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LOCAL CONVERGENCE OF FUNCTIONAL ITERATIONS

FOR SOLVING A QUADRATIC MATRIX EQUATION

Hyun-Min Kim, Young-Jin Kim, and Jong-Hyeon Seo

Abstract. We consider fixed-point iterations constructed by simple

transforming from a quadratic matrix equation to equivalent fixed-point
equations and assume that the iterations are well-defined at some solu-

tions. In that case, we suggest real valued functions. These functions
provide radii at the solution, which guarantee the local convergence and

the uniqueness of the solutions. Moreover, these radii obtained by simple

calculations of some constants. We get the constants by arbitrary matrix
norm for coefficient matrices and solution. In numerical experiments, the

examples show that the functions give suitable boundaries which guar-

antee the local convergence and the uniqueness of the solutions for the
given equations.

1. Introduction

In this paper, we consider the quadratic matrix equation (QME)

(1.1) Q(X) := AX2 −BX + C = 0,

where A,B,C ∈ Cm×m. If S ∈ Cm×m satisfies Q(S) = 0 in (1.1), then we call
that S is a solvent [6].

From the QME we construct the fixed-point iterative methods as follows

(1.2)

{
Given X0 ∈ Cm×m

Xk+1 = Fi(Xk),
k = 0, 1, 2, . . .

where Fi(Xk) can be defined at each steps.

F1(X) = B−1(AX2 + C),(1.3)

F2(X) = (B −AX)−1C,(1.4)

F3(X) = A−1
(
B − CX−1

)
.(1.5)
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To find an approximated solution, we usually use fixed-point iterative meth-
ods. Sometimes, fixed-point methods don’t converge to the solution even
though a given initial matrix is sufficiently close to the solution. So, find-
ing sufficient conditions which guarantee the convergence of given functional
iterative methods is needed.

The existence of a solution of QME (1.1) and the convergence analysis of
the iteration (1.2) on Banach space were studied in [1, 7, 15]. Higham and
Kim [11] studied the convergence of the iteration with (1.3) and (1.4) to the
special solution. From [11] we know that in over-damped quadratic eigenvalue
problems and the quasi-birth-death problem (QBD) the Bernoulli iteration
method converges to the solvent efficiently.

Bai and Gao [2] modified the iteration with (1.4) by techniques of the Gauss-
Seidal iteration. Furthermore, they showed the local linear convergence of iter-
ations sequentially with norm of matrix calculation under suitable conditions.

For iterations (1.3) and (1.4), the convergence to the elementwise mini-
mal nonnegative solution of QME (1.1) arising in quasi-birth-death processes
(QBDs) [4, 8, 14] is referred in [9] when the starting matrix is stochastic. When
the leading coefficient matrix is an identity matrix and the starting matrix is
the zero matrix, the iterations (1.3) and (1.4) were proposed by Guo [10] and
Bai et al. [3], respectively.

The usual problem to apply the contraction mapping theorem in practice is
to find the proper domain which is mapped into it [17]. The strategy to prove
the local convergence of the iteration (1.2) is following tricks.

(1) Set a domain on which a fixed point function is defined.
(2) Find a set which satisfies one of following two theorems.

(a) (Local Convergence Theorem) Find a proper open ball centered at
a solution. Iterative sequence derived from the fixed point function
converges to the solution for any initial point in the ball.

(b) (Contraction Mapping Theorem) Choose a closed domain, which
is a subset of the ball, in which the solution is unique.

(3) Investigate the rate of the convergence.

The difference of (a) and (b) is the closeness of sets.
Previously, we need complicated matrix calculation to find a subset in the

above strategy (2) [2]. Even if we find the subset, the way to find the subset is
hard to apply to another equation.

In this paper, we suggest two simple real valued functions. These functions
are constructed by constants made from norms of coefficient matrices and sol-
vent. We can easily calculate the radius which guarantees the uniqueness and
the local convergence of a fixed point iteration when we know the solvent.
The results on the finite dimensional real vector space referred in Ortega and
Rheinboldt [16] are often adjusted to get along with our analysis. Moreover,
theorems in this paper is easy to apply to another matrix equations.
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2. Related definitions and theorems

Definition 2.1 ([5, Def. A.13]). Let A ∈ Cm×n and B ∈ Cp×q be given. The
Kronecker product A⊗B of A and B is the m× n block matrix given by

A⊗B =

 a11B · · · a1mB
...

