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MULTIOBJECTIVE SECOND-ORDER NONDIFFERENTIABLE

SYMMETRIC DUALITY INVOLVING (F, α, ρ, d)-CONVEX

FUNCTIONS
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Abstract. In this paper, a pair of Wolfe type second-order nondifferen-
tiable multiobjective symmetric dual program over arbitrary cones is for-
mulated. Weak, strong and converse duality theorems are established under
second-order (F, α, ρ, d)-convexity assumptions. An illustration is given to
show that second-order (F, α, ρ, d)-convex functions are generalization of
second-order F -convex functions. Several known results including many
recent works are obtained as special cases.
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1. Introduction

A mathematical programming problem with single objective is called scalar
programming problem. However, just considering one criterion at a time usually
does not represent real life problems well because in most of the cases, two or
more objectives are associated with a problem. Such a mathematical optimiza-
tion model with two or more objectives is called a multiobjective programming
problem. Often several objectives are conflicting in nature. For example, it may
be impossible to select an alternative to a problem which would maximize both
profit and market share for a company. Therefore, various terms like efficiency,
weak efficiency and proper efficiency are there in the literature to describe the
optimality of multiobjective problems.

Convexity plays an important role in nonlinear programming. Many mathe-
matical models used in economics, management sciences, applied mathematics
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and engineering involve non convex functions. So, it is possible to generalize the
notion of convexity and to explore the extent of the validity of results to larger
class of multiobjective optimization problems. Duality has been extended to mul-
tiobjective optimization since late 1970’s. The concept of (F, ρ)-convexity was
introduced by Preda [7]. Ahmad [1] established optimality conditions and dual-
ity results for multiobjective programming problems involving (F, ρ)-convexity
assumptions.

The study of second-order duality is significant due to the computational
advantage over first order duality as it provides tighter bounds for the value of
the objective function when approximations are used. Motivated by the concept
of second-order duality in nonlinear problems, introduced by Mangasarian [6],
several researchers [2-4, 9-14] have worked in this field. Recently, Yang et al.
[12] presented a new pair of Mond-Weir type second-order symmetric models for
a class of non-differentiable multiobjective programs.

Zhang and Mond [14] extended the class of (F, ρ)-convex functions to second-
order (F, ρ)-convex functions and obtained duality results for second-order Man-
gasarian type, Mond-Weir type and generalized Mond-Weir type multiobjective
dual problems. Ahmad and Husain [3] introduced second-order (F, α,
ρ, d)-convex functions and their generalizations and developed weak, strong and
strict converse duality theorems for second-order Mond-Weir type multiobjective
dual.

The purpose of this paper is to study a pair of nondifferentiable multiob-
jective second-order symmetric dual programs of Wolfe type model. Weak,
strong and converse duality theorems are proved under second-order (F, α, ρ, d)-
convexity assumptions. An example which is second-order (F, α, ρ, d)-convex
but not second-order F -convex is exemplified. Our study extends some of the
known results in [2, 4, 11, 13].

2. Notations and preliminaries

Consider the following multiobjective programming problem:

(P) minimize φ(x)

subject to − g(x) ∈ Q, x ∈ C,

where C ⊆ Rn, φ : Rn → Rk, g : Rn → Rm, Q is closed convex cone with
non-empty interior in Rm. Let X0 = {x ∈ C : −g(x) ∈ Q}, be the set of all
feasible solutions of (P).

Definition 1. A point x̄ ∈ X0 is a weak efficient solution of (P) if there exist
no other x ∈ X0 such that φ(x) < φ(x̄).

Definition 2. A point x̄ ∈ X0 is an efficient solution of (P) if there exist no
other x ∈ X0 such that φ(x) ≤ φ(x̄).

Let C1 and C2 be closed convex cones with non-empty interiors in Rn and
Rm, respectively.
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Definition 3. The positive polar cone C∗
i of Ci (i = 1, 2) is defined as

C∗
i = {z : xT z ≥ 0, for all x ∈ Ci}.

Definition 4. Let C be a compact convex set in Rn. The support function
S(x | C) of C is defined by

S(x | C) = max{xT y : y ∈ C}.
The support function S(x | C), being convex and everywhere finite, has a

subdifferential at every x in the sense of Rockafellar, that is, there exists z ∈ Rn

such that

S(y | C) ≥ S(x | C) + zT (y − x) for all y ∈ C.

