +
5s2 + 29s− 1 = 0.

The results are sharp.

Corollary 3.3. Let G0 be the class of functions f ∈ A given by (1.1) with a2 = 0
and |an| ≤ n2 for n ≥ 3. Then we have the following.

(i) A function f ∈ G0 is close-to-star in |z| < s0, where s0 ≈ 0.253571 is the real
root of the equation 4s4 − 10s3 + 6s2 + 3s− 1 = 0 in (0, 1).

(ii) The radius of starlikeness of order α of the class G0 is the real root s1 = s1(α)
of the equation

4(2−α)s5− 2(15− 7α)s4 +8(5− 2α)s3− 3(7−α)s2− 4(1−α)s+(1−α) = 0

in (0, 1). In particular, the radius of starlikeness is the root s1(0) ≈ 0.155972
of the equation 8s5−30s4+40s3−21s2−4s+1 = 0 and the radius of parabolic
starlikeness is the root s1(1/2) ≈ 0.125429 of the equation 12s5−46s4+64s3−
39s2 − 4s + 1 = 0.

(iii) The radius of convexity of order α of the class G0 is the real root s2 = s2(α)
of the equation

8(2− α)s6 − 2(39− 19α)s5 + 10(15− 7α)s4 − (139− 61α)s3

+ (71− 17α)s2 + 5(1− α)s− (1− α) = 0

in (0, 1). In particular, the radius of convexity is the root s2(0) ≈ 0.0944584
of the equation 16s6 − 78s5 + 150s4 − 139s3 + 71s2 + 5s − 1 = 0 and the
radius of uniform convexity is the root s2(1/2) ≈ 0.0753134 of the equation
24s6 − 118s5 + 230s4 − 217s3 + 125s2 + 5s− 1 = 0.

The results are sharp.

From Corollaries 3.2 and 3.3, it is evident that the radii constants improve if the
second coefficient in the Taylor series expansion of f ∈ A is zero. The next theorem
determines the sharp L(α, β) and ST[A,B] radii of functions f ∈ Ab satisfying the
coefficient inequality |an| ≤ Mn2. Proof of this theorem is omitted as it is similar
to Theorem 2.4.

Theorem 3.4. Let β ∈ R\{1}, α ≥ 0 and −1 ≤ B < A ≤ 1. Then
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(a) The L(α, β)-radius of functions f ∈ Ab given by (1.1) satisfying the coefficient
inequality |an| ≤ Mn2, n ≥ 3, is the real root t0 = t0(α, β) in (0, 1) of the
equation

(2(2α + 2− β)(b− 2M)t−M(1− β)− |1− β|)(1− t)5

+ M((1− β) + (β + 8α + 3)t + (14α + β − 3)t2 − (1− 2α + β)t3) = 0.

(b) The ST[A,B] radius for functions f ∈ Ab given by (1.1) satisfying the coeffi-
cient inequality |an| ≤ Mn2 for n ≥ 3, is the real root t1 = t1(A,B) in (0, 1)
of the equation

(2(b− 2M)(1 + A− 2B)t− (A−B)(M + 1))(1− t)4

+ M((A−B) + 4(1−B)t + (2−A−B)t2) = 0.

The results are all sharp.
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