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CONVERGENCE THEOREMS OF A FINITE FAMILY OF

ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE

MAPPINGS IN BANACH SPACES

Gurucharan Singh Saluja

Abstract. In this paper, we study multi-step iterative algorithm with

errors and give the necessary and sufficient condition to converge to com-
mon fixed points for a finite family of asymptotically quasi-nonexpansive

type mappings in Banach spaces. Also we have proved a strong conver-

gence theorem to converge to common fixed points for a finite family of
said mappings on a nonempty compact convex subset of a uniformly con-

vex Banach spaces. Our results extend and improve the corresponding
results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

1. Introduction

Let K be a subset of normed space E and T : K → K be a mapping. Then
(1) T is said to be an asymptotically nonexpansive mapping [5], if there

exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖ , ∀x, y ∈ K. (1)

(2) If for each n ∈ N, there are constants L > 0 and α > 0 such that

‖Tnx− Tny‖ ≤ L ‖x− y‖α , ∀x, y ∈ K, (2)

then T is called a uniformly (L,α)-Lipschitz mapping. Every asymptotically
nonexpansive mapping is a uniformly (L, 1)-Lipschitz mapping.

(3) T is said to be an asymptotically quasi-nonexpansive mapping, if F (T ) 6=
∅ and there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖Tnx− p‖ ≤ kn ‖x− p‖ , ∀x ∈ K and p ∈ F (T ). (3)

(4) T is said to be an asymptotically quasi-nonexpansive type mapping [13]
if

lim sup
n→∞

{
sup

x∈K,p∈F (T )

(
‖Tnx− p‖2 − ‖x− p‖2

)}
≤ 0. (4)
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From the above definitions, it follows that if F (T ) is nonempty, then asymp-
totically nonexpansive mappings and asymptotically quasi-nonexpansive map-
pings are all special cases of asymptotically quasi-nonexpansive type mappings.
But the converse does not hold in general.

In 1973, Petryshyn and Williamson [12] gave the necessary and sufficient
conditions for Mann iterative sequence (cf.[11]) to converge to fixed points of
quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [4] extended the
results of Petryshyn and Williamson [12] and gave the necessary and sufficient
conditions for Ishikawa iterative sequence to converge to fixed points for quasi-
nonexpansive mappings.

Liu [9] extended the results of [4, 12] and gave the necessary and sufficient
conditions for Ishikawa iterative sequence with errors to converge to fixed points
of asymptotically quasi-nonexpansive mappings.

Iterative techniques for approximating fixed points of asymptotically non-
expansive and asymptotically quasi nonexpansive mappings in Banach spaces
have been studied by many authors; See, [5, 8, 9, 15, 16, 17, 18] and the refer-
ences therein. Related work can be found in [2, 7, 13, 20] and many others.

Recently, Tang and Peng [19] study the following iteration scheme in Banach
space:

Let {Ti : i = 1, 2, . . . , k} : K → K, where K is a nonempty subset of a
Banach space E, be a finite family of uniformly quasi-Lipschitzian mappings.
Let x1 ∈ K, then the sequence {xn} is defined by

xn+1 = aknxn + bknT
n
k y(k−1)n + cknukn,

y(k−1)n = a(k−1)nxn + b(k−1)nT
n
k−1y(k−2)n + c(k−1)nu(k−1)n,

y(k−2)n = a(k−2)nxn + b(k−2)nT
n
k−2y(k−3)n + c(k−2)nu(k−2)n,

...

y2n = a2nxn + b2nT
n
2 y1n + c2nu2n

y1n = a1nxn + b1nT
n
1 xn + c1nu1n, n ≥ 1,

(5)

where {ain}, {bin}, {cin} are sequences in [0, 1] with ain + bin + cin = 1 for all
i = 1, 2, . . . , k and n ≥ 1, {uin, i = 1, 2, . . . , k, n ≥ 1} are bounded sequences
in K. Also, they gave the necessary and sufficient condition to converge to
common fixed points for a finite family of said mappings.