...
am1B · · · amnB

 , where A = [aij ].

The properties of the Kronecker product and the following well-known lem-
mas are used in our works.

Lemma 2.2 (Neumann Lemma, [16, 2.3.1]). For A,B ∈ Cm×m, if A is non-
singular and ρ(A−1B) < 1, then A − B is also nonsingular and represented
by

(2.1) (A−B)
−1

= A−1 +A−1B (A−B)
−1
.

‖A−1B‖ < 1 instead of ρ
(
A−1B

)
< 1 also leads to the same conclusion in

Lemma 2.2.

Remark 2.3. The equality (2.1) is represented by

(A−B)−1 =

( ∞∑
k=0

(A−1B)k

)
A−1

= A−1 +

( ∞∑
k=1

(A−1B)k

)
A−1.(2.2)

One-step stationary iterations have the form

(2.3) Xk+1 = F (Xk), k = 0, 1, 2, . . . ,

where F : D ⊂ Rm×m → Rm×m. This include Newton’s method and some of
minimization methods.

The determination of fixed-point and estimation of the rate of convergence
will depend upon finding sufficient conditions of which the following simple
theorem is satisfied.

Theorem 2.4 (Local Convergence Theorem, [16, Thm. 10. 1. 2]). Let F : D ⊂
Rm×m → Rm×m, and suppose that there exist a ball B := B(S, δ) ⊂ D and a
constant α < 1 such that

‖F (X)− S‖ ≤ α‖X − S‖ for all X ∈ B.

Then, for any X0 ∈ B, the iterations from (2.3) remain in B and converges to
the fixed point S of F (X) and

lim sup
k→∞

k
√
‖Xk − S‖ ≤ α.
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In Theorem 2.4 since X0 is arbitrary, F is invariant on B (i.e., F maps into
itself). Note that we can not assure that S is a fixed-point of F unless F is
continuous at S.

To guarantee the uniqueness of the solvent we need the contraction mapping
theorem. So we introduce the following definition.

Definition 2.5 ([16, Def. 5.1.2]). A matrix function F : D ⊂ Rm×m → Rm×m
is contractive on a set D0 ⊂ D if there is an α < 1 such that ‖F (X)−F (Y )‖ ≤
α‖X − Y ‖ for all X,Y ∈ D0.

The existence of a fixed point and the convergence of an iteration (2.3) are
given by the following basic result.

Theorem 2.6 (Contraction Mapping Theorem, [12, Thm 5.1.2]). Let F : D ⊂
Rm×m → Rm×m, and suppose that F maps a closed set D0 ⊂ D into itself and
contractive. Then F has the unique fixed point in D0.

From Theorem 2.4 and Theorem 2.6, we have the following theorem which
is used through the analysis.

Theorem 2.7. Let S ∈ Rm×m be a fixed point of F : D ⊂ Rm×m → Rm×m
and suppose that there exist constants δ, δ′ and balls B1 := B(S, δ) ⊂ D, B̄2 :=
B̄ (S, δ′) ⊂ B1 such that

‖F (X)− F (Y )‖ ≤ Γ(X,Y ) · ‖X − Y ‖, ∀X,Y ∈ D,

Γ(X,S) ≤ µ̄(‖X − S‖) < µ̄(δ) ≤ 1, ∀X∈ B1,
Γ(Y,Z) ≤ ν̄(‖Y − S‖, ‖Z − S‖) ≤ ν̄(δ′, δ′) < 1, ∀Y, Z ∈ B̄2,

and

µ̄(0) = lim
x→0

µ̄(x) = µ < 1,

where Γ(X,Y ), µ̄ and ν̄ are real nonnegative valued functions on D×D, [0, δ]
and [0, δ′] × [0, δ′] respectively, and µ̄ is increasing on [0, δ]. Then, for any
X0 ∈ B1, the sequence {Xk} generated by (2.3) converges to S. Moreover, S is
the unique fixed point of F in B̄2 and

(2.4) lim sup
k→∞

k
√
‖Xk − S‖ ≤ α.

