CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

Gurucharan Singh Saluja

Abstract

In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to common fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family of said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of $[2,4,7,8,9,10,12,15,20]$.

1. Introduction

Let K be a subset of normed space E and $T: K \rightarrow K$ be a mapping. Then
(1) T is said to be an asymptotically nonexpansive mapping [5], if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|, \quad \forall x, y \in K \tag{1}
\end{equation*}
$$

(2) If for each $n \in \mathbb{N}$, there are constants $L>0$ and $\alpha>0$ such that

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|^{\alpha}, \quad \forall x, y \in K \tag{2}
\end{equation*}
$$

then T is called a uniformly (L, α)-Lipschitz mapping. Every asymptotically nonexpansive mapping is a uniformly $(L, 1)$-Lipschitz mapping.
(3) T is said to be an asymptotically quasi-nonexpansive mapping, if $F(T) \neq$ \emptyset and there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that

$$
\begin{equation*}
\left\|T^{n} x-p\right\| \leq k_{n}\|x-p\|, \quad \forall x \in K \quad \text { and } \quad p \in F(T) \tag{3}
\end{equation*}
$$

(4) T is said to be an asymptotically quasi-nonexpansive type mapping [13] if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\sup _{x \in K, p \in F(T)}\left(\left\|T^{n} x-p\right\|^{2}-\|x-p\|^{2}\right)\right\} \leq 0 \tag{4}
\end{equation*}
$$

[^0]From the above definitions, it follows that if $F(T)$ is nonempty, then asymptotically nonexpansive mappings and asymptotically quasi-nonexpansive mappings are all special cases of asymptotically quasi-nonexpansive type mappings. But the converse does not hold in general.

In 1973, Petryshyn and Williamson [12] gave the necessary and sufficient conditions for Mann iterative sequence (cf.[11]) to converge to fixed points of quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [4] extended the results of Petryshyn and Williamson [12] and gave the necessary and sufficient conditions for Ishikawa iterative sequence to converge to fixed points for quasinonexpansive mappings.

Liu [9] extended the results of $[4,12]$ and gave the necessary and sufficient conditions for Ishikawa iterative sequence with errors to converge to fixed points of asymptotically quasi-nonexpansive mappings.

Iterative techniques for approximating fixed points of asymptotically nonexpansive and asymptotically quasi nonexpansive mappings in Banach spaces have been studied by many authors; See, $[5,8,9,15,16,17,18]$ and the references therein. Related work can be found in $[2,7,13,20]$ and many others.

Recently, Tang and Peng [19] study the following iteration scheme in Banach space:

Let $\left\{T_{i}: i=1,2, \ldots, k\right\}: K \rightarrow K$, where K is a nonempty subset of a Banach space E, be a finite family of uniformly quasi-Lipschitzian mappings. Let $x_{1} \in K$, then the sequence $\left\{x_{n}\right\}$ is defined by

$$
\begin{align*}
x_{n+1} & =a_{k n} x_{n}+b_{k n} T_{k}^{n} y_{(k-1) n}+c_{k n} u_{k n}, \\
y_{(k-1) n} & =a_{(k-1) n} x_{n}+b_{(k-1) n} T_{k-1}^{n} y_{(k-2) n}+c_{(k-1) n} u_{(k-1) n}, \\
y_{(k-2) n} & =a_{(k-2) n} x_{n}+b_{(k-2) n} T_{k-2}^{n} y_{(k-3) n}+c_{(k-2) n} u_{(k-2) n}, \\
& \vdots \tag{5}\\
y_{2 n} & =a_{2 n} x_{n}+b_{2 n} T_{2}^{n} y_{1 n}+c_{2 n} u_{2 n} \\
y_{1 n} & =a_{1 n} x_{n}+b_{1 n} T_{1}^{n} x_{n}+c_{1 n} u_{1 n}, \quad n \geq 1,
\end{align*}
$$

where $\left\{a_{i n}\right\},\left\{b_{i n}\right\},\left\{c_{i n}\right\}$ are sequences in $[0,1]$ with $a_{i n}+b_{i n}+c_{i n}=1$ for all $i=1,2, \ldots, k$ and $n \geq 1,\left\{u_{i n}, i=1,2, \ldots, k, n \geq 1\right\}$ are bounded sequences in K. Also, they gave the necessary and sufficient condition to converge to common fixed points for a finite family of said mappings.

Remark 1. The iterative algorithm (5) is called multi-step iterative algorithm with errors. It contains well known iterations as special case. Such as, the modified Mann iteration (see, [16]), the modified Ishikawa iteration (see, [18]), the three-step iteration (see, [20]), the multi-step iteration (see, [7]).

The purpose of this paper is to study the multi-step iterative algorithm with bounded errors (5) for a finite family of asymptotically quasi-nonexpansive type mappings to converge to common fixed points in Banach spaces. The
results obtained in this paper extend and improve the corresponding results of $[2,4,7,8,9,10,12,15,20]$ and many others.

2. Preliminaries

The following lemmas will be used to prove the main results of this paper:
Lemma 2.1. ([17]) Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences of nonnegative real numbers satisfying the inequality

$$
a_{n+1} \leq a_{n}+b_{n}, \quad n \geq 1
$$

If $\sum_{n=1}^{\infty} b_{n}<\infty$. Then
(a) $\lim _{n \rightarrow \infty} a_{n}$ exists.
(b) If $\lim \inf _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.2. (Schu [16]) Let E be a uniformly convex Banach space and $0<$ $a \leq t_{n} \leq b<1$ for all $n \geq 1$. Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in E satisfying

$$
\begin{gathered}
\limsup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq r, \quad \limsup _{n \rightarrow \infty}\left\|y_{n}\right\| \leq r, \\
\lim _{n \rightarrow \infty}\left\|t_{n} x_{n}+\left(1-t_{n}\right) y_{n}\right\|=r
\end{gathered}
$$

for some $r \geq 0$. Then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0
$$

3. Main results

In this section, we prove strong convergence theorems of multi-step iterative algorithm with bounded errors for a finite family of asymptotically quasinonexpansive type mappings in a real Banach space.

