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Abstract. In this paper, we define two new subclass of k−uniformly starlike and convex

functions of order α type β with varying argument of coefficients. Further, we obtain

coefficient estimates, extreme points, growth and distortion bounds, radii of starlikeness,

convexity and results on modified Hadamard products.

1. Introduction

Denoted by S the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anzn
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that are analytic and univalent in the unit disc U = {z : |z| < 1} and by S∗ and
K the subclasses of S that are respectively, starlike and convex. Goodman [6, 7]
introduced and defined the following subclasses of K and S∗.

A function f(z) is uniformly convex (uniformly starlike) in U if f(z) is in K (S∗)
and has the property that for every circular arc γ contained in U, with center ξ also
in U, the arc f(γ) is convex (starlike) with respect to f(ξ). The class of uniformly
convex functions denoted by UCV and the class of uniformly starlike functions by
UST (for details see [6]). It is well known from [12, 14] that

f ∈ UCV ⇔ <
{

1 +
zf

′′
(z)

f ′(z)

}
≥

∣∣∣∣∣
zf

′′
(z)

f ′(z)

∣∣∣∣∣ .

In [14], Rønning introduced a new class of starlike functions related to UCV and
defined as

f ∈ Sp ⇔ <
{

zf
′
(z)

f(z)

}
≥

∣∣∣∣∣
zf

′
(z)

f(z)
− 1

∣∣∣∣∣ .

Note that f(z) ∈ UCV ⇔ zf ′(z) ∈ Sp . Further Rønning generalized the class Sp

by introducing a parameter α, − 1 ≤ α < 1,

f ∈ Sp(α) ⇔ <
{

zf
′
(z)

f(z)
− α

}
≥

∣∣∣∣∣
zf

′
(z)

f(z)
− 1

∣∣∣∣∣ .

In 1997, Bharati et al. [2] introduced the following classes of k−starlike functions
of order α (k−ST (α)) and k−uniformly convex functions of order α (k−UCV (α)).

f ∈ k − ST (α) ⇔ <
{

zf
′
(z)

f(z)
− α

}
≥ k

∣∣∣∣∣
zf

′
(z)

f(z)
− 1

∣∣∣∣∣ , k ≥ 0, 0 ≤ α < 1.

and

f ∈ k − UCV (α) ⇔ <
{

1 +
zf

′′
(z)

f ′(z)
− α

}
≥ k

∣∣∣∣∣
zf

′′
(z)

f ′(z)

∣∣∣∣∣ , k ≥ 0, 0 ≤ α < 1.

It follows that f ∈ k − UCV (α) ⇔ zf
′ ∈ k − ST (α). Further, we note that,

for α = 0 the classes k − UCV (α) and k − ST (α) reduce to k−uniformly convex
(k − UCV ) and k−uniformly starlike (k − ST ) functions respectively. The classes
k−UCV and k−ST were introduced and studied by Kanas and Wisniowska [9, 10].
Latter Kanas and Srivastava [8] extended the study to find the connections between
the classes k−UCV and k− ST considering the Hohlov linear operator which is a
special case of the Dziok-Srivastava linear operator [3].

Recently, Sim et al. [18] introduced the subclasses k − UCV (α, β) and k −
ST (α, β) of the univalent function class S as follows (see El-Ashwah et al.[5]):

f ∈ k − UCV (α, β) ⇔ <
{

1 +
zf

′′
(z)

f ′(z)
− α

}
≥ k

∣∣∣∣∣1 +
zf

′′
(z)

f ′(z)
− β

∣∣∣∣∣ ,
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where 0 ≤ α < β ≤ 1 and k(1− β) < (1− α) and

f ∈ k − ST (α, β) ⇔ <
{

zf
′
(z)

f(z)
− α

}
≥ k

∣∣∣∣∣
zf

′
(z)

f(z)
− β

∣∣∣∣∣ ,

where 0 ≤ α < β ≤ 1 and k(1− β) < (1− α).
Notice that f ∈ k − UCV (α, β) ⇔ zf

′ ∈ k − ST (α, β).
Motivated by the above said classes and the work of second author [11], we

define the unified subclasses of univalent function class S as follows:
For k ≥ 0, −1 ≤ α < β ≤ 1, 0 ≤ λ < 1, k(1− β) < 1− α, we let S(λ, α, β, k) be

the subclass of S consisting of functions f(z) of the form (1.1) and satisfying the
analytic criterion