Remark 1. The iterative algorithm (5) is called multi-step iterative algorithm
with errors. It contains well known iterations as special case. Such as, the
modified Mann iteration (see, [16]), the modified Ishikawa iteration (see, [18]),
the three-step iteration (see, [20]), the multi-step iteration (see, [7]).

The purpose of this paper is to study the multi-step iterative algorithm with
bounded errors (5) for a finite family of asymptotically quasi-nonexpansive
type mappings to converge to common fixed points in Banach spaces. The
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results obtained in this paper extend and improve the corresponding results of
[2, 4, 7, 8, 9, 10, 12, 15, 20] and many others.

2. Preliminaries

The following lemmas will be used to prove the main results of this paper:

Lemma 2.1. ([17]) Let {an}, {bn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ an + bn, n ≥ 1.

If
∑∞
n=1 bn <∞. Then

(a) limn→∞ an exists.
(b) If lim infn→∞ an = 0, then limn→∞ an = 0.

Lemma 2.2. (Schu [16]) Let E be a uniformly convex Banach space and 0 <
a ≤ tn ≤ b < 1 for all n ≥ 1. Suppose that {xn} and {yn} are sequences in E
satisfying

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r,

lim
n→∞

‖tnxn + (1− tn)yn‖ = r,

for some r ≥ 0. Then

lim
n→∞

‖xn − yn‖ = 0.

3. Main results

In this section, we prove strong convergence theorems of multi-step itera-
tive algorithm with bounded errors for a finite family of asymptotically quasi-
nonexpansive type mappings in a real Banach space.

Theorem 3.1. Let E be a real arbitrary Banach space, K be a nonempty
closed convex subset of E. Let {Ti : i = 1, 2, . . . , k} : K → K be a finite family
of asymptotically quasi-nonexpansive type mappings. Let {xn} be the sequence
defined by (5) with

∑∞
n=1 bin <∞ and

∑∞
n=1 cin <∞ for all i = 1, 2, . . . , k. If

F = ∩ki=1F (Ti) 6= ∅. Then the sequence {xn} converges strongly to a common
fixed point of {Ti : i = 1, 2, . . . , k} if and only if lim inf

n→∞
d(xn,F) = 0, where

d(x,F) denotes the distance between x and the set F .

Proof. The necessity is obvious and it is omitted. Now we prove the sufficiency.
Since {uin, i = 1, 2, . . . , k, n ≥ 1} are bounded sequences in K, therefore there
exists a M > 0 such that

M = max

{
sup
n≥1
‖uin − p‖ , i = 1, 2, . . . , k

}
.
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Let p ∈ F , it follows from definition (4) and for i = 1, 2, . . . , k, we have

lim sup
n→∞

{
sup

x∈K,p∈F

[(
‖Tni x− p‖ − ‖x− p‖

)
×
(
‖Tni x− p‖+ ‖x− p‖

)]}
= lim sup

n→∞

{
sup

x∈K,p∈F

[
‖Tni x− p‖

2 − ‖x− p‖2
]}

≤ 0.

(6)
Therefore for i = 1, 2, . . . , k, we have

lim sup
n→∞

{
sup

x∈K,p∈F

(
‖Tni x− p‖ − ‖x− p‖

)}
≤ 0. (7)

This implies that for any given ε > 0, there exists a positive integer n0 such
that for all n ≥ n0 and for i = 1, 2, . . . , k, we have

sup
x∈K,p∈F

{
‖Tni x− p‖ − ‖x− p‖

}
< ε. (8)

Since {xn}, {y1n}, . . . , {y(k−1)n} ⊂ E, we have

‖Tn1 xn − p‖ − ‖xn − p‖ < ε, ∀p ∈ F , ∀n ≥ n0,
‖Tn2 y1n − p‖ − ‖y1n − p‖ < ε, ∀p ∈ F , ∀n ≥ n0,
‖Tn3 y2n − p‖ − ‖y2n − p‖ < ε, ∀p ∈ F , ∀n ≥ n0,

...

...∥∥Tnk y(k−1)n − p∥∥− ∥∥y(k−1)n − p∥∥ < ε, ∀p ∈ F , ∀n ≥ n0.