Theorem 3.1. Let E be a real arbitrary Banach space, K be a nonempty closed convex subset of E. Let $\left\{T_{i}: i=1,2, \ldots, k\right\}: K \rightarrow K$ be a finite family of asymptotically quasi-nonexpansive type mappings. Let $\left\{x_{n}\right\}$ be the sequence defined by (5) with $\sum_{n=1}^{\infty} b_{i n}<\infty$ and $\sum_{n=1}^{\infty} c_{i n}<\infty$ for all $i=1,2, \ldots, k$. If $\mathcal{F}=\cap_{i=1}^{k} F\left(T_{i}\right) \neq \emptyset$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $\left\{T_{i}: i=1,2, \ldots, k\right\}$ if and only if $\liminf _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$, where $d(x, \mathcal{F})$ denotes the distance between x and the set $\stackrel{n \rightarrow}{\mathcal{F}}$.

Proof. The necessity is obvious and it is omitted. Now we prove the sufficiency. Since $\left\{u_{i n}, i=1,2, \ldots, k, n \geq 1\right\}$ are bounded sequences in K, therefore there exists a $M>0$ such that

$$
M=\max \left\{\sup _{n \geq 1}\left\|u_{i n}-p\right\|, \quad i=1,2, \ldots, k\right\}
$$

Let $p \in \mathcal{F}$, it follows from definition (4) and for $i=1,2, \ldots, k$, we have

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left\{\sup _{x \in K, p \in \mathcal{F}}\left[\left(\left\|T_{i}^{n} x-p\right\|-\|x-p\|\right) \times\left(\left\|T_{i}^{n} x-p\right\|+\|x-p\|\right)\right]\right\} \\
& =\limsup _{n \rightarrow \infty}\left\{\sup _{x \in K, p \in \mathcal{F}}\left[\left\|T_{i}^{n} x-p\right\|^{2}-\|x-p\|^{2}\right]\right\} \\
& \leq 0 \tag{6}
\end{align*}
$$

Therefore for $i=1,2, \ldots, k$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\sup _{x \in K, p \in \mathcal{F}}\left(\left\|T_{i}^{n} x-p\right\|-\|x-p\|\right)\right\} \leq 0 \tag{7}
\end{equation*}
$$

This implies that for any given $\varepsilon>0$, there exists a positive integer n_{0} such that for all $n \geq n_{0}$ and for $i=1,2, \ldots, k$, we have

$$
\begin{equation*}
\sup _{x \in K, p \in \mathcal{F}}\left\{\left\|T_{i}^{n} x-p\right\|-\|x-p\|\right\}<\varepsilon \tag{8}
\end{equation*}
$$

Since $\left\{x_{n}\right\},\left\{y_{1 n}\right\}, \ldots,\left\{y_{(k-1) n}\right\} \subset E$, we have

$$
\begin{align*}
& \left\|T_{1}^{n} x_{n}-p\right\|-\left\|x_{n}-p\right\|<\varepsilon, \quad \forall p \in \mathcal{F}, \quad \forall n \geq n_{0}, \\
& \left\|T_{2}^{n} y_{1 n}-p\right\|-\left\|y_{1 n}-p\right\|<\varepsilon, \quad \forall p \in \mathcal{F}, \quad \forall n \geq n_{0}, \\
& \left\|T_{3}^{n} y_{2 n}-p\right\|-\left\|y_{2 n}-p\right\|<\varepsilon, \quad \forall p \in \mathcal{F}, \quad \forall n \geq n_{0}, \tag{9}\\
& \left\|T_{k}^{n} y_{(k-1) n}-p\right\|-\left\|y_{(k-1) n}-p\right\|<\varepsilon, \quad \forall p \in \mathcal{F}, \quad \forall n \geq n_{0} .
\end{align*}
$$

Thus for each $n \geq 1$ and for any $p \in \mathcal{F}$, using (5) and (9), we note that

$$
\begin{align*}
\left\|y_{1 n}-p\right\| & =\left\|a_{1 n} x_{n}+b_{1 n} T_{1}^{n} x_{n}+c_{1 n} u_{1 n}-p\right\| \\
& =\left\|a_{1 n}\left(x_{n}-p\right)+b_{1 n}\left(T_{1}^{n} x_{n}-p\right)+c_{1 n}\left(u_{1 n}-p\right)\right\| \\
& \leq a_{1 n}\left\|x_{n}-p\right\|+b_{1 n}\left\|T_{1}^{n} x_{n}-p\right\|+c_{1 n}\left\|u_{1 n}-p\right\| \\
& \leq a_{1 n}\left\|x_{n}-p\right\|+b_{1 n}\left[\left\|x_{n}-p\right\|+\varepsilon\right]+c_{1 n}\left\|u_{1 n}-p\right\| \tag{10}\\
& \leq\left(a_{1 n}+b_{1 n}\right)\left\|x_{n}-p\right\|+b_{1 n} \varepsilon+c_{1 n} M \\
& =\left(1-c_{1 n}\right)\left\|x_{n}-p\right\|+b_{1 n} \varepsilon+c_{1 n} M \\
& \leq\left\|x_{n}-p\right\|+b_{1 n} \varepsilon+c_{1 n} M \\
& =\left\|x_{n}-p\right\|+A_{1 n}
\end{align*}
$$

where $A_{1 n}=b_{1 n} \varepsilon+c_{1 n} M$, since by assumption $\sum_{n=1}^{\infty} b_{1 n}<\infty$ and $\sum_{n=1}^{\infty} c_{1 n}<$ ∞, it follows that $\sum_{n=1}^{\infty} A_{1 n}<\infty$.