The subdifferential of S(x | C) is given by

∂S(x | C) = {z ∈ C : zTx = S(x | C)}.
For any set S ⊂ Rn the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT (z − x) ≤ 0 for all z ∈ S}.
It can be easily seen that for a compact convex set C, y is in NC(x) if and only
if S(y | C) = xT y, or equivalently, x is in ∂S(y | C).

Definition 5 ([11, 12]). A functional F : X ×X ×Rn 7→ R (where X ⊆ Rn) is
sublinear with respect to the third variable if for all (x, u) ∈ X ×X,

(i) F (x, u; a1 + a2) ≤ F (x, u; a1) + F (x, u; a2) for all a1, a2 ∈ Rn,
(ii) F (x, u;αa) = αF (x, u; a), for all α ∈ R+ and for all a ∈ Rn.

For notational convenience, we write Fx,u(a) = F (x, u; a).

Now we consider a function f = (f1, f2, . . . , fk) : X 7→ Rk differentiable at
u ∈ X, ρ = (ρ1, ρ2, . . . , ρk) ∈ Rk and d = (d1, d2, . . . , dk) ∈ Rk.

Definition 6. A twice differentiable function fi over X is said to be second-order
F -convex at u ∈ X with respect to q ∈ Rn, if ∀x ∈ X,

fi(x)− fi(u) +
1

2
qT∇xxfi(u)q ≥ Fx,u(∇xfi(u) +∇xxfi(u)q).

A twice differentiable vector function f : X → Rk is said to be second-order
F -convex at u ∈ X with respect to q ∈ Rn, if each of its components fi is
second-order F -convex at u ∈ X with respect to q ∈ Rn.

Definition 7. A twice differentiable function fi over X is said to be second-
order (F, α, ρi, di)-convex at u on X, if ∀x ∈ X, there exist vector q ∈ Rn, a real
valued function α : X×X → R+\{0}, a real valued function di(·, ·) : X×X → R
and a real number ρi such that

fi(x)− fi(u) +
1

2
qT∇xxfi(u)q ≥ Fx,u[α(x, u)(∇xfi(u) +∇xxfi(u)q)] + ρid

2
i (x, u).
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Fig. 1. f1 = sin2x− sin2u− sin2u+ 4x2

A twice differentiable vector function f : X 7→ Rk is said to be second-order
(F, α, ρ, d)-convex at u if each of its components fi is second-order (F, α, ρi, di)-
convex at u.
Remark 1.

(i) If k = 1 and q = 0, the above definition become that of (F, α, ρ, d)-convex
functions introduced by Liang et al. [5].

(ii) For single objective programming problem and α(x, u) = 1, the def-
inition of second-order (F, α, ρi, di)-convexity reduces to second-order
(F, ρ)-convexity given by Srivastava and Bhatia [10].

Example 1. Let X = [0.7, 0.75] ⊂ R. Let the function f : X → R be defined by
f(x) = sin2 x and α : X ×X → R+\{0} be identified by α(x, u) = (x + u + 1).
Let the functional F : X ×X ×R → R be defined by

Fx,u(a) =
a

(x+ u+ 1)

and d : X ×X → R be given by

d(x, u) =
√
x2 + u2.

For ρ = −4, we have

L = f(x)− f(u) +
1

2
qT∇xxf(u)q − Fx,u[α(x, u)(∇xf(u) +∇xxf(u)q)]− ρd2(x, u)

= sin2 x− sin2 u+ q2 cos 2u− Fx,u[(x+ u+ 1)(sin 2u+ 2q cos 2u)]− (−4)(
√

x2 + u2)2

= sin2 x− sin2 u− sin 2u+ 4x2 + q2 cos 2u− 2q cos 2u+ 4u2

= f1 + f2 (say)

where f1 = sin2 x−sin2 u−sin 2u+4x2 ≥ 0 ∀ x, u ∈ X as can be seen from Figure
1, and f2 = q2 cos 2u−2q cos 2u+4u2 ≥ 0 ∀ u ∈ X and q ∈ (−1018, 1018) as can
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be seen from Figure 2. Hence L ≥ 0. Therefore f is second-order (F, α, ρ, d)-
convex. But f is not second-order F -convex since for q = 1, we have

M = f(x)− f(u) +
1

2
qT∇xxf(u)q − Fx,u[∇xf(u) +∇xxf(u)q]

