• Title/Summary/Keyword: convergence theorem.

Search Result 288, Processing Time 0.02 seconds

ON THE PRUSS EXTENSION OF THE HSU-ROBBINS-ERD S THEOREM

  • Sung, Soo-Hak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.305-314
    • /
    • 1999
  • The Hsu-Robbins-erd s theorem states that if {$X_m,n\geq1$} is a sequence of independent and identically distributed random variables, then ${EX_1}^2<\infty$ and $EX_1$=0 if and only if ${\sum_{n=1}}^\infty\;P($\mid${\sum_{k=1}}^nX_k$\mid$\geqn\in)<\infty$ for every $\in$ > 0. Under some auxiliary conditions, Sp taru (1994) extended this to the case where the $X_n$ are independent, but their distributions come from a finite set. Pruss (1996) proved Sp taru's result under weaker conditions, The purpose of this paper is to improve Pruss conditions.

  • PDF

Factorization of the Jet Mass Distribution in the Small R Limit

  • Idilbi, Ahmad;Kim, Chul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1230-1239
    • /
    • 2018
  • We derive a factorization theorem for the jet mass distribution with a given $p^J_T$ for the inclusive production, where $p^J_T$ is a large jet transverse momentum. Considering the small jet radius limit ($R{\ll}1$), we factorize the scattering cross section into a partonic cross section, the fragmentation function to a jet, and the jet mass distribution function. The decoupled jet mass distributions for quark and gluon jets are well-normalized and scale invariant, and they can be extracted from the ratio of two scattering cross sections such as $d{\sigma}/(dp^J_TdM^2_J)$ and $d{\sigma}/dp^J_T $. When $M_J{\sim}p^J_TR$, the perturbative series expansion for the jet mass distributions works well. As the jet mass becomes small, large logarithms of $M_J/(p^J_TR)$ appear, and they can be systematically resummed through a more refined factorization theorem for the jet mass distribution.

On Lebesgue-type theorems for interval-valued Choquet integrals with respect to a monotone set function. (단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구)

  • Jang, Lee-Chae;Kim, Tae-Kyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.195-198
    • /
    • 2007
  • In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval-valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

  • PDF

ON CONSTRUCTING A HIGHER-ORDER EXTENSION OF DOUBLE NEWTON'S METHOD USING A SIMPLE BIVARIATE POLYNOMIAL WEIGHT FUNCTION

  • LEE, SEON YEONG;KIM, YOUNG IK
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.491-497
    • /
    • 2015
  • In this paper, we have suggested an extended double Newton's method with sixth-order convergence by considering a control parameter ${\gamma}$ and a weight function H(s, u). We have determined forms of ${\gamma}$ and H(s, u) in order to induce the greatest order of convergence and established the main theorem utilizing related properties. The developed theory is ensured by numerical experiments with high-precision computation for a number of test functions.

CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

  • Saluja, Gurucharan Singh
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.35-49
    • /
    • 2011
  • In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to com mon fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

On Lebesgue-type theorems for interval-valued Choquet integrals with respect to a monotone set function (단조집합함수에 의해 정의된 구간치 쇼케이적분에 대한 르베그형태 정리에 관한 연구)

  • Jang, Lee-Chae;Kim, Tae-Kyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, we consider Lebesgue-type theorems in non-additive measure theory and then investigate interval valued Choquet integrals and interval-valued fuzzy integral with respect to a additive monotone set function. Furthermore, we discuss the equivalence among the Lebesgue's theorems, the monotone convergence theorems of interval-valued fuzzy integrals with respect to a monotone set function and find some sufficient condition that the monotone convergence theorem of interval-valued Choquet integrals with respect to a monotone set function holds.

LOCAL CONVERGENCE OF FUNCTIONAL ITERATIONS FOR SOLVING A QUADRATIC MATRIX EQUATION

  • Kim, Hyun-Min;Kim, Young-Jin;Seo, Jong-Hyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.199-214
    • /
    • 2017
  • We consider fixed-point iterations constructed by simple transforming from a quadratic matrix equation to equivalent fixed-point equations and assume that the iterations are well-defined at some solutions. In that case, we suggest real valued functions. These functions provide radii at the solution, which guarantee the local convergence and the uniqueness of the solutions. Moreover, these radii obtained by simple calculations of some constants. We get the constants by arbitrary matrix norm for coefficient matrices and solution. In numerical experiments, the examples show that the functions give suitable boundaries which guarantee the local convergence and the uniqueness of the solutions for the given equations.

Strong Convergence of Modified Iteration Processes for Relatively Weak Nonexpansive Mappings

  • Boonchari, Daruni;Saejung, Satit
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.433-441
    • /
    • 2012
  • We adapt the concept of shrinking projection method of Takahashi et al. [J. Math. Anal. Appl. 341(2008), 276-286] to the iteration scheme studied by Kim and Lee [Kyungpook Math. J. 48(2008), 685-703] for two relatively weak nonexpansive mappings. By letting one of the two mappings be the identity mapping, we also obtain strong convergence theorems for a single mapping with two types of computational errors. Finally, we improve Kim and Lee's convergence theorem in the sense that the same conclusion still holds without the uniform continuity of mappings as was the case in their result.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

HIGHER ORDER INTERVAL ITERATIVE METHODS FOR NONLINEAR EQUATIONS

  • Singh, Sukhjit;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.61-76
    • /
    • 2015
  • In this paper, a fifth order extension of Potra's third order iterative method is proposed for solving nonlinear equations. A convergence theorem along with the error bounds is established. The method takes three functions and one derivative evaluations giving its efficiency index equals to 1.495. Some numerical examples are also solved and the results obtained are compared with some other existing fifth order methods. Next, the interval extension of both third and fifth order Potra's method are developed by using the concepts of interval analysis. Convergence analysis of these methods are discussed to establish their third and fifth orders respectively. A number of numerical examples are worked out using INTLAB in order to demonstrate the efficacy of the methods. The results of the proposed methods are compared with the results of the interval Newton method.