Proof. From B̄2 ⊂ B1, we have δ′ + ε < δ for a sufficiently small ε > 0.
Let B3 := B(S, δ′ + ε). Then since µ̄ is an increasing function we have

Γ(X,S) ≤ µ̄ (‖X − S‖) < µ̄ (δ′ + ε) < µ̄(δ) ≤ 1, ∀X ∈ B3.

Therefore from the local convergence theorem we get

‖F (X)− S‖ < δ′ + ε, ∀X ∈ B3.

Since ε is arbitrary, the following statement is true;

F (X) ∈ B̄2, ∀X ∈ B̄2.
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Therefore from the contraction mapping theorem F has the unique fixed point
in B̄2.

Suppose that, for X0 ∈ B1, {Xk} is generated by (2.3) and δ(k) := ‖Xk−S‖.
Then we have

‖Xk+1 − S‖ ≤ µ̄(δ(k))‖Xk − S‖
≤ µ̄(δ(k)) · µ̄(δ(k − 1))‖Xk−1 − S‖

≤

(
k∏
i=1

µ̄(δ(i))

)
‖X0 − S‖.

Since δ(k) → 0 as k → ∞ and µ̄ is continuous at 0, µ̄(δ(k)) is converges to α
([18, Thm. 3.21]). Therefore from the properties of the limit superimum ([18,
Sec. 2.5]) (2.4) is easily proved. �

3. Local convergence for F1

Since F1 in (1.3) is well-defined on Rm×m, from the properties of matrix
norms we have

(3.1) ‖F1(Y )−F1(X)‖ ≤
(
‖B−1AY ‖+ ‖B−1A‖‖X‖

)
‖Y −X‖.

Define

(3.2) Γ1(X,Y ) := ‖B−1AY ‖+ ‖B−1A‖‖X‖,
then we get the following lemmas for F1.

Lemma 3.1. Let S ∈ Rm×m be a solvent of QME (1.1), and suppose that B
is nonsingular,

‖B−1A‖ ≤ a1, ‖B−1AS‖ ≤ b1 and ‖S‖ ≤ β,
where a1, b1 and β are some positive constants. Then if

b1 + a1β < 1,

then

Γ1(X,S) ≤ µ̄1 (‖X − S‖) < 1, ∀ X ∈ B1 := B(S, δ1),

where Γ1 is in (3.2),

(3.3) δ1 :=
1− b1 − a1β

a1
> 0

and µ̄1(x) := b1 + a1β + a1x.

Proof. Let X ∈ B1. Then we have

‖X‖ ≤ β + ‖X − S‖ < β + δ1

and

Γ1(X,S) ≤ b1 + a1‖X‖
≤ b1 + a1 (β + ‖X − S‖) (= µ̄1 (‖X − S‖))
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< b1 + a1β + a1δ1 (= µ̄1(δ1))

≤ b1 + a1β + (1− b1 − a1β) = 1. �

Lemma 3.2. Under the assumption of Lemma 3.1, if

b1 + a1β < 1,

then

Γ1(Y, Z) ≤ ν̄1 (‖Y − S‖, ‖Z − S‖) < 1, ∀ Y, Z ∈ B̄2 := B̄ (S, δ′1) ,

where Γ1 is in (3.2),

(3.4) δ′1 ∈
(

0,
1− b1 − a1β

2a1

)
,

and ν̄1(y, z) := b1 + a1β + a1(y + z).

Proof. Let Y,Z ∈ B̄2. Then from

‖Y − S‖ ≤ δ′1 and ‖B−1AS −B−1AZ‖ ≤ ‖B−1A‖‖Z − S‖ ≤ a1δ′1,

we have

‖Y ‖ ≤ β + δ′1 and ‖B−1AZ‖ ≤ b1 + a1δ
′
1.