= sin2 x− sin2 u+ cos 2u− Fx,u[sin 2u+ 2 cos 2u]

= sin2 x− sin2 u+ cos 2u− 1

(x+ u+ 1)
(sin 2u+ 2 cos 2u)

< 0 ∀ x, u ∈ X

as be can seen from Figure 3.
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Fig. 3. sin2x− sin2u+ cos2u− 1
(x+u+1) (sin2u+ 2cos2u)

Hence the function f is second-order (F, α, ρ, d)-convex but is not second-order
F -convex.
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3. Wolfe type symmetric duality

We now consider the following pair of second-order Wolfe type nondifferen-
tiable multiobjective programming problems with k-objectives:
Primal problem (PP).

minimize G(x, y, λ, p) = {G1(x, y, λ, p), G2(x, y, λ, p), · · · , Gk(x, y, λ, p)}
subject to −∇y(λ

T f)(x, y) + z −∇yy(λ
T f)(x, y)p ∈ C∗

2 ,

z ∈ E,

λT ek = 1,

λ > 0, x ∈ C1.

Dual problem (DP).

maximize H(u, v, λ, q) = {H1(u, v, λ, q),H2(u, v, λ, q), · · · ,Hk(u, v, λ, q)}
subject to ∇x(λ

T f)(u, v) + w +∇xx(λ
T f)(u, v)q ∈ C∗

1 ,

w ∈ D,

λT ek = 1,

λ > 0, v ∈ C2 ,

where for i = 1, 2, · · · , k,
Gi(x, y, λ, p) = fi(x, y) + S(x | D)− yT∇y(λ

T f)(x, y)

− yT
(∇yy(λ

T f)(x, y)
)− 1

2
pT

(∇yy(λ
T f)(x, y)p

)
,

Hi(u, v, λ, q) =fi(u, v)− S(v | E)− uT∇x(λ
T f)(u, v)

− uT
(∇xx(λ

T f)(u, v)q
)− 1

2
qT

(∇xx(λ
T f)(u, v)q

)
.

The above problem (PP) and (DP) can be further expressed as:
Primal problem (PP).

Minimize G(x, y, λ, p) = f(x, y) + S(x | D)ek − yT∇y(λ
T f)(x, y)ek

− yT (∇yy(λ
T f)(x, y)p)ek − 1

2
pT (∇yy(λ

T f)(x, y)p)ek,

subject to −∇y(λ
T f)(x, y) + z −∇yy(λ

T f)(x, y)p ∈ C∗
2 , (1)

z ∈ E, (2)

λT ek = 1, (3)

λ > 0, x ∈ C1. (4)

Dual problem (DP).

Maximize H(u, v, λ, q) = f(u, v)− S(v | E)ek − uT∇x(λ
T f)(u, v)ek

− uT (∇xx(λ
T f)(u, v)q)ek − 1

2
qT (∇xx(λ

T f)(u, v)q)ek,
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subject to ∇x(λ
T f)(u, v) + w +∇xx(λ

T f)(u, v)q ∈ C∗
1 , (5)

w ∈ D, (6)

λT ek = 1, (7)

λ > 0, v ∈ C2 , (8)

where

(i) f = {f1, f2, · · · , fk} is a differentiable function from S1 × S2 → Rk

(S1 ⊆ Rn and S2 ⊆ Rm are open sets), ek = (1, . . . , 1)T ∈ Rk,
(ii) q and p are vectors in Rn and Rm, respectively, λ ∈ Rk,
(iii) D and E are compact convex sets in Rn and Rm, respectively.

We prove the following duality results for the pair of problems (PP) and (DP).

Theorem 1 (Weak Duality). Let (x, y, λ, z, p) be feasible for the primal prob-
lem (PP) and (u, v, λ, w, q) be feasible for the dual problem (DP). Let the sub-
linear functionals F : S1 × S1 ×Rn 7→ R and G : S2 × S2 ×Rm 7→ R satisfy the
following conditions:

Fx,u(a) + α−1
1 aTu ≥ 0, for all a ∈ C∗

1 , (A)

Gv,y(b) + α−1
2 bT y ≥ 0, for all b ∈ C∗

2 . (B)