<
{

zf ′(z)
(1− λ)f(z) + λzf ′(z)

− α

}
> k

∣∣∣∣
zf ′(z)

(1− λ)f(z) + λzf ′(z)
− β

∣∣∣∣ , z ∈ U.(1.2)

and also, let k − UCV (λ, α, β) be the subclasses of S consisting of functions of the
form (1.1) and satisfying the analytic criterion

<
{

zf ′(z) + z2f ′′(z)
zf ′(z) + λz2f ′′(z)

− α

}
> k

∣∣∣∣
zf ′(z) + z2f ′′(z)
zf ′(z) + λz2f ′′(z)

− β

∣∣∣∣ , z ∈ U.(1.3)

We also let VSη(λ, α, β, k) = S(λ, α, β, k)
⋂

Vη and k − VUCVη(λ, α, β, k) =
k − UCV (λ, α, β, k)

⋂
Vη, where Vη the class of functions f ∈ S of the form (1.1)

for which arg(an) = π + (n − 1)η, n ≥ 2. For η = 0, we obtain the familiar class
T of functions with negative coefficients [16]. Moreover, we define V := ∪η∈RVη.
The class V was introduced by Sliverman [17] (see also [4]). It is called the class of
functions with varying argument of coefficients.

We note that, by specializing the parameters λ, α, and k we obtain the following
subclasses studied by various authors.

1. VSη(0, α, 1, 0) = VS∗(α) and 0− VUCVη(0, α, 0) = VK(α) (Silverman [17])

2. VS0(0, α, 1, 0) = S∗(α) and 0− VUCV0(0, α, 0) = K(α) (Silverman [16])

3. VS0(λ, α, 1, 0; 1) = S∗(λ, α) and 0− VUCV0(λ, α, 1) = K(λ, α)
(Altintas and Owa [1]).

4. VS0(0, α, 1, k) = k − ST (α) and k − VUCV0(0, α, 1) = k − UCV (α)
(Bharati et al. [2] and Shams et al [15])

5. S(0, α, 1, 1) = Sp(α) and 1− U(0, α, 1) = UCV (α) (Rønning [14])

6. S(0, 0, 1, k) = k − St and k − U(0, 1, 1) = k − UCV
(Kanas and Wisnowska [9, 10] and Subramanian et al. [19])

7. VS0(0, α, β, k) = k − ST (α, β) and k − UCV (0, α, β) = k − UCV (α, β)
(Sim et al [18] and El-Ashwah et al. [5]).
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8. VS0(λ, α, 1, k) = k − ST (λ, α) and k − VUCV0(λ, α, 1) = UCV (λ, α, k)
(Murugusundaramoorthy and Magesh [13]).

The main object of this paper is to obtain the sufficient coefficient condi-
tions for functions f of the form (1.1) to be in the classes VSη(λ, α, β, k) and
k − VUCVη(λ, α, β, k). We show that they are also the necessary condition for
functions belong to those classes. Further we investigate extreme points, growth
and distortion bounds, radii of starlikeness and convexity and results on modified
Hadamard products for the class aforementioned classes.

2. Main Results

In the first theorem of this section, we obtain sufficient condition for functions
f(z) in the class S(λ, α, β, k).

Theorem 2.1 A function f(z) of the form (1.1) is in S(λ, α, β, k) if

(2.1)
∞∑

n=2

[φn(1 + k)− (kβ + α)ψn]|an| ≤ 1− α− k(1− β),

where

φn = n, ψn = [1 + λ(n− 1)](2.2)

and −1 ≤ α < β ≤ 1, 0 ≤ λ < 1, k(1− β) < 1− α and z ∈ U.

Proof. It suffices to show that the inequality (1.2) holds true. Upon using the fact
that

(2.3) <(w) > k|w − β|+ α iff <((1 + keiθ)w − βkeiθ) > α,

then the inequality (1.2) may be written as

<
(

(1 + keiθ)
zf ′(z)

(1− λ)f(z) + λzf ′(z)
− βkeiθ

)
≥ α.