The reminder of the proof is similar to Lemma 3.1. �

Remark 3.3. In Lemmas 3.1 and 3.2, if ‖ · ‖p denotes either the 1-, 2- or ∞-
matrix norms then, from the property of the Kronecker product [13, p. 439],
the bound condition b1 + a1β < 1 implies

1 > b1 + a1β = ‖B−1AS‖p + ‖S‖p‖B−1A‖p
=
∥∥Im2 ⊗B−1AS

∥∥
p

+
∥∥ST ⊗B−1A∥∥

p

≥
∥∥Im2 ⊗B−1AS + ST ⊗B−1A

∥∥
p

≥ ρ (F ′1[S]) ,

where F ′1[S] is the Frechet derivative of F1 at S.

From Theorem 2.7, Lemma 3.1 and Lemma 3.2 the local convergence theo-
rem for F1 follows.

Theorem 3.4. Under the assumption of Lemma 3.1, if

b1 + a1β < 1,

then for any X0 ∈ B(S, δ1), the iterates generated by (1.2) of i = 1 converges
to S. Moreover, S is the unique solvent of QME (1.1) in B̄ (S, δ′1) and

lim sup
k→∞

k
√
‖Xk − S‖ ≤ b1 + a1β,

where δ1 and δ′1 are in (3.3) of Lemma 3.1 and in (3.4) in Lemma 3.2 respec-
tively.
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Theorem 3.4 asserts that unless ‖B−1A‖ is much less than 1 we can not
assure the convergence to a solvent confidently even though a initial matrix is
properly closed to the solvent.

4. Local convergence for F2

Since F2 (1.3) and F3 (1.4) have the matrix inverse operations, we need the
following perturbation lemma.

Lemma 4.1. For L,M,N ∈ Cm×m, if L is nonsingular and ‖L−1‖‖M‖ < 1,
then L−M is also nonsingular and

‖(L−M)−1N‖ ≤ ‖L−1N‖
1− ‖L−1‖‖M‖

and ‖N(L−M)−1‖ ≤ ‖NL−1‖
1− ‖M‖‖L−1‖

.

For X ∈ Rm×m if F2(X) (1.3) is well-defined, then from the Neumann
lemma for a sufficiently small perturbation matrix H ∈ Rm×m we have

F2(X +H) = ((B −AX)−AH)
−1
C

= (B −AX)
−1
C + (B −AX)−1AH((B −AX)−AH)−1C

= F2(X) + (B −AX)−1AH(B −AX −AH)−1C.

From the above expression H := Y −X yields

F2(Y )−F2(X) = (B −AX)−1A(Y −X)(B −AY )−1C

and

‖F2(Y )−F2(X)‖ = ‖ (B −AX)
−1
A (Y −X) (B −AY )

−1
C‖

≤ ‖ (B −AX)
−1
A‖‖ (B −AY )

−1
C‖ ‖Y −X‖ .

Define

(4.1) Γ2(X,Y ) := ‖ (B −AX)
−1
A‖‖ (B −AY )

−1
C‖,

then we have following lemmas.

Lemma 4.2. Let S ∈ Rm×m be a solvent of QME (1.1), and suppose that
B −AS is nonsingular,

‖(B −AS)−1‖‖A‖ ≤ a2, ‖S‖ ≤ β,
where a2 and β are positive constants. Then, for a positive number δ > 0 such
that δ < a−12 , F2 is well defined on B̄ := B̄ (S, δ)

Γ2(X,S) ≤ µ̄2(‖X − S‖) < µ̄2(δ), ∀X ∈ B
and

Γ2(Y, Z) ≤ ν̄2(‖Y − S‖, ‖Z − S‖) ≤ ν̄2(δ, δ), ∀Y,Z ∈ B̄,
where Γ2 is in (4.1),

(4.2) µ̄2(x) =
a2β

(1− a2x)
and ν̄2(y, z) =

a2β

(1− a2y) (1− a2z)
.
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Proof. From the assumption we have

S = (B −AS)−1C.

Let X ∈ B. Then since

‖(B −AS)−1A(X − S)‖ ≤ ‖(B −AS)−1‖‖A‖‖X − S‖ < a2δ < 1,

from

B −AX = (B −AS)−A(X − S)

and Lemma 4.1, B −AX is nonsingular and∥∥∥(B −AX)
−1
A
∥∥∥ ≤ a2

1− a2 ‖X − S‖
<

a2
1− a2δ

.