(9)

Thus for each n ≥ 1 and for any p ∈ F , using (5) and (9), we note that

‖y1n − p‖ = ‖a1nxn + b1nT
n
1 xn + c1nu1n − p‖

= ‖a1n(xn − p) + b1n(Tn1 xn − p) + c1n(u1n − p)‖
≤ a1n ‖xn − p‖+ b1n ‖Tn1 xn − p‖+ c1n ‖u1n − p‖

≤ a1n ‖xn − p‖+ b1n

[
‖xn − p‖+ ε

]
+ c1n ‖u1n − p‖

≤
(
a1n + b1n

)
‖xn − p‖+ b1nε+ c1nM

=
(
1− c1n

)
‖xn − p‖+ b1nε+ c1nM

≤ ‖xn − p‖+ b1nε+ c1nM

= ‖xn − p‖+A1n

(10)

where A1n = b1nε+c1nM , since by assumption
∑∞
n=1 b1n <∞ and

∑∞
n=1 c1n <

∞, it follows that
∑∞
n=1A1n <∞.
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Furthermore, by inequality (9) and (10), we obtain

‖y2n − p‖ = ‖a2nxn + b2nT
n
2 y1n + c2nu2n − p‖

= ‖a2n(xn − p) + b2n(Tn2 y1n − p) + c2n(u2n − p)‖
≤ a2n ‖xn − p‖+ b2n ‖Tn2 y1n − p‖+ c2n ‖u2n − p‖

≤ a2n ‖xn − p‖+ b2n

[
‖y1n − p‖+ ε

]
+ c2n ‖u2n − p‖

≤ a2n ‖xn − p‖+ b2n ‖y1n − p‖+ b2nε+ c2nM

≤ a2n ‖xn − p‖+ b2n

[
‖xn − p‖+A1n

]
+ b2nε+ c2nM

≤
(
a2n + b2n

)
‖xn − p‖+ b2nA1n + b2nε+ c2nM

=
(
1− c2n

)
‖xn − p‖+ b2nA1n + b2nε+ c2nM

≤ ‖xn − p‖+A1n + b2nε+ c2nM

= ‖xn − p‖+A2n

(11)

where A2n = A1n + b2nε + c2nM , since by assumption
∑∞
n=1 b2n < ∞,

∑∞
n=1

c2n <∞ and
∑∞
n=1A1n <∞, it follows that

∑∞
n=1A2n <∞. Similarly, using

(9) and (11), we see that

‖y3n − p‖ = ‖a3n(xn − p) + b3n(Tn3 y2n − p) + c3n(u3n − p)‖
≤ a3n ‖xn − p‖+ b3n ‖Tn3 y2n − p‖+ c3n ‖u3n − p‖

≤ a3n ‖xn − p‖+ b3n

[
‖y2n − p‖+ ε

]
+ c3n ‖u3n − p‖

≤ a3n ‖xn − p‖+ b3n ‖y2n − p‖+ b3nε+ c3nM

≤ a3n ‖xn − p‖+ b3n

[
‖xn − p‖+A2n

]
+ b3nε+ c3nM

≤
(
a3n + b3n

)
‖xn − p‖+ b3nA2n + b3nε+ c3nM

=
(
1− c3n

)
‖xn − p‖+ b3nA2n + b3nε+ c3nM

≤ ‖xn − p‖+A2n + b3nε+ c3nM

= ‖xn − p‖+A3n

(12)

where A3n = A2n + b3nε + c3nM , since by assumption
∑∞
n=1 b3n < ∞,

∑∞
n=1

c3n <∞ and
∑∞
n=1A2n <∞, it follows that

∑∞
n=1A3n <∞. Continuing the

above process, using (5) and (9), we get

‖xn+1 − p‖ =
∥∥akn(xn − p) + bkn(Tnk y(k−1)n − p) + ckn(ukn − p)