That is,

<
(

A(z)
B(z)

)
> α,

where
A(z) = (1 + keiθ)zf ′(z)− βkeiθ[(1− λ)f(z) + λzf ′(z)]

and
B(z) = (1− λ)f(z) + λzf ′(z)

then we have

(2.4) |A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)| ≥ 0.
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Now,

|A(z) + (1− α)B(z)| =
∣∣((1− β)keiθ + 2− α)z

−
∞∑

n=2

[(βψn − φn)keiθ − (1− α)ψn − φn]anzn

∣∣∣∣∣
≥ (−(1− β)k + 2− α)|z|

−
∞∑

n=2

[(βψn − φn)k + (1− α)ψn + φn]|an||z|n

(2.5)

and

|A(z)− (1 + α)B(z)| =
∣∣((1− β)keiθ − α)z

+
∞∑

n=2

[(φn − βψn)keiθ + φn − (1 + α)ψn]anzn

∣∣∣∣∣
≤ ((1− β)k + α)|z|

+
∞∑

n=2

[(φn − βψn)k − (1 + α)ψn + φn]|an||z|n.

(2.6)

From (2.5) and (2.6), we have

|A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)|

≥ [2(1− α)− 2k(1− β)]|z| − 2
∞∑

n=2

[(φn − βψn)k + (φn − αψn)]|an||z|n

= 2

[
[(1− α)− k(1− β)]|z| −

∞∑
n=2

[φn(1 + k)− ψn(kβ + α)]|an||z|n
]

.

The last expression is bounded below by 0 if
∞∑

n=2

[φn(1 + k)− (kβ + α)ψn]|an| ≤ 1− α− k(1− β),

and hence the proof is complete. 2

In the following theorem, it is shown that the condition (2.1) is also necessary
for functions f ∈ VSη(λ, α, β, k).

Theorem 2.2. Let f(z) of the form (1.1) and in Vη, then f ∈ VSη(λ, α, β, k) if
and only if

(2.7)
∞∑

n=2

[φn(1 + k)− (kβ + α)ψn] |an| ≤ 1− α− k(1− β).
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Proof. In view of Theorem 2.1, we need only to show that f(z) ∈ VSη(λ, α, β, k)
satisfies the coefficient inequality (2.7). If f(z) ∈ VSη(λ, α, β, k) then by definition,
we have

<




(1− α) +
∞∑

n=2
(φn − αψn) anzn−1

1 +
∞∑

n=2
ψn anzn−1


 ≥ k

∣∣∣∣∣∣∣∣

(1− β) +
∞∑

n=2
(φn − βψn) anzn−1

1 +
∞∑

n=2
ψn anzn−1

∣∣∣∣∣∣∣∣
.

Since f is a function of the form (1.1) with the argument property given in the class
Vη and setting z = reiη in the above inequality, we have

(2.8)
(1− α)−

∞∑
n=2

(φn − αψn) |an|rn−1

1−
∞∑

n=2
ψn |an|rn−1

≥ k

(1− β) +
∞∑

n=2
(φn − βψn) |an|rn−1

1−
∞∑

n=2
ψn |an|rn−1

.

Letting r → 1, (2.8) leads the desired inequality

∞∑
n=2

[φn(1 + k)− (kβ + α)ψn] |an| ≤ 1− α− k(1− β), −1 ≤ α < 1, k ≥ 0.

Finally, the function f(z) given by

(2.9) fn,η(z) = z − [1− α− k(1− β)]ei(1−n)η

[φn(1 + k)− (kβ + α)ψn]
zn, 0 ≤ η < 2π, n ≥ 2,

where φ2 and ψ2 as written in (2.2), is extremal for the function. 2

Corollary 2.1. Let the function f(z) defined by (1.1) be in the class VSη(λ, α, β, k).
Then

(2.10) |an| ≤ 1− α− k(1− β)
[φn(1 + k)− (kβ + α)ψn]

, n ≥ 2.

The equality in (2.10) is attained for the function f(z) given by (2.9).

Using the same technique of Theorem 2.1, we state the following theorem with-
out proof.

Theorem 2.3. A function f(z) of the form (1.1) is in k − UCV (λ, α, β, k) if

(2.11)
∞∑

n=2

n[φn(1 + k)− (kβ + α)ψn]|an| ≤ 1− α− k(1− β),

where φn and ψn are given by (2.2).
In the following theorem, it is shown that the condition (2.11) is also necessary
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for functions f ∈ k − VUCVη(λ, α, β, k). The proof is lines similar to the proof of
Theorem 2.2, so we skip the details.