Therefore we have

Γ2(X,S) = ‖(B −AX)−1A‖‖S‖

≤ a2β

1− a2 ‖X − S‖
(= µ̄2(‖X − S‖)

<
a2β

1− a2δ
(= µ̄2(δ)) .

It is easy to prove the remaining result. �

Lemma 4.3. Under the assumption of Lemma 4.2, if

a2β < 1,

then

Γ2(X,S) ≤ µ̄2 (‖X − S‖) < 1, ∀ X ∈ B := B(S, δ2),

where Γ2 and µ̄2 are in (4.1) and (4.2) of Lemma 4.2 respectively, and

(4.3) δ2 :=
1− a2β
a2

.

Proof. Since 1− a2β > 0 and ‖X − S‖ ≤ δ2, clearly we have

µ̄2 (‖X − S‖) =
a2β

1− a2‖X − S‖
≤ a2β

1− a2δ2
≤ 1.

Therefore from Lemma 4.1 we have required result. �

Lemma 4.4. Under the assumption of Lemma 4.2, if

a2β < 1,

then

Γ2(Y,Z) ≤ ν̄2 (‖Y − S‖, ‖Z − S‖) < 1, ∀ Y,Z ∈ B̄ := B̄(S, δ′2),

where Γ2 and ν̄2 are in (4.1) and (4.2) of Lemma 4.2 respectively, and

(4.4) δ′2 ∈
(

0,
1−
√
a2β

a2

)
.



LOCAL CONVERGENCE OF ITERATION METHODS FOR SOLVING QM 207

Proof. If we define the scalar quadratic polynomial such as

f(x) = a22x
2 − 2a2x+ 1− a2β,

then from {
f(0) = 1− a2β > 0

f
(
a−12

)
= 1− 2 + 1− a2β < 0

we acquire

f(x) > 0, ∀x ∈
(

0,
1−
√
a2β

a2

)
.

This implies that

a22 (δ′2)
2 − 2a2 (δ′2) + 1− a2β > 0

⇔ (1− a2 (δ′2))
2 − a2β > 0

⇔ (1− a2 (δ′2))
2
> a2β

⇔1 >
a2β

(1− a2 (δ′2))
2 .(4.5)

Let Y,Z ∈ B̄. Then since δ′2 < α−12 , from Lemma 4.2 we have

(4.6) Γ2(Y,Z) ≤ ν̄2(‖X − S‖, ‖Y − S‖) ≤ ν̄2(δ′2, δ
′
2).

Also from (4.5) we get

(4.7) ν̄2(δ′2, δ
′
2) =

a2β

(1− βδ′2)
2 < 1.

Therefore from (4.6) and (4.7) we have required result. �

Remark 4.5. In Lemmas 4.3 and 4.4 if ‖ · ‖p denotes either the 1-, 2- or ∞-
matrix norms, then the bound condition a2β < 1 implies

1 > a2β = ‖ (B −AS)
−1
A‖p‖S‖p

=
∥∥ST ⊗ (B −AS)−1A

∥∥
p

≥ ρ (F ′2[S]) ,

where F ′2[S] is the Frechet derivative of F2 at S.

Theorem 2.7, Lemma 4.2 and Lemma 4.4 lead the following theorem.

Theorem 4.6. Under the assumption of Lemma 4.2, if

a2β < 1,

then, for any X0 ∈ B := B(S, δ2), the iterations generated by (1.2) of i = 2
converges to S. Moreover, S is the unique solvent of QME (1.1) in B̄ (S, δ′2)
and

lim sup
k→∞

k
√
‖Xk − S‖ ≤ a2β,

where δ2 and δ′2 are in (4.3) of Lemma 4.3 and (4.4) in Lemma 4.4 respectively.
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5. Local convergence for F3

For X ∈ Rm×m if F3(X) (1.5) is well-defined, then by the Neumann lemma
for a sufficiently small matrix H ∈ Rm×m we have

F3(X +H) = A−1
(
B − C(X +H)−1

)
= A−1

(
B − C

(
X−1 −X−1H(X +H)−1

))
= F3(X) +A−1CX−1H(X +H)−1.