Furthermore, by inequality (9) and (10), we obtain

$$
\begin{align*}
\left\|y_{2 n}-p\right\| & =\left\|a_{2 n} x_{n}+b_{2 n} T_{2}^{n} y_{1 n}+c_{2 n} u_{2 n}-p\right\| \\
& =\left\|a_{2 n}\left(x_{n}-p\right)+b_{2 n}\left(T_{2}^{n} y_{1 n}-p\right)+c_{2 n}\left(u_{2 n}-p\right)\right\| \\
& \leq a_{2 n}\left\|x_{n}-p\right\|+b_{2 n}\left\|T_{2}^{n} y_{1 n}-p\right\|+c_{2 n}\left\|u_{2 n}-p\right\| \\
& \leq a_{2 n}\left\|x_{n}-p\right\|+b_{2 n}\left[\left\|y_{1 n}-p\right\|+\varepsilon\right]+c_{2 n}\left\|u_{2 n}-p\right\| \\
& \leq a_{2 n}\left\|x_{n}-p\right\|+b_{2 n}\left\|y_{1 n}-p\right\|+b_{2 n} \varepsilon+c_{2 n} M \\
& \leq a_{2 n}\left\|x_{n}-p\right\|+b_{2 n}\left[\left\|x_{n}-p\right\|+A_{1 n}\right]+b_{2 n} \varepsilon+c_{2 n} M \tag{11}\\
& \leq\left(a_{2 n}+b_{2 n}\right)\left\|x_{n}-p\right\|+b_{2 n} A_{1 n}+b_{2 n} \varepsilon+c_{2 n} M \\
& =\left(1-c_{2 n}\right)\left\|x_{n}-p\right\|+b_{2 n} A_{1 n}+b_{2 n} \varepsilon+c_{2 n} M \\
& \leq\left\|x_{n}-p\right\|+A_{1 n}+b_{2 n} \varepsilon+c_{2 n} M \\
& =\left\|x_{n}-p\right\|+A_{2 n}
\end{align*}
$$

where $A_{2 n}=A_{1 n}+b_{2 n} \varepsilon+c_{2 n} M$, since by assumption $\sum_{n=1}^{\infty} b_{2 n}<\infty, \sum_{n=1}^{\infty}$ $c_{2 n}<\infty$ and $\sum_{n=1}^{\infty} A_{1 n}<\infty$, it follows that $\sum_{n=1}^{\infty} A_{2 n}<\infty$. Similarly, using (9) and (11), we see that

$$
\begin{align*}
\left\|y_{3 n}-p\right\| & =\left\|a_{3 n}\left(x_{n}-p\right)+b_{3 n}\left(T_{3}^{n} y_{2 n}-p\right)+c_{3 n}\left(u_{3 n}-p\right)\right\| \\
& \leq a_{3 n}\left\|x_{n}-p\right\|+b_{3 n}\left\|T_{3}^{n} y_{2 n}-p\right\|+c_{3 n}\left\|u_{3 n}-p\right\| \\
& \leq a_{3 n}\left\|x_{n}-p\right\|+b_{3 n}\left[\left\|y_{2 n}-p\right\|+\varepsilon\right]+c_{3 n}\left\|u_{3 n}-p\right\| \\
& \leq a_{3 n}\left\|x_{n}-p\right\|+b_{3 n}\left\|y_{2 n}-p\right\|+b_{3 n} \varepsilon+c_{3 n} M \\
& \leq a_{3 n}\left\|x_{n}-p\right\|+b_{3 n}\left[\left\|x_{n}-p\right\|+A_{2 n}\right]+b_{3 n} \varepsilon+c_{3 n} M \tag{12}\\
& \leq\left(a_{3 n}+b_{3 n}\right)\left\|x_{n}-p\right\|+b_{3 n} A_{2 n}+b_{3 n} \varepsilon+c_{3 n} M \\
& =\left(1-c_{3 n}\right)\left\|x_{n}-p\right\|+b_{3 n} A_{2 n}+b_{3 n} \varepsilon+c_{3 n} M \\
& \leq\left\|x_{n}-p\right\|+A_{2 n}+b_{3 n} \varepsilon+c_{3 n} M \\
& =\left\|x_{n}-p\right\|+A_{3 n}
\end{align*}
$$

where $A_{3 n}=A_{2 n}+b_{3 n} \varepsilon+c_{3 n} M$, since by assumption $\sum_{n=1}^{\infty} b_{3 n}<\infty, \sum_{n=1}^{\infty}$ $c_{3 n}<\infty$ and $\sum_{n=1}^{\infty} A_{2 n}<\infty$, it follows that $\sum_{n=1}^{\infty} A_{3 n}<\infty$. Continuing the above process, using (5) and (9), we get

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|a_{k n}\left(x_{n}-p\right)+b_{k n}\left(T_{k}^{n} y_{(k-1) n}-p\right)+c_{k n}\left(u_{k n}-p\right)\right\| \\
& \leq a_{k n}\left\|x_{n}-p\right\|+b_{k n}\left\|T_{k}^{n} y_{(k-1) n}-p\right\|+c_{k n}\left\|u_{k n}-p\right\| \\
& \leq a_{k n}\left\|x_{n}-p\right\|+b_{k n}\left[\left\|y_{(k-1) n}-p\right\|+\varepsilon\right]+c_{k n}\left\|u_{k n}-p\right\| \\
& \leq a_{k n}\left\|x_{n}-p\right\|+b_{k n}\left\|y_{(k-1) n}-p\right\|+b_{k n} \varepsilon+c_{k n} M \\
& \leq a_{k n}\left\|x_{n}-p\right\|+b_{k n}\left[\left\|x_{n}-p\right\|+A_{(k-1) n}\right]+b_{k n} \varepsilon+c_{k n} M
\end{aligned}
$$

$$
\begin{align*}
& \leq\left(a_{k n}+b_{k n}\right)\left\|x_{n}-p\right\|+b_{k n} A_{(k-1) n}+b_{k n} \varepsilon+c_{k n} M \\
& =\left(1-c_{k n}\right)\left\|x_{n}-p\right\|+b_{k n} A_{(k-1) n}+b_{k n} \varepsilon+c_{k n} M \\
& \leq\left\|x_{n}-p\right\|+A_{(k-1) n}+b_{k n} \varepsilon+c_{k n} M \tag{13}\\
& =\left\|x_{n}-p\right\|+A_{k n}
\end{align*}
$$

where $A_{k n}=A_{(k-1) n}+b_{k n} \varepsilon+c_{k n} M$, since by assumption $\sum_{n=1}^{\infty} b_{k n}<\infty$, $\sum_{n=1}^{\infty} c_{k n}<\infty$ and $\sum_{n=1}^{\infty} A_{(k-1) n}<\infty$, it follows that $\sum_{n=1}^{\infty} A_{k n}<\infty$. By Lemma 2.1, we know that $\lim _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$.