∥∥
≤ akn ‖xn − p‖+ bkn

∥∥Tnk y(k−1)n − p∥∥+ ckn ‖ukn − p‖

≤ akn ‖xn − p‖+ bkn

[ ∥∥y(k−1)n − p∥∥+ ε
]

+ ckn ‖ukn − p‖

≤ akn ‖xn − p‖+ bkn
∥∥y(k−1)n − p∥∥+ bknε+ cknM

≤ akn ‖xn − p‖+ bkn

[
‖xn − p‖+A(k−1)n

]
+ bknε+ cknM
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≤
(
akn + bkn

)
‖xn − p‖+ bknA(k−1)n + bknε+ cknM

=
(
1− ckn

)
‖xn − p‖+ bknA(k−1)n + bknε+ cknM

≤ ‖xn − p‖+A(k−1)n + bknε+ cknM

= ‖xn − p‖+Akn

(13)

where Akn = A(k−1)n + bknε + cknM , since by assumption
∑∞
n=1 bkn < ∞,∑∞

n=1 ckn < ∞ and
∑∞
n=1A(k−1)n < ∞, it follows that

∑∞
n=1Akn < ∞. By

Lemma 2.1, we know that lim
n→∞

d(xn,F) = 0.

Next, we will prove that {xn} is a Cauchy sequence. From (13) we have

‖xn+m − p‖ ≤ ‖xn+m−1 − p‖+Ak(n+m−1)

≤
[
‖xn+m−2 − p‖+Ak(n+m−2)

]
+Ak(n+m−1)

≤ ‖xn+m−2 − p‖+
[
Ak(n+m−1) +Ak(n+m−2)

]
≤ ‖xn+m−3 − p‖+

[
Ak(n+m−1) +Ak(n+m−2) +Ak(n+m−3)

]
≤ . . .
≤ . . .

≤ ‖xn+m−3 − p‖+
[
Ak(n+m−1) +Ak(n+m−2) + · · ·+Akn

]
≤ ‖xn − p‖+

n+m−1∑
i=n

Aki,

(14)
for all p ∈ F and m,n ∈ N. Since lim

n→∞
d(xn,F) = 0, for each ε > 0, there

exists a natural number n1 such that for n ≥ n1,

d(xn,F) <
ε

8
and

n+m−1∑
i=n1

Aki <
ε

2
. (15)

Hence, there exists a point q ∈ F such that

‖xn1 − q‖ <
ε

4
. (16)

By (14), (15) and (16), for all n ≥ n1 and m ≥ 1, we have

‖xn+m − xn‖ ≤ ‖xn+m − q‖+ ‖xn − q‖

≤ ‖xn1
− q‖+

n+m−1∑
i=n1

Aki + ‖xn1
− q‖

≤ 2 ‖xn1
− q‖+

n+m−1∑
i=n1

Aki

< 2 · ε
4

+
ε

2
= ε.

(17)
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This implies that {xn} is a Cauchy sequence. Since E is complete, there exists
a p1 ∈ E such that xn → p1 as n→∞.

Now we have to prove that p1 is a common fixed point of {Ti : i = 1, 2, . . . , k},
that is, p1 ∈ F .

By contradiction, we assume that p1 is not in F . Since F = ∩ki=1F (Ti) is
closed in Banach spaces, d(p1,F) > 0. So for all p2 ∈ F , we have

‖p1 − p2‖ ≤ ‖p1 − xn‖+ ‖xn − p2‖ . (18)

By the arbitrary of p2 ∈ F , we know that

d(p1,F) ≤ ‖p1 − xn‖+ d(xn,F). (19)

By lim
n→∞

d(xn,F) = 0, above inequality and xn → p1 as n→∞, we have

d(p1,F) = 0, (20)

which contradicts d(p1,F) > 0. Thus p1 is a common fixed point of the map-
pings {Ti : i = 1, 2, . . . , k}. This completes the proof. �

Theorem 3.2. Let K be a nonempty compact convex subset of a uniformly
convex Banach space E and for i = 1, 2, . . . , k, let Ti : K → K be a finite
family of uniformly (Li, αi)-Lipschitz and asymptotically quasi-nonexpansive
type mappings. Let {xn} be the sequence defined by (5) with

∑∞
n=1 bin < ∞,∑∞

n=1 cin < ∞ and 0 < β̄ ≤ bin ≤ β < 1 for all i = 1, 2, . . . , k. If F =
∩ki=1F (Ti) 6= ∅. Then the sequence {xn} converges strongly to a common fixed
point of the mappings {Ti : i = 1, 2, . . . , k}.