Let H = Y −X. Then from the above equality we have

F3(Y )−F3(X) = A−1CX−1(Y −X)Y −1

and

‖F3(Y )−F3(X)‖ =
∥∥A−1CX−1(Y −X)Y −1

∥∥
≤
∥∥A−1CX−1∥∥∥∥Y −1∥∥ ‖Y −X‖ .

Define

(5.1) Γ3(X,Y ) :=
∥∥A−1CY −1∥∥∥∥X−1∥∥

then we have the following lemma.

Lemma 5.1. Let S ∈ Rm×m be a solvent of QME (1.1) and suppose that A
and S are nonsingular,

‖A−1CS−1‖ ≤ a3, ‖S−1‖ ≤ β′,

where a3 and β′ are positive constants. Then, for a positive number δ > 0 such
that δ < β3, F3 is well defined on B̄ := B̄ (S, δ),

Γ3(X,S) ≤ µ̄3(‖X − S‖) < µ̄3(δ), ∀X ∈ B

and

Γ3(Y, Z) ≤ ν̄3(‖Y − S‖, ‖Z − S‖) ≤ ν̄3(δ, δ), ∀Y,Z ∈ B̄,
where Γ3 is in (5.1),

(5.2) µ̄3(x) =
a3β

′

(1− β′x)
and ν̄3(y, z) =

a3β
′

(1− β′y) (1− β′z)
.

Proof. Let X,Y, Z ∈ B. Then since

‖S−1(S −X)‖ < β′δ < 1

from X = S − (S −X) and the Neumann lemma, X is nonsingular and

‖X−1‖ ≤ β′

1− β′‖X − S‖
<

β′

1− β′δ
and

‖Y −1‖ ≤ β′

1− β′‖Y − S‖
≤ β′

1− β′δ
.
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From Lemma 2.2 also we have

‖A−1CZ−1‖ ≤ a3
1− β′‖Z − S‖

≤ a3
1− β′δ

.

Therefore we have required results. �

Lemma 5.2. Under the assumption of Lemma 5.1, if

a3β
′ < 1,

then

Γ3(X,S) ≤ µ̄3 (‖X − S‖) < 1, ∀ X ∈ B := B(S, δ3)

and

Γ3(Y,Z) ≤ ν̄3 (‖Y − S‖, ‖Z − S‖) < 1, ∀ X ∈ B̄ := B̄(S, δ′3),

where Γ3 is in (5.1), µ̄3 and ν̄3 are in (5.1) of Lemma 5.1, and

(5.3) δ3 :=
1− a3β′

β′
> 0 and δ′3 ∈

(
0,

1−
√
a3β′

β′

)
.

Proof. The proof is similar to those of Lemma 4.3 and Lemma 4.4. �

Remark 5.3. In Lemma 5.2 if ‖ · ‖p denotes either the 1-, 2- or ∞- matrix
norms, then the bound condition a3β

′ < 1 implies

1 > a3β
′ = ‖A−1CS−1‖p‖S−1‖p

=
∥∥∥(S−1)T ⊗A−1CS−1∥∥∥

p
≥ ρ (F ′3[S]) ,

where F ′3[S] is the Frechet derivative of F3 at S.

From Theorem 2.7 and Lemma 5.2 we have the following theorem.

Theorem 5.4. Under the assumption of Lemma 5.1, if

a3β
′ < 1,

then, for any X0 ∈ B := B(S, δ3), the iterates generated by (1.2) of i = 3
converges to S. Moreover, S is the unique solvent of QME (1.1) in B̄ (S, δ′3)
and

lim sup
k→∞

k
√
‖Xk − S‖ ≤ a3β′,

where δ3 and δ′3 are in (5.2) of Lemma 5.1.

6. Numerical experiments

In this section, we will consider the local convergence for F1. The solvent S
of the quadratic matrix equation derived by the Newton’s method. We calculate
some constants and δ, the radius of convergence derived by the function in this
paper.
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Example 6.1. In this example, we will consider the quadratic matrix equation
AX2 +BX + C = 0 where coefficient matrices are following matrices.

A = I, B =



20 −10
−10 30

. . .
. . .

. . . 30 −10
−10 20

 ,

C =



15 −5
−5 15

. . .
. . .

. . . 15 −5
−5 15

 .