Next, we will prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. From (13) we have

$$
\begin{align*}
\left\|x_{n+m}-p\right\| & \leq\left\|x_{n+m-1}-p\right\|+A_{k(n+m-1)} \\
& \leq\left[\left\|x_{n+m-2}-p\right\|+A_{k(n+m-2)}\right]+A_{k(n+m-1)} \\
& \leq\left\|x_{n+m-2}-p\right\|+\left[A_{k(n+m-1)}+A_{k(n+m-2)}\right] \\
& \leq\left\|x_{n+m-3}-p\right\|+\left[A_{k(n+m-1)}+A_{k(n+m-2)}+A_{k(n+m-3)}\right] \\
& \leq \cdots \\
& \leq \cdots \\
& \leq\left\|x_{n+m-3}-p\right\|+\left[A_{k(n+m-1)}+A_{k(n+m-2)}+\cdots+A_{k n}\right] \\
& \leq\left\|x_{n}-p\right\|+\sum_{i=n}^{n+m-1} A_{k i}, \tag{14}
\end{align*}
$$

for all $p \in \mathcal{F}$ and $m, n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$, for each $\varepsilon>0$, there exists a natural number n_{1} such that for $n \geq n_{1}$,

$$
\begin{equation*}
d\left(x_{n}, \mathcal{F}\right)<\frac{\varepsilon}{8} \quad \text { and } \quad \sum_{i=n_{1}}^{n+m-1} A_{k i}<\frac{\varepsilon}{2} . \tag{15}
\end{equation*}
$$

Hence, there exists a point $q \in \mathcal{F}$ such that

$$
\begin{equation*}
\left\|x_{n_{1}}-q\right\|<\frac{\varepsilon}{4} . \tag{16}
\end{equation*}
$$

By (14), (15) and (16), for all $n \geq n_{1}$ and $m \geq 1$, we have

$$
\begin{align*}
\left\|x_{n+m}-x_{n}\right\| & \leq\left\|x_{n+m}-q\right\|+\left\|x_{n}-q\right\| \\
& \leq\left\|x_{n_{1}}-q\right\|+\sum_{i=n_{1}}^{n+m-1} A_{k i}+\left\|x_{n_{1}}-q\right\| \\
& \leq 2\left\|x_{n_{1}}-q\right\|+\sum_{i=n_{1}}^{n+m-1} A_{k i} \tag{17}\\
& <2 \cdot \frac{\varepsilon}{4}+\frac{\varepsilon}{2}=\varepsilon .
\end{align*}
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since E is complete, there exists a $p_{1} \in E$ such that $x_{n} \rightarrow p_{1}$ as $n \rightarrow \infty$.

Now we have to prove that p_{1} is a common fixed point of $\left\{T_{i}: i=1,2, \ldots, k\right\}$, that is, $p_{1} \in \mathcal{F}$.

By contradiction, we assume that p_{1} is not in \mathcal{F}. Since $\mathcal{F}=\cap_{i=1}^{k} F\left(T_{i}\right)$ is closed in Banach spaces, $d\left(p_{1}, \mathcal{F}\right)>0$. So for all $p_{2} \in \mathcal{F}$, we have

$$
\begin{equation*}
\left\|p_{1}-p_{2}\right\| \leq\left\|p_{1}-x_{n}\right\|+\left\|x_{n}-p_{2}\right\| . \tag{18}
\end{equation*}
$$

By the arbitrary of $p_{2} \in \mathcal{F}$, we know that

$$
\begin{equation*}
d\left(p_{1}, \mathcal{F}\right) \leq\left\|p_{1}-x_{n}\right\|+d\left(x_{n}, \mathcal{F}\right) \tag{19}
\end{equation*}
$$

By $\lim _{n \rightarrow \infty} d\left(x_{n}, \mathcal{F}\right)=0$, above inequality and $x_{n} \rightarrow p_{1}$ as $n \rightarrow \infty$, we have

$$
\begin{equation*}
d\left(p_{1}, \mathcal{F}\right)=0 \tag{20}
\end{equation*}
$$

which contradicts $d\left(p_{1}, \mathcal{F}\right)>0$. Thus p_{1} is a common fixed point of the mappings $\left\{T_{i}: i=1,2, \ldots, k\right\}$. This completes the proof.

Theorem 3.2. Let K be a nonempty compact convex subset of a uniformly convex Banach space E and for $i=1,2, \ldots, k$, let $T_{i}: K \rightarrow K$ be a finite family of uniformly $\left(L_{i}, \alpha_{i}\right)$-Lipschitz and asymptotically quasi-nonexpansive type mappings. Let $\left\{x_{n}\right\}$ be the sequence defined by (5) with $\sum_{n=1}^{\infty} b_{i n}<\infty$, $\sum_{n=1}^{\infty} c_{i n}<\infty$ and $0<\bar{\beta} \leq b_{\text {in }} \leq \beta<1$ for all $i=1,2, \ldots, k$. If $\mathcal{F}=$ $\cap_{i=1}^{k} F\left(T_{i}\right) \neq \emptyset$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to a common fixed point of the mappings $\left\{T_{i}: i=1,2, \ldots, k\right\}$.