Suppose that either (i)
k∑

i=1

λi[ρ
(1)
i (d

(1)
i (x, u))2 + ρ

(2)
i (d

(2)
i (v, y))2] ≥ 0 or

(ii) ρ
(1)
i ≥ 0 and ρ

(2)
i ≥ 0, for all i. Furthermore, assume that

fi(., v) + (.)Tw (1 ≤ i ≤ k) is second-order (F, α1, ρ
(1)
i , d

(1)
i )-convex at u,

fi(x, .)− (.)T z (1 ≤ i ≤ k) be second-order (G,α2, ρ
(2)
i , d

(2)
i )-concave at y.Then

G(x, y, λ, p) 6≤ H(u, v, λ, q). (9)

Proof. Since fi(., v)+(.)Tw (1 ≤ i ≤ k) is second-order (F, α1, ρ
(1)
i , d

(1)
i )-convex,

we have

fi(x, v) + xTw − fi(u, v)− uTw +
1

2
qT (∇xxfi(u, v)q)

≥ Fx,u[α1(x, u)(∇xfi(u, v) + w +∇xxfi(u, v)q)] + ρ
(1)
i (d

(1)
i (x, u))2.

It follows from λ > 0, λT ek = 1 and sublinearity of F that

(λT f)(x, v) + xTw − (λT f)(u, v)− uTw +
1

2
qT (∇xx(λ

T f)(u, v)q)

≥ Fx,u[α1(x, u)(∇x(λ
T f)(u, v) + w +∇xx(λ

T f)(u, v)q)]

+

k∑

i=1

λiρ
(1)
i (d

(1)
i (x, u))2.

(10)
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As fi(x, .)− (.)T z (1 ≤ i ≤ k) is second-order (G,α2, ρ
(2)
i , d

(2)
i )-concave therefore

we get

fi(x, y)− yT z − fi(x, v) + vT z − 1

2
pT (∇yyfi(x, y)p)

≥ Gv,y [−α2(v, y)(∇yfi(x, y)− z +∇yyfi(x, y)p)] + ρ
(2)
i (d

(2)
i (v, y))2.

Using λ > 0, λT ek = 1 and sublinearity of G it follows that

(λT f)(x, y)− yT z − (λT f)(x, v) + vT z − 1

2
pT (∇yy(λ

T f)(x, y)p)

≥ Gv,y[−α2(v, y)(∇y(λ
T f)(x, y)− z +∇yy(λ

T f)(x, y)p)]

+

k∑

i=1

λiρ
(2)
i (d

(2)
i (v, y))2.

(11)

Adding the inequalities (10) and (11), we obtain

(λT f)(x, y)− (λT f)(u, v) + xTw − uTw − yT z + vT z

+
1

2
qT (∇xx(λ

T f)(u, v)q)− 1

2
pT (∇yy(λ

T f)(x, y)p)

≥ Fx,u[α1(x, u)(∇x(λ
T f)(u, v) + w +∇xx(λ

T f)(u, v)q)]

+Gv,y[−α2(v, y)(∇y(λ
T f)(x, y)− z +∇yy(λ

T f)(x, y)p)]

+

k∑

i=1

λi[ρ
(1)
i (d

(1)
i (x, u))2 + ρ

(2)
i (d

(2)
i (v, y))2].

(12)

Since (x, y, λ, z, p) is feasible for the primal problem (PP) and (u, v, λ, w, q) is
feasible for the dual problem (DP), α1(x, u) > 0, by the dual constraint (5), the
vector a = α1(x, u)(∇x(λ

T f)(u, v) + w + ∇xx(λ
T f)(u, v)q) ∈ C∗

1 and so from
the hypothesis (A), we obtain

Fx,u(a) + α−1
1 aTu ≥ 0. (13)

Similarly,
Gv,y(b) + α−1

2 bT y ≥ 0, (14)

for the vector b = −α2(v, y){∇y(λ
T f)(x, y)−z+∇yy(λ

T f)(x, y)p} ∈ C∗
2 . Using

(13), (14) and hypothesis (i) or (ii) in (12), we have

(λT f)(x, y)− (λT f)(u, v) + xTw − uTw − yT z + vT z

+
1

2
qT (∇xx(λ

T f)(u, v)q)− 1

2
pT (∇yy(λ

T f)(x, y)p)

≥ −α−1
1 uTa− α−1

2 yT b.