This is a well-known example for finding the non-positive maximal solution.
From the above matrices we can calculate constants by using matrix 2-Norm.

F1 for Example 6.1 n = 10 n = 30 n = 50 n = 70
a1 0.1000 0.1000 0.1000 0.1000
b1 0.0743 0.0734 0.0734 0.0734
β 0.8848 0.8843 0.8843 0.8843

1−b1−a1β
a1

8.3726 8.3821 8.3821 8.3821
1−b1−a1β

a1
4.1863 4.1911 4.1911 4.1911

F2 for Example 6.1 n = 10 n = 30 n = 50 n = 70
a2 0.1069 0.1061 0.1060 0.1059
β 0.8848 0.8843 0.8843 0.8843

1−a2β
a2

8.4658 8.5388 8.5515 8.5557
1−
√
a2β

a2
6.4742 6.5364 6.5471 6.5507

Specially n = 2, we can set the coefficient matrices as follows.

A =

[
1 0
0 1

]
, B =

[
20 −10
−10 20

]
, C =

[
15 −5
−5 15

]
.

From the above coefficient matrices, we find the solvent S and compute con-
stants.

S =

[
−0.9046 −0.2224
−0.2224 −0.9046

]
,

V =

[
0.7071 −0.7071
0.7071 0.7071

]
,

D =

[
−1.1270 0

0 −0.6822

]
.
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F1
a1 b1 β 1−b1−a1β

a1

1−b1−a1β
2a1

0.1000 0.1127 1.1270 7.7460 1.1270

We can easily see the local convergence by graph when we set starting ma-
trices X0 as following form.

X0 = V (D +D0)V −1 where D0 = diag(x, y).

By using D0 = diag(x, y), we graph local convergence of F1 in rectangular
coordinate system. The origin is the solvent. x-axis and y-axis present elements
of D0 = diag(x, y). On the graph, black points are interior points of the circle
whose radius is δ1. The points converge to the solution are presented by red
color (inner part of rectangular except the circle) and yellow points (outer part
of the inner rectangular) don’t converge.

Figure 6.1. The local convergence of F1 in Example 6.1

Example 6.2. In this example, we will consider the quadratic matrix equation
CX2 + BX + A = 0 where the coefficient matrices are in the above example
with the starting matrix is the identity matrix. The inverse of the solvent of
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this equation is the solvent of the matrix equation AX2 + BX + C = 0 in
Example 6.1.

F3 for Example 6.1 n = 10 n = 30 n = 50 n = 70
a3 0.1118 0.1094 0.1093 0.1093
β′ 0.8848 0.8843 0.8843 0.8843

1−a3β′

β′ 1.0184 1.0215 1.0215 1.0215
1−
√
a3β′

β′ 0.7747 1.0215 0.7793 0.7793

Example 6.3. Consider the following coefficient matrices andAX2+BX+C =
0. It is easy to verify that ‖B−1A‖ + ‖B−1C‖ < 1 where α = 4 and β = 30
[19].

Aij=

{
2/α i+ j = n+ 1

1/α others,
Bij=


15 i+ j = n+ 1

−3 i+ 1 = j

−3 i = j + n− 2

−1 others,

Cij=

{
15/β i = j

−1/β others.

From the above matrices we can calculate constants by using matrix 2-Norm.

F1 for Example 6.2 n = 10 n = 30 n = 50
a1 0.7236 0.4825 0.3538
b1 0.0398 0.0138 0.0110
β 0.0552 0.0386 0.0387

1−b1−a1β
a1

1.2716 2.0053 2.7564
1−b1−a1β

a1
0.6358 1.0026 1.3782

F2 for Example 6.2 n = 10 n = 30 n = 50
a2 0.9106 2.6591 5.6171
β 0.0552 0.0386 0.0387

1−a2β
a2

1.0429 0.3375 0.1393
1−
√
a2β

a2
0.8519 0.2556 0.0950

The local convergence of functional iterative methods can be guaranteed by
using the Lipschitz condition. It is important to find a set which makes the
methods satisfy the Lipschitz condition. In this paper, we suggest a procedure
which make easy to find the set. In specially, we show the local convergence of
fixed point methods for a quadratic matrix equation.
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