Proof. From (13), we have

$$
\left\|x_{n+1}-p\right\| \leq\left\|x_{n}-p\right\|+A_{k n}
$$

where $A_{k n}=A_{(k-1) n}+b_{k n} \varepsilon+c_{k n} M$, since by assumption $\sum_{n=1}^{\infty} b_{k n}<\infty$, $\sum_{n=1}^{\infty} c_{k n}<\infty$ and $\sum_{n=1}^{\infty} A_{(k-1) n}<\infty$, it follows that $\sum_{n=1}^{\infty} A_{k n}<\infty$. By Lemma 2.1, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in \mathcal{F}$. Let $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=c$ for some $c>0$. Then, from (10), we note that

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|y_{1 n}-p\right\| & \leq \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-p\right\|+A_{1 n}\right) \tag{21}\\
& \leq \limsup _{n \rightarrow \infty}\left\|x_{n}-p\right\|=c
\end{align*}
$$

and

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-p\right\| & \leq \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-p\right\|+\varepsilon\right) \\
& \leq c+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary given, so we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-p\right\| \leq c \tag{22}
\end{equation*}
$$

and

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|y_{1 n}-p\right\|= & \lim _{n \rightarrow \infty}\left\|a_{1 n} x_{n}+b_{1 n} T_{1}^{n} x_{n}+c_{1 n} u_{1 n}-p\right\| \\
= & \lim _{n \rightarrow \infty}\left\|\left(1-b_{1 n}-c_{1 n}\right) x_{n}+b_{1 n} T_{1}^{n} x_{n}+c_{1 n} u_{1 n}-p\right\| \\
= & \lim _{n \rightarrow \infty} \|\left(1-b_{1 n}\right)\left(x_{n}-p+c_{1 n}\left(u_{1 n}-x_{n}\right)\right) \tag{23}\\
& +b_{1 n}\left(T_{1}^{n} x_{n}-p+c_{1 n}\left(u_{1 n}-x_{n}\right)\right) \|
\end{align*}
$$

$$
=c
$$

Again since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, so $\left\{x_{n}\right\}$ is a bounded sequence in K. By virtue of condition $\sum_{n=1}^{\infty} c_{i n}<\infty$ for all $i=1,2, \ldots, k$ and the boundedness of the sequence $\left\{x_{n}\right\}$ and $\left\{u_{1 n}\right\}$, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-p+c_{1 n}\left(u_{1 n}-x_{n}\right)\right\| \leq & \limsup _{n \rightarrow \infty}\left\|x_{n}-p\right\| \\
& +\limsup _{n \rightarrow \infty}\left(c_{1 n}\left\|u_{1 n}-x_{n}\right\|\right) \tag{24}\\
\leq & c, p \in \mathcal{F} .
\end{align*}
$$

It follows from (22) that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-p+c_{1 n}\left(u_{1 n}-x_{n}\right)\right\| \leq & \limsup _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-p\right\| \\
& +\limsup _{n \rightarrow \infty}\left(c_{1 n}\left\|u_{1 n}-x_{n}\right\|\right) \\
\leq & \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-p\right\|+\varepsilon\right) \\
& +\limsup _{n \rightarrow \infty}\left(c_{1 n}\left\|u_{1 n}-x_{n}\right\|\right) \\
\leq & c+\varepsilon, p \in \mathcal{F} .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary given, so we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-p+c_{1 n}\left(u_{1 n}-x_{n}\right)\right\| \leq c \tag{25}
\end{equation*}
$$

Therefore, from (23)-(25) and Lemma 2.2 we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-x_{n}\right\|=0 \tag{26}
\end{equation*}
$$

Again from (11), we note that

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|y_{2 n}-p\right\| & \leq \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-p\right\|+A_{2 n}\right) \\
& \leq \limsup _{n \rightarrow \infty}\left\|x_{n}-p\right\|=c \tag{27}
\end{align*}
$$

and from (21), we note that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T_{2}^{n} y_{1 n}-p\right\| & \leq \limsup _{n \rightarrow \infty}\left(\left\|y_{1 n}-p\right\|+\varepsilon\right) \\
& \leq c+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary given, so we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{2}^{n} y_{1 n}-p\right\| \leq c \tag{28}
\end{equation*}
$$

Next, consider

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T_{2}^{n} y_{1 n}-p+c_{2 n}\left(u_{2 n}-x_{n}\right)\right\| \leq & \limsup _{n \rightarrow \infty}\left\|T_{2}^{n} y_{1 n}-p\right\| \\
& +\limsup _{n \rightarrow \infty}\left(c_{2 n}\left\|u_{2 n}-x_{n}\right\|\right) \\
\leq & \limsup _{n \rightarrow \infty}\left(\left\|y_{1 n}-p\right\|+\varepsilon\right) \\
& +\limsup _{n \rightarrow \infty}\left(c_{2 n}\left\|u_{2 n}-x_{n}\right\|\right) \\
\leq & c+\varepsilon, p \in \mathcal{F} .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary given, so we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{2}^{n} y_{1 n}-p+c_{2 n}\left(u_{2 n}-x_{n}\right)\right\| \leq c \tag{29}
\end{equation*}
$$

Also,

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-p+c_{2 n}\left(u_{2 n}-x_{n}\right)\right\| \leq & \limsup _{n \rightarrow \infty}\left\|x_{n}-p\right\| \\
& +\limsup _{n \rightarrow \infty}\left(c_{2 n}\left\|u_{2 n}-x_{n}\right\|\right) \tag{30}\\
\leq & c, p \in \mathcal{F},
\end{align*}
$$

and

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|y_{2 n}-p\right\|= & \lim _{n \rightarrow \infty}\left\|a_{2 n} x_{n}+b_{2 n} T_{2}^{n} y_{1 n}+c_{2 n} u_{2 n}-p\right\| \\
= & \lim _{n \rightarrow \infty}\left\|\left(1-b_{2 n}-c_{2 n}\right) x_{n}+b_{2 n} T_{2}^{n} y_{1 n}+c_{2 n} u_{2 n}-p\right\| \\
= & \lim _{n \rightarrow \infty} \|\left(1-b_{2 n}\right)\left(x_{n}-p+c_{2 n}\left(u_{2 n}-x_{n}\right)\right) \tag{31}\\
& +b_{2 n}\left(T_{2}^{n} y_{1 n}-p+c_{2 n}\left(u_{2 n}-x_{n}\right)\right) \|
\end{align*}
$$

$$
=c .
$$

Therefore, from (29)-(31) and Lemma 2.2 we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{2}^{n} y_{1 n}-x_{n}\right\|=0 \tag{32}
\end{equation*}
$$