Proof. From (13), we have

‖xn+1 − p‖ ≤ ‖xn − p‖+Akn,

where Akn = A(k−1)n + bknε + cknM , since by assumption
∑∞
n=1 bkn < ∞,∑∞

n=1 ckn < ∞ and
∑∞
n=1A(k−1)n < ∞, it follows that

∑∞
n=1Akn < ∞.

By Lemma 2.1, we know that limn→∞ ‖xn − p‖ exists for all p ∈ F . Let
limn→∞ ‖xn − p‖ = c for some c > 0. Then, from (10), we note that

lim sup
n→∞

‖y1n − p‖ ≤ lim sup
n→∞

(
‖xn − p‖+A1n

)
≤ lim sup

n→∞
‖xn − p‖ = c,

(21)

and

lim sup
n→∞

‖Tn1 xn − p‖ ≤ lim sup
n→∞

(
‖xn − p‖+ ε

)
≤ c+ ε.

Since ε > 0 is arbitrary given, so we have

lim sup
n→∞

‖Tn1 xn − p‖ ≤ c, (22)
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and

lim
n→∞

‖y1n − p‖ = lim
n→∞

‖a1nxn + b1nT
n
1 xn + c1nu1n − p‖

= lim
n→∞

‖(1− b1n − c1n)xn + b1nT
n
1 xn + c1nu1n − p‖

= lim
n→∞

‖(1− b1n)(xn − p+ c1n(u1n − xn))

+ b1n(Tn1 xn − p+ c1n(u1n − xn))‖
= c.

(23)

Again since limn→∞ ‖xn − p‖ exists, so {xn} is a bounded sequence in K. By
virtue of condition

∑∞
n=1 cin < ∞ for all i = 1, 2, . . . , k and the boundedness

of the sequence {xn} and {u1n}, we have

lim sup
n→∞

‖xn − p+ c1n(u1n − xn)‖ ≤ lim sup
n→∞

‖xn − p‖

+ lim sup
n→∞

(
c1n ‖u1n − xn‖

)
≤ c, p ∈ F .

(24)

It follows from (22) that

lim sup
n→∞

‖Tn1 xn − p+ c1n(u1n − xn)‖ ≤ lim sup
n→∞

‖Tn1 xn − p‖

+ lim sup
n→∞

(
c1n ‖u1n − xn‖

)
≤ lim sup

n→∞

(
‖xn − p‖+ ε

)
+ lim sup

n→∞

(
c1n ‖u1n − xn‖

)
≤ c+ ε, p ∈ F .

Since ε > 0 is arbitrary given, so we have

lim sup
n→∞

‖Tn1 xn − p+ c1n(u1n − xn)‖ ≤ c. (25)

Therefore, from (23)-(25) and Lemma 2.2 we know that

lim
n→∞

‖Tn1 xn − xn‖ = 0. (26)

Again from (11), we note that

lim sup
n→∞

‖y2n − p‖ ≤ lim sup
n→∞

(
‖xn − p‖+A2n

)
≤ lim sup

n→∞
‖xn − p‖ = c,

(27)

and from (21), we note that

lim sup
n→∞

‖Tn2 y1n − p‖ ≤ lim sup
n→∞

(
‖y1n − p‖+ ε

)
≤ c+ ε.
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Since ε > 0 is arbitrary given, so we have

lim sup
n→∞

‖Tn2 y1n − p‖ ≤ c. (28)

Next, consider

lim sup
n→∞

‖Tn2 y1n − p+ c2n(u2n − xn)‖ ≤ lim sup
n→∞

‖Tn2 y1n − p‖

+ lim sup
n→∞

(
c2n ‖u2n − xn‖

)
≤ lim sup

n→∞

(
‖y1n − p‖+ ε

)
+ lim sup

n→∞

(
c2n ‖u2n − xn‖

)
≤ c+ ε, p ∈ F .