Substituting the values of a and b, we have

(λT f)(x, y) + xTw − yT∇y(λ
T f)(x, y)− yT (∇yy(λ

T f)(x, y)p)− 1

2
pT (∇yy(λ

T f)(x, y)p)

≥ (λT f)(u, v)− vT z − uT∇x(λ
T f)(u, v)− uT (∇xx(λ

T f)(u, v)q)− 1

2
qT (∇xx(λ

T f)(u, v)q).
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In view of the fact that xTw ≤ S(x | D), vT z ≤ S(v | E) and λT ek = 1, the
last inequality yields

(λT f)(x, y) + S(x | D)− yT∇y(λ
T f)(x, y)

− yT (∇yy(λ
T f)(x, y)p)− 1

2
pT (∇yy(λ

T f)(x, y)p)

≥ (λT f)(u, v)− S(v | E)− uT∇x(λ
T f)(u, v)

− uT (∇xx(λ
T f)(u, v)q)− 1

2
qT (∇xx(λ

T f)(u, v)q).

(15)

Now suppose contrary to the result that (9) not holds, that is ,

{G1(x, y, λ, p), G2(x, y, λ, p), . . . , Gk(x, y, λ, p)}
≤ {H1(u, v, λ, q),H2(u, v, λ, q), . . . , Hk(u, v, λ, q)}

or

f(x, y) + S(x | D)ek − yT∇y(λ
T f)(x, y)ek

− yT (∇yy(λ
T f)(x, y)p)ek − 1

2
pT (∇yy(λ

T f)(x, y)p)ek

≤ f(u, v)− S(v | E)ek − uT∇x(λ
T f)(u, v)ek

− uT (∇xx(λ
T f)(u, v)q)ek − 1

2
qT (∇xx(λ

T f)(u, v)q)ek.

Since λ > 0 and λT ek = 1, we obtain

(λT f)(x, y) + S(x | D)− yT∇y(λ
T f)(x, y)

− yT (∇yy(λ
T f)(x, y)p)− 1

2
pT (∇yy(λ

T f)(x, y)p)

< (λT f)(u, v)− S(v | E)− uT∇x(λ
T f)(u, v)

− uT (∇xx(λ
T f)(u, v)q)− 1

2
qT (∇xx(λ

T f)(u, v)q),

which contradicts (15). Hence (9) holds. ¤

We now state a weak duality theorem under second-order F -convexity as-
sumptions. Its proof follows on the lines of Theorem 1 on taking

α1(x, u) = 1, α2(v, y) = 1,

and
ρ1 = 0, ρ2 = 0.

Theorem 2 (Weak Duality). Let (x, y, λ, z, p) be feasible for the primal prob-
lem (PP) and (u, v, λ, w, q) be feasible for the dual problem (DP). Suppose that
the sublinear functionals F : S1 × S1 × Rn 7→ R and G : S2 × S2 × Rm 7→ R
satisfy the following conditions:

Fx,u(a) + aTu ≥ 0, for all a ∈ C∗
1 , (A)

Gv,y(b) + bT y ≥ 0, for all b ∈ C∗
2 . (B)
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Furthermore, assume that fi(., v) + (.)Tw (1 ≤ i ≤ k) is second-order F -convex
at u and fi(x, .)− (.)T z (1 ≤ i ≤ k) is second-order G-concave at y. Then

G(x, y, λ, p) 6≤ H(u, v, λ, q).

Theorem 3 (Strong Duality). Let f : S1 × S2 → Rk be thrice differentiable
function and let (x̄, ȳ, λ̄, z̄, p̄) be a weak efficient solution of (PP). Suppose that

(i) the matrix ∇yy(λ̄
T f)(x̄, ȳ) is non singular,

(ii) the vectors ∇yf1(x̄, ȳ), . . . ,∇yfk(x̄, ȳ) are linearly independent,
(iii) the vector ∇y(∇yy(λ̄

T f)(x̄, ȳ)p̄)p̄ /∈ span{∇yf1(x̄, ȳ), . . . ,∇yfk(x̄, ȳ)}\{0}
and

(iv) ∇y(∇yy(λ̄
T f)(x̄, ȳ)p̄)p̄ = 0 implies p̄ = 0, then

(I) there exist w̄ ∈ D such that (x̄, ȳ, λ̄, w̄, q̄ = 0) is feasible for (DP), and
(II) G(x̄, ȳ, λ̄, p̄) = H(x̄, ȳ, λ̄, q̄).