Theorem 2.4. Let f(z) of the form (1.1) and in Vη, then f ∈ VSη(λ, α, β, k) if
and only if

(2.12)
∞∑

n=2

n[φn(1 + k)− (kβ + α)ψn] |an| ≤ 1− α− k(1− β),

where φn and ψn are given by (2.2).

Next, we obtain growth and distortion bounds for functions in the class
VSη(λ, α, β, k).

Theorem 2.5. Let the function f(z) defined by (1.1) be in the class VSη(λ, α, β, k).
Then for |z| < r = 1

(2.13) r− 1− α− k(1− β)
[φ2(1 + k)− (kβ + α)ψ2]

r2 ≤ |f(z)| ≤ r +
1− α− k(1− β)

[φ2(1 + k)− (kβ + α)ψ2]
r2.

and

(2.14) 1− 2(1− α− k(1− β))
[φ2(1 + k)− (kβ + α)ψ2]

r ≤ |f ′(z)| ≤ 1 +
2(1− α− k(1− β))

[φ2(1 + k)− (kβ + α)ψ2]
r.

The result (2.13) is attained for the function f(z) given by (2.9) for z = ±r.

Proof. The proof of the Theorem 2.5, follows on line similar to the proof of the
theorem on distortion bounds given in [5]. 2

Theorem 2.6. Let f ∈ VSη(λ, α, β, k) with argument property as in the class Vη.
Define fj(z) = z , and

(2.15) fn,η(z) = z − [1− α− k(1− β)]ei(1−n)η

[φn(1 + k)− (kβ + α)ψn]
zn, 0 ≤ η < 2π, n ≥ 2.

Then f(z) is in the class VSη(λ, α, β, k) if and only if it can be expressed in the
form

(2.16) f(z) =
∞∑

n=1

µnfn,η(z),

where µn ≥ 0 (n ≥ 1) and
∑∞

n=1 µn = 1.

Proof. The proof of the Theorem 2.6, follows on lines similar to the proof of the
theorem on extreme points given in [5]. 2

Next, we obtain the radius of close-to-convexity for the class VSη(λ, α, β, k).
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Theorem 2.7. Let f ∈ VSη(λ, α, β, k). Then f(z) is close-to-convex of order σ (0 ≤
σ < 1) in the disc |z| < r1, where

(2.17) r1 := inf
[
(1− σ)[φn(1 + k)− (kβ + α)ψn]

n(1− α− k(1− β))

] 1
n−1

, n ≥ 2.

The result is sharp, with extremal function f(z) given by (2.9).

Proof. Given f ∈ Vη, and f is close-to-convex of order σ, we have

(2.18) |f ′(z)− 1| < 1− σ.

For the left hand side of (2.18) we have

|f ′(z)− 1| ≤
∞∑

n=2

n|an||z|n−1.

The last expression is less than 1− σ if

∞∑
n=2

n

1− σ
|an||z|n−1 < 1.

Using the fact, that f ∈ VSη(λ, α, β, k), if and only if

∞∑
n=2

[φn(1 + k)− (kβ + α)ψn]
(1− α− k(1− β))

|an| ≤ 1.

We can say (2.18) is true if

n

1− σ
|z|n−1 ≤ [φn(1 + k)− (kβ + α)ψn]

(1− α− k(1− β))
.

Or, equivalently,

|z|n−1 =
[
(1− σ)[φn(1 + k)− (kβ + α)ψn]

n(1− α− k(1− β))

]
,

which completes the proof. 2

Employing the technique as in Theorem 2.7, we state , radii of starlikeness and
convexity for the class VSη(λ, α, β, k) in the following theorem with out proof.

Theorem 2.8. Let f ∈ VSη(λ, α, β, k). Then

(i) f is starlike of order σ(0 ≤ σ < 1) in the disc |z| < r2; where

(2.19) r2 = inf
[(

1− σ

n− σ

)
[φn(1 + k)− (kβ + α)ψn]

(1− α− k(1− β))

] 1
n−1

, n ≥ 2,



k−Uniformly Convex Functions with Varying Argument Coefficients 391

(ii) f is convex of order σ (0 ≤ σ < 1) in the unit disc |z| < r3, where

(2.20) r3 = inf
[(

1− σ

n(n− σ)

)
[φn(1 + k)− (kβ + α)ψn]

(1− α− k(1− β))

] 1
n−1

, n ≥ 2.