Since ε > 0 is arbitrary given, so we have

lim sup
n→∞

‖Tn2 y1n − p+ c2n(u2n − xn)‖ ≤ c. (29)

Also,

lim sup
n→∞

‖xn − p+ c2n(u2n − xn)‖ ≤ lim sup
n→∞

‖xn − p‖

+ lim sup
n→∞

(
c2n ‖u2n − xn‖

)
≤ c, p ∈ F ,

(30)

and

lim
n→∞

‖y2n − p‖ = lim
n→∞

‖a2nxn + b2nT
n
2 y1n + c2nu2n − p‖

= lim
n→∞

‖(1− b2n − c2n)xn + b2nT
n
2 y1n + c2nu2n − p‖

= lim
n→∞

‖(1− b2n)(xn − p+ c2n(u2n − xn))

+ b2n(Tn2 y1n − p+ c2n(u2n − xn))‖
= c.

(31)

Therefore, from (29)-(31) and Lemma 2.2 we know that

lim
n→∞

‖Tn2 y1n − xn‖ = 0. (32)

Now, we shall show that limn→∞ ‖Tn3 y2n − xn‖ = 0. For each n ≥ 1,

‖xn − p‖ ≤ ‖Tn2 y1n − xn‖+ ‖Tn2 y1n − p‖

≤ ‖Tn2 y1n − xn‖+
(
‖y1n − p‖+ ε

)
.

(33)

Using (32), we have
c = lim

n→∞
‖xn − p‖

≤ lim inf
n→∞

‖y1n − p‖ .
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It follows from (21) that

c = lim
n→∞

‖xn − p‖

≤ lim inf
n→∞

‖y1n − p‖

≤ lim sup
n→∞

‖y1n − p‖ ≤ c.
(34)

This implies that

lim
n→∞

‖y1n − p‖ = c. (35)

On the other hand, we have

‖y2n − p‖ ≤
(
‖xn − p‖+A2n

)
, ∀n ≥ 1,

where
∑∞
n=1A2n <∞. Therefore

lim sup
n→∞

‖y2n − p‖ ≤ lim sup
n→∞

(
‖xn − p‖+A2n

)
,

≤ c,
(36)

and hence

lim sup
n→∞

‖Tn3 y2n − p‖ ≤ lim sup
n→∞

(
‖y2n − p‖+ ε

)
≤ c+ ε.

Since ε > 0 is arbitrary given, so we have

lim sup
n→∞

‖Tn3 y2n − p‖ ≤ c. (37)

Next, consider

lim sup
n→∞

‖Tn3 y2n − p+ c3n(u3n − xn)‖ ≤ lim sup
n→∞

‖Tn3 y2n − p‖

+ lim sup
n→∞

(
c3n ‖u3n − xn‖

)
≤ lim sup

n→∞

(
‖y2n − p‖+ ε

)
+ lim sup

n→∞

(
c3n ‖u3n − xn‖

)
≤ c+ ε, p ∈ F .

Since ε > 0 is arbitrary given, so we have

lim sup
n→∞

‖Tn3 y2n − p+ c3n(u3n − xn)‖ ≤ c. (38)

Also,

lim sup
n→∞

‖xn − p+ c3n(u3n − xn)‖ ≤ lim sup
n→∞

‖xn − p‖

+ lim sup
n→∞

(
c3n ‖u3n − xn‖

)
≤ c, p ∈ F ,

(39)
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and

lim
n→∞

‖y3n − p‖ = lim
n→∞

‖a3nxn + b3nT
n
3 y2n + c3nu3n − p‖

= lim
n→∞

‖(1− b3n − c3n)xn + b3nT
n
3 y2n + c3nu3n − p‖

= lim
n→∞

‖(1− b3n)(xn − p+ c3n(u3n − xn))

+ b3n(Tn3 y2n − p+ c3n(u3n − xn))‖
= c.