Also, if the hypotheses of a weak duality theorem are satisfied for all feasible
solutions of (PP) and (DP), then (x̄, ȳ, λ̄, w̄, q̄ = 0) is an efficient solution for
(DP).

Proof. Since (x̄, ȳ, λ̄, z̄, p̄) is a weak efficient solution of (PP), there exist α ∈ Rk,
β ∈ C2, η ∈ R, such that the following Fritz John optimality conditions ([8],
Lemma 1) are satisfied at (x̄, ȳ, λ̄, z̄, p̄):

{
αT (∇xf(x̄, ȳ) + γek) +∇xy(λ̄

T f)(x̄, ȳ)(β − (αT ek)ȳ)

+∇x[∇yy(λ̄
T f)(x̄, ȳ)p̄](β − (αT ek)(ȳ +

1

2
p̄))

}
(x− x̄)

≥ 0, for all x ∈ C1,

(16)

∇yf(x̄, ȳ)[α− (αT ek)λ̄] +∇yy(λ̄
T f)(x̄, ȳ)(β − (αT ek)ȳ)

+∇y[∇yy(λ̄
T f)(x̄, ȳ)p̄](β − (αT ek)(ȳ +

1

2
p̄))− (αT ek)∇yy(λ̄

T f)(x̄, ȳ)p̄

= 0,

(17)

∇yy(λ̄
T f)(x̄, ȳ)(β − (αT ek)(ȳ + p̄)) = 0, (18)

∇yf(x̄, ȳ)(β − (αT ek)ȳ) + ηek + [(β − (αT ek)(ȳ +
1

2
p̄))T∇yyf1(x̄, ȳ)p̄,

. . . , (β − (αT ek)(ȳ +
1

2
p̄))T∇yyfk(x̄, ȳ)p̄] = 0,

(19)

βT [∇y(λ̄
T f)(x̄, ȳ)− z̄ +∇yy(λ̄

T f)(x̄, ȳ)p̄] = 0, (20)

β ∈ NE(z̄), (21)

γ ∈ D, γT x̄ = S(x̄ | D), (22)

(α, β, η) 6= 0. (23)

From (18) and nonsingularity of ∇yy(λ̄
T f)(x̄, ȳ), we have

β = (αT ek)(ȳ + p̄). (24)
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If α = 0 then (24) yields β = 0. Further, equation (19) gives ηek = 0 or
η = 0. Consequently (α, β, η) = 0, contradicting (23). Hence,

α ≥ 0 or αT ek > 0. (25)

Now, using (24) and (25) in (17), we get

∇y[∇yy(λ̄
T f)(x̄, ȳ)p̄]p̄ = − 2

αT ek
∇yf(x̄, ȳ)[α− (αT ek)λ̄]. (26)

which by hypothesis (iii) and (iv) implies

p̄ = 0. (27)

Now, by (26) and (27), we obtain

∇yf(x̄, ȳ)[α− (αT ek)λ̄] = 0.

Since the vectors {∇yf1(x̄, ȳ), . . . ,∇yfk(x̄, ȳ)} are linearly independent, there-
fore

α = (αT ek)λ̄. (28)

From (27) in (24), we get

β = (αT ek)ȳ. (29)

Using (25) and (27)-(29) in (16), we have

(∇x(λ̄
T f)(x̄, ȳ) + γ)(x− x̄) ≥ 0, for all x ∈ C1. (30)

Let x ∈ C1. Then x+ x̄ ∈ C1 and so (30) implies

xT (∇x(λ̄
T f)(x̄, ȳ) + γ) ≥ 0, for all x ∈ C1.

Therefore,

∇x(λ̄
T f)(x̄, ȳ) + γ ∈ C∗

1 .

Also, from (25), (29) and β ∈ C2, we obtain ȳ ∈ C2. Thus (x̄, ȳ, λ̄, w̄ = γ, q̄ = 0)
satisfies the dual constraints from (5) to (8) in (DP) and so it is a feasible solution
for the dual problem (DP). Now, letting x = 0 and x = 2x̄ in (30), we get

x̄T (∇x(λ̄
T f)(x̄, ȳ) + γ) = 0 or x̄T∇x(λ̄

T f)(x̄, ȳ) = −x̄T γ = −S(x̄ | D). (31)

Moreover, since β = (αT ek)ȳ and αT ek > 0, (21) implies ȳ ∈ NE(z̄) so that

ȳT z̄ = S(ȳ | E).