Each of these results are sharp for the extremal function f(z) given by (2.9).

3. Results on Modified Hadamard Product

Let the functions fj(z)(j = 1, 2) be defined by

(3.1) fj(z) = z +
∞∑

n=2

an,iz
n, an,i ≥ 0; i = 1, 2,

then we define the modified Hadamard product of f1(z) and f2(z) by

(3.2) (f1 ∗ f2)(z) = z −
∞∑

n=2

an,1an,2z
n.

Now, we prove the following.

Theorem 3.1. Let each of the functions fj(z)(j = 1, 2) defined by (3.1) be in the
class VSη(λ, α, β, k). Then (f1 ∗ f2) ∈ VSη(λ, δ1, k), for

(3.3) δ1 =
[φ2(1 + k)− (kβ + α)ψ2]2 − [φ2(1 + k)− kβψ2](1− α− k(1− β))2

[φ2(1 + k)− (kβ + α)ψ2]2 − ψ2(1− α− k(1− β))2
.

The result is sharp.

Proof. We need to prove the largest δ1 such that

(3.4)
∞∑

n=2

[φn(1 + k)− (δ1 + kβ)ψn]
(1− δ1 − k(1− β)

an,1an,2 ≤ 1.

From Theorem 2.2, and using the Cauchy-Schwarz inequality, we have

(3.5)
∞∑

n=2

[φn(1 + k)− (kβ + α)ψn]
1− α− k(1− β)

√
an,1an,2 ≤ 1.

Thus it is sufficient to show that
(3.6)

[φn(1 + k)− (δ1 + kβ)ψn]
(1− δ1 − k(1− β)

an,1an,2 ≤ [φn(1 + k)− (kβ + α)ψn]
1− α− k(1− β)

√
an,1an,2, n ≥ 2

that is

(3.7)
√

an,1an,2 ≤ [φn(1 + k)− (kβ + α)ψn](1− δ1 − k(1− β)
[φn(1 + k)− (δ1 + kβ)ψn](1− α− k(1− β))

, n ≥ 2.
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Note that

(3.8)
√

an,1an,2 ≤ (1− α− k(1− β))
[φn(1 + k)− (kβ + α)ψn]

, n ≥ 2.

Consequently, we need only to prove that

(3.9)
(1− α− k(1− β))

[φn(1 + k)− (kβ + α)ψn]
≤ [φn(1 + k)− (kβ + α)ψn](1− δ1 − k(1− β)

[φn(1 + k)− (δ1 + kβ)ψn](1− α− k(1− β))
,

or equivalently
(3.10)

δ1 ≤ [φn(1 + k)− (kβ + α)ψn]2 − [φn(1 + k)− kβψn](1− α− k(1− β))2

[φn(1 + k)− (kβ + α)ψn]2 − ψn(1− α− k(1− β))2
= ∆(n).

Since ∆(n) is an increasing function of n(n ≥ 2), letting n = 2 in (3.10) we obtain
(3.11)

δ1 ≤ ∆(2) =
[φ2(1 + k)− (α + kβ)ψ2]2 − [φ2(1 + k)− kβψ2](1− α− k(1− β))2

[φ2(1 + k)− (α + kβ)ψ2]2 − ψ2(1− α− k(1− β))2

which proves the main assertion of Theorem 3.1. The result is sharp for the functions
defined by (2.9). 2

Theorem 3.2. Let the function fj(z)(j = 1, 2) defined by (3.1) be in the class
VSη(λ, α, β, k). If the sequence {φn(1 + k)− (kβ + α)ψn} is non-decreasing. Then
the function

(3.12) h(z) = z −
∞∑

n=2

(a2
n,1 + a2

n,2)z
n

belongs to the class VSη(λ, δ2, k) where

δ2 =
[φn(1 + k)− (kβ + α)ψn]2 − 2[φn(1 + k)− kβψn](1− α− k(1− β))2

[φn(1 + k)− (kβ + α)ψn]2 − 2ψn(1− α− k(1− β))2
.