Now, we shall show that $\lim _{n \rightarrow \infty}\left\|T_{3}^{n} y_{2 n}-x_{n}\right\|=0$. For each $n \geq 1$,

$$
\begin{align*}
\left\|x_{n}-p\right\| & \leq\left\|T_{2}^{n} y_{1 n}-x_{n}\right\|+\left\|T_{2}^{n} y_{1 n}-p\right\| \\
& \leq\left\|T_{2}^{n} y_{1 n}-x_{n}\right\|+\left(\left\|y_{1 n}-p\right\|+\varepsilon\right) . \tag{33}
\end{align*}
$$

Using (32), we have

$$
\begin{aligned}
c & =\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left\|y_{1 n}-p\right\| .
\end{aligned}
$$

It follows from (21) that

$$
\begin{align*}
c & =\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left\|y_{1 n}-p\right\| \tag{34}\\
& \leq \limsup _{n \rightarrow \infty}\left\|y_{1 n}-p\right\| \leq c .
\end{align*}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{1 n}-p\right\|=c \tag{35}
\end{equation*}
$$

On the other hand, we have

$$
\left\|y_{2 n}-p\right\| \leq\left(\left\|x_{n}-p\right\|+A_{2 n}\right), \quad \forall n \geq 1
$$

where $\sum_{n=1}^{\infty} A_{2 n}<\infty$. Therefore

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|y_{2 n}-p\right\| & \leq \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-p\right\|+A_{2 n}\right) \tag{36}\\
& \leq c
\end{align*}
$$

and hence

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T_{3}^{n} y_{2 n}-p\right\| & \leq \limsup _{n \rightarrow \infty}\left(\left\|y_{2 n}-p\right\|+\varepsilon\right) \\
& \leq c+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary given, so we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{3}^{n} y_{2 n}-p\right\| \leq c \tag{37}
\end{equation*}
$$

Next, consider

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T_{3}^{n} y_{2 n}-p+c_{3 n}\left(u_{3 n}-x_{n}\right)\right\| \leq & \limsup _{n \rightarrow \infty}\left\|T_{3}^{n} y_{2 n}-p\right\| \\
& +\limsup _{n \rightarrow \infty}\left(c_{3 n}\left\|u_{3 n}-x_{n}\right\|\right) \\
\leq & \limsup _{n \rightarrow \infty}\left(\left\|y_{2 n}-p\right\|+\varepsilon\right) \\
& +\limsup _{n \rightarrow \infty}\left(c_{3 n}\left\|u_{3 n}-x_{n}\right\|\right) \\
\leq & c+\varepsilon, p \in \mathcal{F} .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary given, so we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{3}^{n} y_{2 n}-p+c_{3 n}\left(u_{3 n}-x_{n}\right)\right\| \leq c \tag{38}
\end{equation*}
$$

Also,

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-p+c_{3 n}\left(u_{3 n}-x_{n}\right)\right\| \leq & \limsup _{n \rightarrow \infty}\left\|x_{n}-p\right\| \\
& +\limsup _{n \rightarrow \infty}\left(c_{3 n}\left\|u_{3 n}-x_{n}\right\|\right) \tag{39}\\
\leq & c, p \in \mathcal{F},
\end{align*}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|y_{3 n}-p\right\|= & \lim _{n \rightarrow \infty}\left\|a_{3 n} x_{n}+b_{3 n} T_{3}^{n} y_{2 n}+c_{3 n} u_{3 n}-p\right\| \\
= & \lim _{n \rightarrow \infty}\left\|\left(1-b_{3 n}-c_{3 n}\right) x_{n}+b_{3 n} T_{3}^{n} y_{2 n}+c_{3 n} u_{3 n}-p\right\| \\
= & \lim _{n \rightarrow \infty} \|\left(1-b_{3 n}\right)\left(x_{n}-p+c_{3 n}\left(u_{3 n}-x_{n}\right)\right) \\
& +b_{3 n}\left(T_{3}^{n} y_{2 n}-p+c_{3 n}\left(u_{3 n}-x_{n}\right)\right) \| \\
= & c .
\end{aligned}
$$

Therefore, from (38)-(40) and Lemma 2.2 we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{3}^{n} y_{2 n}-x_{n}\right\|=0 \tag{41}
\end{equation*}
$$

Similarly, by using the same argument as in the proof above, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{i}^{n} y_{(i-1) n}-x_{n}\right\|=0 \tag{42}
\end{equation*}
$$

for all $i=2,3, \ldots, k$.
Since K is compact, $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$. Let

$$
\begin{equation*}
\lim _{j \rightarrow \infty} x_{n_{j}}=p \tag{43}
\end{equation*}
$$

Then from (5) and (42), we have

$$
\begin{align*}
\left\|x_{n_{j}+1}-x_{n_{j}}\right\| & \leq b_{k_{n_{j}}}\left\|T_{k}^{n_{j}} y_{(k-1) n_{j}}-x_{n_{j}}\right\|+c_{k_{n_{j}}}\left\|u_{k_{n_{j}}}-x_{n_{j}}\right\| \tag{44}\\
& \rightarrow 0, \quad \text { as } j \rightarrow \infty .
\end{align*}
$$

From (5) and (26), we have

$$
\begin{align*}
\left\|y_{1 n}-x_{n}\right\| & \leq b_{1 n}\left\|T_{1}^{n} x_{n}-x_{n}\right\|+c_{1 n}\left\|u_{1 n}-x_{n}\right\| \\
& \rightarrow 0, \text { as } n \rightarrow \infty . \tag{45}
\end{align*}
$$

Again from (26) and (43), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{1}^{n_{j}} x_{n_{j}}=p \tag{46}
\end{equation*}
$$