Further, from (20), (25), (27) and (29) and the above relation, we obtain

ȳT∇y(λ̄
T f)(x̄, ȳ) = ȳT z̄ = S(ȳ | E). (32)

Therefore, using (27), (31) and (32), we get

G(x̄, ȳ, λ̄, p̄ = 0) = H(ū, v̄, λ̄, q̄ = 0)
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that is, the two objective values are equal. Now, let (x̄, ȳ, λ̄, w̄, q̄ = 0) is not an
efficient solution of (DP), then there exist (ū, v̄, λ̄, w̄, q̄ = 0) feasible for (DP),
such that,

f(x̄, ȳ)− S(ȳ | E)ek − 1

2
q̄T (∇xx(λ̄

T f)(x̄, ȳ)q̄)ek

− x̄T [∇x(λ̄
T f)(x̄, ȳ)ek + (∇xx(λ̄

T f)(x̄, ȳ)q̄)ek]

≤ f(ū, v̄)− S(v̄ | E)ek − 1

2
q̄T (∇xx(λ̄

T f)(ū, v̄)q̄)ek

− ūT [∇x(λ̄
T f)(ū, v̄)ek + (∇xx(λ̄

T f)(ū, v̄)q̄)ek].

Since x̄T∇x(λ̄
T f)(x̄, ȳ) = −S(x̄ | D), ȳT∇y(λ̄

T f)(x̄, ȳ) = S(ȳ | E) and p̄ = 0,

f(x̄, ȳ) + S(x̄ | D)ek − 1

2
p̄T (∇yy(λ̄

T f)(x̄, ȳ)p̄)ek

− ȳT [∇y(λ̄
T f)(x̄, ȳ)ek + (∇yy(λ̄

T f)(x̄, ȳ)p̄)ek]

≤ f(ū, v̄)− S(v̄ | E)ek − 1

2
q̄T (∇xx(λ̄

T f)(ū, v̄)q̄)ek

− ūT [∇x(λ̄
T f)(ū, v̄)ek + (∇xx(λ̄

T f)(ū, v̄)q̄)ek],

which contradicts weak duality theorem. Hence (x̄, ȳ, λ̄, w̄, q̄ = 0) is an efficient
solution of (DP). ¤

Theorem 4 (Converse Duality). Let f : S1×S2 → Rk be thrice differentiable
function and let (ū, v̄, λ̄, w̄, q̄) be a weak efficient solution of (DP). Suppose that

(i) the matrix ∇xx(λ̄
T f)(ū, v̄) is non singular,

(ii) the vectors ∇xf1(ū, v̄), . . . ,∇xfk(ū, v̄) are linearly independent,
(iii) the vector ∇x(∇xx(λ̄

T f)(ū, v̄)q̄)q̄ /∈ span{∇xf1(ū, v̄), . . . ,∇xfk(ū, v̄)}\{0}
and

(iv) ∇x(∇xx(λ̄
T f)(ū, v̄)q̄)q̄ = 0 implies q̄ = 0, then

(I) there exist z̄ ∈ E such that (ū, v̄, λ̄, z̄, p̄ = 0) is feasible for (PP), and
(II) G(ū, v̄, λ̄, p̄) = H(ū, v̄, λ̄, q̄).

lso, if the hypotheses of a weak duality theorem are satisfied for all feasible so-
lutions of (PP) and (DP), then (ū, v̄, λ̄, z̄, p̄ = 0) is an efficient solution for
(PP).

Proof. It follows on the lines of Theorem 3. ¤

4. Special cases

In this section, we consider some of the special cases of the problems studied
in Section 3. In all these cases, C1 = Rn

+ and C2 = Rm
+ .

(i) If k = 1, then our problems (PP) and (DP) reduces to the single objective
nondifferentiable symmetric dual programs considered in Yang et al.
[11].
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(ii) If k = 1, and we take D = {Ay : yTAy ≤ 1}, E = {Bx : xTBx ≤ 1},
where A and B are positive semidefinite matrices, then (xTAx)1/2 =
S(x | D) and (yTBy)1/2 = S(y | E). In this case (PP) and (DP) reduce
to the problems considered in Ahmad and Husain [2].