Proof. By virtue of Theorem 2.2, for fj(z)(j = 1, 2) ∈ VSη(λ, α, β, k), one could get

(3.13)
∞∑

n=2

1
2

[
[φn(1 + k)− (kβ + α)ψn]

1− α− k(1− β)

]2

(a2
n,1 + a2

n,2) ≤ 1.

Therefore we need to find the largest δ2, such that

[φn(1 + k)− (δ2 + kβ)ψn]
(1− δ2 − k(1− β)

≤ 1
2

[
[φn(1 + k)− (kβ + α)ψn]

1− α− k(1− β)

]2

, n ≥ 2

that is

δ2 ≤ [φn(1 + k)− (kβ + α)ψn]2 − 2[φn(1 + k)− kβψn](1− α− k(1− β))2

[φn(1 + k)− (kβ + α)ψn]2 − 2ψn(1− α− k(1− β))2
= Ψ(n).
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Since Ψ(n) is an increasing function of n, (n ≥ 2), we readily have

δ2 ≤ Ψ(2) =
[φ2(1 + k)− (α + kβ)ψ2]2 − 2[φ2(1 + k)− kψ2](1− α− k(1− β))2

[φ2(1 + k)− (α + k)ψ2]2 − 2ψ2(1− α− k(1− β))2

which completes the proof. 2

Remark 3.1. By employing the techniques as used in Theorems 2.5, 2.6, 2.7, 2.8,
3.1 and 3.2, one can restate the above theorems for the class k−VUCVη(λ, α, β, k).
So we omitted the details to the readers interest.
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References

[1] O. Altintas and S. Owa, On subclasses of univalent functions with negative coefficients,
Pusan Kyongnam Math. J., 4(1988), 41–56.

[2] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly con-
vex functions and corresponding class of starlike functions, Tamkang J. Math.,
28(1)(1997), 17–32.

[3] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associ-
ated with the generalized hypergeometric function, Integral Transforms Spec. Funct.,
14(1)(2003), 7–18.

[4] J. Dziok and H. M. Srivastava, A unified class of analytic functions with varying
argument of coefficients, Eur. J. Pure Appl. Math., 2(3)(2009), 302–324.

[5] R. M. El-Ashwah, M. K. Aouf, A. A. M. Hassan and A. H. Hassan, Certain new
classes of analytic functions with varying arguments, J. Complex Anal., 2013, Art.
ID 958210, 5 pp.

[6] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1)(1991),
87–92.

[7] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl.,
155(2)(1991), 364–370.

[8] S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex
functions, Integral Transform. Spec. Funct., 9(2)(2000), 121–132.

[9] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput.
Appl. Math., 105(1–2)(1999), 327–336.

[10] S. Kanas and A. Wísniowska, Conic domains and starlike functions, Rev. Roumaine
Math. Pures Appl., 45(4)(2000), 647–657.

[11] N. Magesh, Certain subclasses of uniformly convex functions of order α and type β
with varying arguments, J. Egyptian Math. Soc., 21(3)(2013), 184–189.



394 M. K. Aouf, N. Magesh and J. Yamini

[12] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math.,
57(2)(1992), 165–175.

[13] G. Murugusundaramoorthy and N. Magesh, On certain subclasses of analytic func-
tions associated with hypergeometric functions, Appl. Math. Lett., 24(4)(2011), 494–
500.

[14] F. Rønning, Uniformly convex functions and a corresponding class of starlike func-
tions, Proc. Amer. Math. Soc., 118(1)(1993), 189–196.

[15] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex
functions, Int. J. Math. Math. Sci., 53–56(2004), 2959–2961.

[16] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc.,
51(1975), 109–116.

[17] H. Silverman, Univalent functions with varying arguments, Houston J. Math.,
7(2)(1981), 283–287.

[18] Y. J. Sim, O. S. Kwon, N. E. Cho and H. M. Srivastava, Some classes of analytic
functions associated with conic regions, Taiwanese J. Math., 16(1)(2012), 387–408.

[19] K. G. Subramanian, T. V. Sudharsan, P. Balasubrahmanyam and H. Silverman,
Classes of uniformly starlike functions, Publ. Math. Debrecen, 53(3–4)(1998), 309–
315.