Since $\lim _{j \rightarrow \infty} x_{n_{j}+1}=p$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{1}^{n_{j}+1} x_{n_{j}+1}=p \tag{47}
\end{equation*}
$$

From (44), (46) and (47), we have

$$
\begin{align*}
0 \leq & \left\|p-T_{1} p\right\| \\
\leq & \left\|p-T_{1}^{n_{j}+1} x_{n_{j}+1}\right\|+\left\|T_{1}^{n_{j}+1} x_{n_{j}+1}-T_{1}^{n_{j}+1} x_{n_{j}}\right\| \\
& +\left\|T_{1}^{n_{j}+1} x_{n_{j}}-T_{1} p\right\| \tag{48}\\
\leq & \left\|p-T_{1}^{n_{j}+1} x_{n_{j}+1}\right\|+L_{1}\left\|x_{n_{j}+1}-x_{n_{j}+1}\right\|^{\alpha_{1}}+L_{1}\left\|T_{1}^{n_{j}} x_{n_{j}}-p\right\|^{\alpha_{1}} \\
& \rightarrow 0 \text { as } j \rightarrow \infty .
\end{align*}
$$

From (32) and (43), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{2}^{n_{j}} y_{1 n_{j}}=p \tag{49}
\end{equation*}
$$

Since $\lim _{j \rightarrow \infty} x_{n_{j}+1}=p$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{2}^{n_{j}+1} y_{1 n_{j}+1}=p \tag{50}
\end{equation*}
$$

From (44), (45), (49) and (50), we have

$$
\begin{align*}
0 \leq & \left\|p-T_{2} p\right\| \\
\leq & \left\|p-T_{2}^{n_{j}+1} y_{1 n_{j}+1}\right\|+\left\|T_{2}^{n_{j}+1} y_{1 n_{j}+1}-T_{2}^{n_{j}+1} x_{n_{j}+1}\right\| \\
& +\left\|T_{2}^{n_{j}+1} x_{n_{j}+1}-T_{2}^{n_{j}+1} x_{n_{j}}\right\|+\left\|T_{2}^{n_{j}+1} x_{n_{j}}-T_{2}^{n_{j}+1} y_{1 n_{j}}\right\| \\
& +\left\|T_{2}^{n_{j}+1} y_{1 n_{j}}-T_{2} p\right\| \tag{51}\\
\leq & \left\|p-T_{2}^{n_{j}+1} y_{1 n_{j}+1}\right\|+L_{2}\left\|y_{1 n_{j}+1}-x_{n_{j}+1}\right\|^{\alpha_{2}} \\
& +L_{2}\left\|x_{n_{j}+1}-x_{n_{j}}\right\|^{\alpha_{2}}+L_{2}\left\|x_{n_{j}}-y_{1 n_{j}}\right\|^{\alpha_{2}} \\
& +L_{2}\left\|T_{2}^{n_{j}} y_{1 n_{j}}-p\right\|^{\alpha_{2}} \\
& \rightarrow 0 \text { as } j \rightarrow \infty .
\end{align*}
$$

Now, from (5) and (32), we have

$$
\begin{align*}
\left\|y_{2 n}-x_{n}\right\| & \leq b_{2 n}\left\|T_{2}^{n} y_{1 n}-x_{n}\right\|+c_{2 n}\left\|u_{2 n}-x_{n}\right\| \\
& \rightarrow 0, \text { as } n \rightarrow \infty \tag{52}
\end{align*}
$$

Again from (41) and (43), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{3}^{n_{j}} y_{2 n_{j}}=p \tag{53}
\end{equation*}
$$

Since $\lim _{j \rightarrow \infty} x_{n_{j}+1}=p$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{3}^{n_{j}+1} y_{2 n_{j}+1}=p \tag{54}
\end{equation*}
$$

From (44), (52), (53) and (54), we have

$$
\begin{align*}
0 \leq & \left\|p-T_{3} p\right\| \\
\leq & \left\|p-T_{3}^{n_{j}+1} y_{2 n_{j}+1}\right\|+\left\|T_{3}^{n_{j}+1} y_{2 n_{j}+1}-T_{3}^{n_{j}+1} x_{n_{j}+1}\right\| \\
& +\left\|T_{3}^{n_{j}+1} x_{n_{j}+1}-T_{3}^{n_{j}+1} x_{n_{j}}\right\|+\left\|T_{3}^{n_{j}+1} x_{n_{j}}-T_{3}^{n_{j}+1} y_{2 n_{j}}\right\| \\
& +\left\|T_{3}^{n_{j}+1} y_{2 n_{j}}-T_{3} p\right\| \tag{55}\\
\leq & \left\|p-T_{3}^{n_{j}+1} y_{2 n_{j}+1}\right\|+L_{3}\left\|y_{2 n_{j}+1}-x_{n_{j}+1}\right\|^{\alpha_{3}} \\
& +L_{3}\left\|x_{n_{j}+1}-x_{n_{j}}\right\|^{\alpha_{3}}+L_{3}\left\|x_{n_{j}}-y_{2 n_{j}}\right\|^{\alpha_{3}} \\
& +L_{3}\left\|T_{3}^{n_{j}} y_{2 n_{j}}-p\right\|^{\alpha_{3}} \\
& \rightarrow 0 \text { as } \quad j \rightarrow \infty .
\end{align*}
$$

Similarly, from (5) and (42), we have

$$
\begin{align*}
\| y_{(k-1) n}-x_{n} & \leq b_{(k-1) n}\left\|T_{k-1}^{n} y_{(k-2) n}-x_{n}\right\|+c_{(k-1) n}\left\|u_{(k-1) n}-x_{n}\right\| \tag{56}\\
& \rightarrow 0, \text { as } n \rightarrow \infty
\end{align*}
$$

Again from (42) and (43), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{k}^{n_{j}} y_{(k-1) n_{j}}=p \tag{57}
\end{equation*}
$$

Since $\lim _{j \rightarrow \infty} x_{n_{j}+1}=p$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} T_{k}^{n_{j}+1} y_{(k-1) n_{j}+1}=p \tag{58}
\end{equation*}
$$