(40)

Therefore, from (38)-(40) and Lemma 2.2 we know that

lim
n→∞

‖Tn3 y2n − xn‖ = 0. (41)

Similarly, by using the same argument as in the proof above, we have

lim
n→∞

∥∥Tni y(i−1)n − xn∥∥ = 0, (42)

for all i = 2, 3, . . . , k.
Since K is compact, {xn}∞n=1 has a convergent subsequence {xnj

}∞j=1. Let

lim
j→∞

xnj
= p. (43)

Then from (5) and (42), we have∥∥xnj+1 − xnj

∥∥ ≤ bknj

∥∥Tnj

k y(k−1)nj
− xnj

∥∥+ cknj

∥∥∥uknj
− xnj

∥∥∥
→ 0, as j →∞.

(44)

From (5) and (26), we have

‖y1n − xn‖ ≤ b1n ‖Tn1 xn − xn‖+ c1n ‖u1n − xn‖
→ 0, as n→∞. (45)

Again from (26) and (43), we have

lim
j→∞

T
nj

1 xnj
= p. (46)

Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
1 xnj+1 = p. (47)

From (44), (46) and (47), we have

0 ≤ ‖p− T1p‖

≤
∥∥∥p− Tnj+1

1 xnj+1

∥∥∥+
∥∥∥Tnj+1

1 xnj+1 − T
nj+1
1 xnj

∥∥∥
+
∥∥∥Tnj+1

1 xnj − T1p
∥∥∥

≤
∥∥∥p− Tnj+1

1 xnj+1

∥∥∥+ L1

∥∥xnj+1 − xnj+1

∥∥α1
+ L1

∥∥Tnj

1 xnj − p
∥∥α1

→ 0 as j →∞.

(48)
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From (32) and (43), we have

lim
j→∞

T
nj

2 y1nj = p. (49)

Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
2 y1nj+1 = p. (50)

From (44), (45), (49) and (50), we have

0 ≤ ‖p− T2p‖

≤
∥∥∥p− Tnj+1

2 y1nj+1

∥∥∥+
∥∥∥Tnj+1

2 y1nj+1 − T
nj+1
2 xnj+1

∥∥∥
+
∥∥∥Tnj+1

2 xnj+1 − T
nj+1
2 xnj

∥∥∥+
∥∥∥Tnj+1

2 xnj − T
nj+1
2 y1nj

∥∥∥
+
∥∥∥Tnj+1

2 y1nj − T2p
∥∥∥

≤
∥∥∥p− Tnj+1

2 y1nj+1

∥∥∥+ L2

∥∥y1nj+1 − xnj+1

∥∥α2

+ L2

∥∥xnj+1 − xnj

∥∥α2
+ L2

∥∥xnj
− y1nj

∥∥α2

+ L2

∥∥Tnj

2 y1nj
− p
∥∥α2

→ 0 as j →∞.

(51)

Now, from (5) and (32), we have

‖y2n − xn‖ ≤ b2n ‖Tn2 y1n − xn‖+ c2n ‖u2n − xn‖
→ 0, as n→∞. (52)

Again from (41) and (43), we have

lim
j→∞

T
nj

3 y2nj
= p. (53)

Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
3 y2nj+1 = p. (54)
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From (44), (52), (53) and (54), we have

0 ≤ ‖p− T3p‖

≤
∥∥∥p− Tnj+1

3 y2nj+1

∥∥∥+
∥∥∥Tnj+1

3 y2nj+1 − T
nj+1
3 xnj+1

∥∥∥
+
∥∥∥Tnj+1

3 xnj+1 − T
nj+1
3 xnj

∥∥∥+
∥∥∥Tnj+1

3 xnj − T
nj+1
3 y2nj

∥∥∥
+
∥∥∥Tnj+1

3 y2nj − T3p
∥∥∥

≤
∥∥∥p− Tnj+1

3 y2nj+1

∥∥∥+ L3

∥∥y2nj+1 − xnj+1

∥∥α3

+ L3

∥∥xnj+1 − xnj

∥∥α3
+ L3

∥∥xnj
− y2nj

∥∥α3

+ L3

∥∥Tnj

3 y2nj
− p
∥∥α3

→ 0 as j →∞.