(iii) If D = 0 and E = 0, then (PP) and (DP) reduce to (MP) and (MD)
considered in Yang et al. [16] along with the nonnegativity restrictions
x ≥ 0 and v ≥ 0. However, taking Fx,u(a) = (x − u)Ta and Gv,y(b) =
(v − y)T b along with the hypothesis (A) and (B) of Theorem 1 in [13]
gives x ≥ 0 and v ≥ 0.

(iv) If k = 1, D = 0 and E = 0, then our problems (PP) and (DP) reduced
to programs studied in Gulati et al. [4].

References

1. I. Ahmad, Sufficiency and duality in multiobjective programming with generalized (F, ρ)-
convexity, J. Appl. Anal., 11 (2005), 19-33.

2. I. Ahmad, Z. Husain, On nondifferentiable second-order symmetric duality in mathemat-
ical programming, Indian J. Pure Appl. Math., 35 (2004), 665-676.

3. I. Ahmad, Z. Husain, Second-order (F, α, ρ, d)-convexity and duality in multiobjective pro-
gramming, Inform. Sci., 176 (2006), 3094-3103.

4. T.R. Gulati, I. Ahmad, I. Husain, Second-order symmetric duality with generalized con-
vexity, Opsearch, 38 (2001), 210-222.

5. Z. Liang, H. Huang, P.M. Paradalos, Efficiency conditions and duality for a class of
multiobjective fractional programming problems, J. Glob. Optim., 27 (2003), 444-471.

6. O.L. Mangasarian, Second and higher-order duality in nonlinear programming, J. Math.
Anal. Appl., 51 (1975), 607-620.

7. V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl.,
166 (1992), 365-377.

8. S.K. Suneja, S. Aggarwal, S. Davar, Multiobjective symmetric duality involving cones,
Euro. J. Oper. Res., 141 (2002), 471-479.

9. S.K. Suneja, C.S. Lalitha, S. Khurana, Second-order symmetric duality in multiobjective
programming, Euro. J. Oper. Res., 144 (2003), 492-500.

10. M.K. Srivastava, M. Bhatia, Symmetric duality for multiobjective programming using
second-order (F, ρ)-convexity, Opsearch, 43 (2006), 274-295.

11. X.M. Yang, X.Q. Yang, K.L. Teo, Non-differentiable second-order symmetric duality in
mathematical programming with F -convexity, Euro. J. Oper. Res., 144 (2003), 554-559.

12. X.M. Yang, X.Q. Yang, K.L. Teo, S.H. Hou, Second-order symmetric duality in non-
differentiable multiobjective programming with F -convexity, Euro. J. Oper. Res., 164
(2005), 406-416.

13. X.M. Yang, X.Q. Yang, K.L. Teo, S.H. Hou, Multiobjective second-order symmetric duality
with F -convexity, Euro. J. Oper. Res., 165 (2005), 585-591.

14. J. Zhang, B. Mond, Second-order duality for multiobjective nonlinear programming involv-
ing generalized convexity, in: B.M. Glower, B.D. Craven and D. Ralph(Eds.), Proceedings
of the Optimization Miniconference III, University of Ballarat. (1997), 79-95.

S. K. Gupta is an Assistant Professor in the Department of Mathematics, Indian Insti-
tute of Technology, Patna, India. He obtained his M. Sc. and Ph.D. from Indian Institute
of Technology Roorkee, India. He has published many papers in the area of mathemat-
ical programming. His research interest include fuzzy optimization and support vector
machines.



1408 S.K. Gupta, N. Kailey and M.K. Sharma

Department of Mathematics, Indian Institute of Technology Patna, Patna 800-013, India
Ph.: +91-612-2552025, Fax: +91-612-2277384
e-mail: skgiitr@gmail.com

N. Kailey is a Research Scholar in School of Mathematics and Computer Applications,
Thapar University, Patiala, India. He did his M. Sc. from Guru Nanak Dev Univeristy,
Amritsar, India.

School of Mathematics and Computer Applications, Thapar University, Patiala-147 004,
India
e-mail: kaileynavdeep21@gmail.com

M. K. Sharma is an Assistant Professor in School of Mathematics and Computer Ap-
plications, Thapar University, Patiala, India. He obtained his Ph.D. from Indian Institute
of Technology Roorkee, India. He has published some papers in the area of theoretical
astrophysics. His research interest include theoretical astrophysics, multiobjective trans-
portation and warehouse problems.

School of Mathematics and Computer Applications, Thapar University, Patiala-147 004,
India
e-mail: mksharma@thapar.edu


