Browse > Article
http://dx.doi.org/10.3938/jkps.73.1230

Factorization of the Jet Mass Distribution in the Small R Limit  

Idilbi, Ahmad (Department of Physics, Wayne State University)
Kim, Chul (Institute of Convergence Fundamental Studies and School of Liberal Arts, Seoul National University of Science and Technology)
Abstract
We derive a factorization theorem for the jet mass distribution with a given $p^J_T$ for the inclusive production, where $p^J_T$ is a large jet transverse momentum. Considering the small jet radius limit ($R{\ll}1$), we factorize the scattering cross section into a partonic cross section, the fragmentation function to a jet, and the jet mass distribution function. The decoupled jet mass distributions for quark and gluon jets are well-normalized and scale invariant, and they can be extracted from the ratio of two scattering cross sections such as $d{\sigma}/(dp^J_TdM^2_J)$ and $d{\sigma}/dp^J_T $. When $M_J{\sim}p^J_TR$, the perturbative series expansion for the jet mass distributions works well. As the jet mass becomes small, large logarithms of $M_J/(p^J_TR)$ appear, and they can be systematically resummed through a more refined factorization theorem for the jet mass distribution.
Keywords
Jet mass; QCD factorization; Resummation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Nucl. Phys. B 406, 187 (1993).   DOI
2 S. D. Ellis and D. E. Soper, Phys. Rev. D 48, 3160 (1993) [hep-ph/9305266].   DOI
3 Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R.Webber, JHEP 9708, 001 (1997) [hep-ph/9707323].
4 C. W. Bauer, S. Fleming and M. E. Luke, Phys. Rev. D 63, 014006 (2000) [hep-ph/0005275].   DOI
5 C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020 (2001) [hep-ph/0011336].   DOI
6 C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D 65, 054022 (2002) [hep-ph/0109045].   DOI
7 S. D. Ellis, C. K. Vermilion, J. R. Walsh, A. Hornig and C. Lee, JHEP 1011, 101 (2010) [arXiv:1001.0014 [hep-ph]].
8 W. M. Y. Cheung, M. Luke and S. Zuberi, Phys. Rev. D 80, 114021 (2009) [arXiv:0910.2479 [hep-ph]].   DOI
9 J. Chay, C. Kim and I. Kim, Phys. Rev. D 92, 034012 (2015) [arXiv:1505.00121 [hep-ph]].   DOI
10 A. V. Manohar and I. W. Stewart, Phys. Rev. D 76, 074002 (2007) [hep-ph/0605001].   DOI
11 J. Chay, C. Kim, Y. G. Kim and J. P. Lee, Phys. Rev. D 71, 056001 (2005) [hep-ph/0412110].   DOI
12 G. P. Korchemsky and A. V. Radyushkin, Nucl. Phys. B 283, 342 (1987).   DOI
13 A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, JHEP 1008, 064 (2010) [arXiv:1004.3483 [hep-ph]].
14 M. Dasgupta, A. Fregoso, S. Marzani and G. P. Salam, JHEP 1309, 029 (2013) [arXiv:1307.0007 [hep-ph]].
15 M. Dasgupta, F. Dreyer, G. P. Salam and G. Soyez, JHEP 1504, 039 (2015) [arXiv:1411.5182 [hep-ph]].
16 M. Dasgupta, F. A. Dreyer, G. P. Salam and G. Soyez, JHEP 1606, 057 (2016) [arXiv:1602.01110 [hep-ph]].
17 Z. B. Kang, F. Ringer and I. Vitev, JHEP 1610, 125 (2016) [arXiv:1606.06732 [hep-ph]].
18 L. Dai, C. Kim and A. K. Leibovich, Phys. Rev. D 94, 114023 (2016) [arXiv:1606.07411 [hep-ph]].   DOI
19 M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Span-nowsky, JHEP 1210, 126 (2012) [arXiv:1207.1640 [hep-ph]].
20 Y. T. Chien, R. Kelley, M. D. Schwartz and H. X. Zhu, Phys. Rev. D 87, 014010 (2013).   DOI
21 T. T. Jouttenus, I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Phys. Rev. D 88, 054031 (2013).   DOI
22 D. W. Kolodrubetz, P. Pietrulewicz, I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, JHEP 1612, 054 (2016) [arXiv:1605.08038 [hep-ph]].
23 B. Jager, M. Stratmann and W. Vogelsang, Phys. Rev. D 70, 034010 (2004).   DOI
24 M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804, 063 (2008) [arXiv:0802.1189 [hep-ph]].
25 M. Procura, W. J.Waalewijn and L. Zeune, JHEP 1502, 117 (2015) [arXiv:1410.6483 [hep-ph]].
26 C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Phys. Rev. D 66, 014017 (2002) [hep-ph/0202088].   DOI
27 M. Procura and W. J. Waalewijn, Phys. Rev. D 85, 114041 (2012) [arXiv:1111.6605 [hep-ph]].   DOI
28 C. W. Bauer, F. J. Tackmann, J. R.Walsh and S. Zuberi, Phys. Rev. D 85, 074006 (2012) [arXiv:1106.6047 [hep-ph]].   DOI
29 T. Becher, M. Neubert, L. Rothen and D. Y. Shao, Phys. Rev. Lett. 116, 192001 (2016) [arXiv:1508.06645 [hep-ph]].   DOI
30 Y. T. Chien, A. Hornig and C. Lee, Phys. Rev. D 93, 014033 (2016) [arXiv:1509.04287 [hep-ph]].   DOI
31 L. Dai, C. Kim and A. K. Leibovich, Phys. Rev. D 95, 074003 (2017) [arXiv:1701.05660 [hep-ph]].   DOI
32 M. Procura and I. W. Stewart, Phys. Rev. D 81, 074009 (2010) Erratum: [Phys. Rev. D 83, 039902 (2011)] [arXiv:0911.4980 [hep-ph]].   DOI
33 A. Jain, M. Procura and W. J. Waalewijn, JHEP 1105, 035 (2011) [arXiv:1101.4953 [hep-ph]].
34 M. Dasgupta and G. P. Salam, Phys. Lett. B 512, 323 (2001) [hep-ph/0104277].   DOI
35 I. A. Korchemskaya and G. P. Korchemsky, Phys. Lett. B 287, 169 (1992).   DOI
36 M. Neubert, Phys. Rev. D 72, 074025 (2005) [hep-ph/0506245].   DOI
37 T. Becher and M. Neubert, Phys. Rev. Lett. 97, 082001 (2006) [hep-ph/0605050].   DOI
38 M. Ritzmann and W. J. Waalewijn, Phys. Rev. D 90, 054029 (2014) [arXiv:1407.3272 [hep-ph]].   DOI
39 A. Banfi, G. Marchesini and G. Smye, JHEP 0208, 006 (2002) [hep-ph/0206076].
40 T. Becher, B. D. Pecjak and D. Y. Shao, JHEP 1612, 018 (2016) [arXiv:1610.01608 [hep-ph]].
41 M. Beneke, P. Falgari, S. Klein and C. Schwinn, Nucl. Phys. B 855, 695 (2012) [arXiv:1109.1536 [hep-ph]].   DOI
42 A. Banfi and M. Dasgupta, Phys. Lett. B 628, 49 (2005) [hep-ph/0508159].   DOI
43 Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, JHEP 0612, 044 (2006) [hep-ph/0610242].
44 C. Frye, A. J. Larkoski, M. D. Schwartz and K. Yan, JHEP 1607, 064 (2016) [arXiv:1603.09338 [hep-ph]].
45 A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, JHEP 1405, 146 (2014) [arXiv:1402.2657 [hep-ph]].