(55)

Similarly, from (5) and (42), we have∥∥y(k−1)n − xn∥∥ ≤ b(k−1)n ∥∥Tnk−1y(k−2)n − xn∥∥+ c(k−1)n
∥∥u(k−1)n − xn∥∥

→ 0, as n→∞.
(56)

Again from (42) and (43), we have

lim
j→∞

T
nj

k y(k−1)nj
= p. (57)

Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
k y(k−1)nj+1 = p. (58)

From (44), (56), (57) and (58), we have

0 ≤ ‖p− Tkp‖

≤
∥∥∥p− Tnj+1

k y(k−1)nj+1

∥∥∥+
∥∥∥Tnj+1

k y(k−1)nj+1 − T
nj+1
k xnj+1

∥∥∥
+
∥∥∥Tnj+1

k xnj+1 − T
nj+1
k xnj

∥∥∥+
∥∥∥Tnj+1

k xnj
− Tnj+1

k y(k−1)nj

∥∥∥
+
∥∥∥Tnj+1

k y(k−1)nj
− Tkp

∥∥∥
≤
∥∥∥p− Tnj+1

k y(k−1)nj+1

∥∥∥+ Lk
∥∥y(k−1)nj+1 − xnj+1

∥∥αk

+ Lk
∥∥xnj+1 − xnj

∥∥αk + Lk
∥∥xnj

− y(k−1)nj

∥∥αk

+ Lk
∥∥Tnj

k y(k−1)nj
− p
∥∥αk

→ 0 as j →∞.

(59)

Hence

lim
n→∞

‖p− Tip‖ = 0, ∀i = 1, 2, . . . , k. (60)
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Thus p is a common fixed point of the mappings {Ti : i = 1, 2, . . . , k}. Since the
subsequence {xnj

}∞j=1 of {xn}∞n=1 converges to p and limn→∞ ‖xn − p‖ exists,
we conclude that limn→∞ xn = p. This completes the proof. �

Remark 2. Theorem 3.1 extends and improves the corresponding result of Khan
et al. [7] and Tang and Peng [19] to the case of more general class of asymptot-
ically quasi-nonexpansive or uniformly quasi-Lipschitzian mappings considered
in this paper.

Remark 3. Theorem 3.1 also extend and improve the corresponding results
of [2, 4, 8, 9, 12, 15]. Especially Theorem 3.1 extends and improves Theorem
1 and 2 in [9], Theorem 1 in [8] and Theorem 3.2 in [15] in the following ways:

(1) The asymptotically quasi-nonexpansive mapping in [8], [9] and [15] is
replaced by finite family of asymptotically quasi-nonexpansive type mappings.

(2) The usual Ishikawa iteration scheme in [8], the usual modified Ishikawa
iteration scheme with errors in [9] and the usual modified Ishikawa iteration
scheme with errors for two mappings in [15] are extended to the multi-step
iteration scheme with errors for a finite family of mappings.

Remark 4. Theorem 3.2 extends and improves the corresponding result of [10]
in the following aspect:

(1) The asymptotically quasi-nonexpansive mapping in [10] is replaced by
finite family of asymptotically quasi-nonexpansive type mappings.

(2) The usual modified Ishikawa iteration scheme with errors in [10] is ex-
tended to the multi-step iteration scheme with errors for a finite family of
mappings.

Remark 5. Theorem 3.1 also extends the corresponding result of [20] to the
case of more general class of asymptotically nonexpansive mappings and multi-
step iteration scheme with errors for a finite family of mappings considered in
this paper.

Remark 6. Our results also extend the corresponding results of Chidume and
Ofoedu [3] to the case of more general class of total asymptotically nonexpansive
mappings considered in this paper.

Acknowledgement. The author thanks the referee for his valuable sugges-
tions and comments on the manuscript.
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