From (44), (56), (57) and (58), we have

$$
\begin{align*}
0 \leq & \left\|p-T_{k} p\right\| \\
\leq & \left\|p-T_{k}^{n_{j}+1} y_{(k-1) n_{j}+1}\right\|+\left\|T_{k}^{n_{j}+1} y_{(k-1) n_{j}+1}-T_{k}^{n_{j}+1} x_{n_{j}+1}\right\| \\
& +\left\|T_{k}^{n_{j}+1} x_{n_{j}+1}-T_{k}^{n_{j}+1} x_{n_{j}}\right\|+\left\|T_{k}^{n_{j}+1} x_{n_{j}}-T_{k}^{n_{j}+1} y_{(k-1) n_{j}}\right\| \\
& +\left\|T_{k}^{n_{j}+1} y_{(k-1) n_{j}}-T_{k} p\right\| \tag{59}\\
\leq & \left\|p-T_{k}^{n_{j}+1} y_{(k-1) n_{j}+1}\right\|+L_{k}\left\|y_{(k-1) n_{j}+1}-x_{n_{j}+1}\right\|^{\alpha_{k}} \\
& +L_{k}\left\|x_{n_{j}+1}-x_{n_{j}}\right\|^{\alpha_{k}}+L_{k}\left\|x_{n_{j}}-y_{(k-1) n_{j}}\right\|^{\alpha_{k}} \\
& +L_{k}\left\|T_{k}^{n_{j}} y_{(k-1) n_{j}}-p\right\|^{\alpha_{k}} \\
& \rightarrow 0 \text { as } j \rightarrow \infty .
\end{align*}
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|p-T_{i} p\right\|=0, \quad \forall i=1,2, \ldots, k \tag{60}
\end{equation*}
$$

Thus p is a common fixed point of the mappings $\left\{T_{i}: i=1,2, \ldots, k\right\}$. Since the subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to p and $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, we conclude that $\lim _{n \rightarrow \infty} x_{n}=p$. This completes the proof.
Remark 2. Theorem 3.1 extends and improves the corresponding result of Khan et al. [7] and Tang and Peng [19] to the case of more general class of asymptotically quasi-nonexpansive or uniformly quasi-Lipschitzian mappings considered in this paper.
Remark 3. Theorem 3.1 also extend and improve the corresponding results of $[2,4,8,9,12,15]$. Especially Theorem 3.1 extends and improves Theorem 1 and 2 in [9], Theorem 1 in [8] and Theorem 3.2 in [15] in the following ways:
(1) The asymptotically quasi-nonexpansive mapping in [8], [9] and [15] is replaced by finite family of asymptotically quasi-nonexpansive type mappings.
(2) The usual Ishikawa iteration scheme in [8], the usual modified Ishikawa iteration scheme with errors in [9] and the usual modified Ishikawa iteration scheme with errors for two mappings in [15] are extended to the multi-step iteration scheme with errors for a finite family of mappings.
Remark 4. Theorem 3.2 extends and improves the corresponding result of [10] in the following aspect:
(1) The asymptotically quasi-nonexpansive mapping in [10] is replaced by finite family of asymptotically quasi-nonexpansive type mappings.
(2) The usual modified Ishikawa iteration scheme with errors in [10] is extended to the multi-step iteration scheme with errors for a finite family of mappings.
Remark 5. Theorem 3.1 also extends the corresponding result of [20] to the case of more general class of asymptotically nonexpansive mappings and multistep iteration scheme with errors for a finite family of mappings considered in this paper.
Remark 6. Our results also extend the corresponding results of Chidume and Ofoedu [3] to the case of more general class of total asymptotically nonexpansive mappings considered in this paper.

Acknowledgement. The author thanks the referee for his valuable suggestions and comments on the manuscript.

References

[1] R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), 169-179.
[2] C. E. Chidume and Bashir Ali, Convergence theorems for finite families of asymptotically quasi-nonexpansive mappings, J. Inequalities and Applications, Vol.2007, Article ID 68616, 10 pages.
[3] C. E. Chidume and E. U. Ofoedu, Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings, J. Math. Anal. Appl. 333 (2007), 128-141.
[4] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96-103.
[5] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
[6] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
[7] A. R. Khan, A. A. Domlo and H. Fukhar-ud-din, Common fixed points of Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 341 (2008), 1-11.
[8] Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1-7.
[9] Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18-24.
[10] Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member of uniformly convex Banach spaces, J. Math. Anal. Appl. 266 (2002), 468-471.
[11] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506510.
[12] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497.
[13] J. Quan, S. S. Chang and X. J. Long, Approximation common fixed point of asymptotically quasi-nonexpansive-type mappings by the finite steps iterative sequences, Fixed Point Theory and Applications Volume 2006, Article ID 70830, pages 1-8.
[14] D. R. Sahu, S. C. Shrivastava and B. L. Malager, Approximation of common fixed points of a family of asymptotically quasi-nonexpansive mappings, Demonstratio Math. 41 (2008), no. 3, 625-632.
[15] N. Shahzad and A. Udomene, Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, Vol.2006, Article ID 18909, pages 1-10.
[16] J. Schu, Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
[17] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
[18] K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733-739.
[19] Y. C. Tang and J. G. Peng, Approximation of common fixed points for a finite family of uniformly quasi-Lipschitzian mappings in Banach spaces, Thai. J. Maths. 8 (2010), no. 1, 63-70.
[20] B. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2002), 444-453.

Gurucharan Singh Saluja
Department of Mathematics \& Information Technology
Govt. Nagarjuna P. G. College of Science
Raipur (Chhattisgarh), India
E-mail address: saluja_1963@rediffmail.com

[^0]: Received March 15, 2010; Accepted January 5, 2011.
 2000 Mathematics Subject Classification. 47H09, 47H10
 Key words and phrases. Asymptotically quasi-nonexpansive type mapping, common fixed point, multi-step iterative algorithm with errors, uniformly convex Banach space, uniformly (L, α)-Lipschitz mapping, strong convergence.

