DOI QR코드

DOI QR Code

Factorization of the Jet Mass Distribution in the Small R Limit

  • Idilbi, Ahmad (Department of Physics, Wayne State University) ;
  • Kim, Chul (Institute of Convergence Fundamental Studies and School of Liberal Arts, Seoul National University of Science and Technology)
  • Received : 2018.05.23
  • Published : 2018.11.15

Abstract

We derive a factorization theorem for the jet mass distribution with a given $p^J_T$ for the inclusive production, where $p^J_T$ is a large jet transverse momentum. Considering the small jet radius limit ($R{\ll}1$), we factorize the scattering cross section into a partonic cross section, the fragmentation function to a jet, and the jet mass distribution function. The decoupled jet mass distributions for quark and gluon jets are well-normalized and scale invariant, and they can be extracted from the ratio of two scattering cross sections such as $d{\sigma}/(dp^J_TdM^2_J)$ and $d{\sigma}/dp^J_T $. When $M_J{\sim}p^J_TR$, the perturbative series expansion for the jet mass distributions works well. As the jet mass becomes small, large logarithms of $M_J/(p^J_TR)$ appear, and they can be systematically resummed through a more refined factorization theorem for the jet mass distribution.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. Dasgupta, F. Dreyer, G. P. Salam and G. Soyez, JHEP 1504, 039 (2015) [arXiv:1411.5182 [hep-ph]].
  2. M. Dasgupta, F. A. Dreyer, G. P. Salam and G. Soyez, JHEP 1606, 057 (2016) [arXiv:1602.01110 [hep-ph]].
  3. Z. B. Kang, F. Ringer and I. Vitev, JHEP 1610, 125 (2016) [arXiv:1606.06732 [hep-ph]].
  4. L. Dai, C. Kim and A. K. Leibovich, Phys. Rev. D 94, 114023 (2016) [arXiv:1606.07411 [hep-ph]]. https://doi.org/10.1103/PhysRevD.94.114023
  5. A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, JHEP 1008, 064 (2010) [arXiv:1004.3483 [hep-ph]].
  6. M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Span-nowsky, JHEP 1210, 126 (2012) [arXiv:1207.1640 [hep-ph]].
  7. Y. T. Chien, R. Kelley, M. D. Schwartz and H. X. Zhu, Phys. Rev. D 87, 014010 (2013). https://doi.org/10.1103/PhysRevD.87.014010
  8. T. T. Jouttenus, I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, Phys. Rev. D 88, 054031 (2013). https://doi.org/10.1103/PhysRevD.88.054031
  9. D. W. Kolodrubetz, P. Pietrulewicz, I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, JHEP 1612, 054 (2016) [arXiv:1605.08038 [hep-ph]].
  10. B. Jager, M. Stratmann and W. Vogelsang, Phys. Rev. D 70, 034010 (2004). https://doi.org/10.1103/PhysRevD.70.034010
  11. M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804, 063 (2008) [arXiv:0802.1189 [hep-ph]].
  12. S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Nucl. Phys. B 406, 187 (1993). https://doi.org/10.1016/0550-3213(93)90166-M
  13. S. D. Ellis and D. E. Soper, Phys. Rev. D 48, 3160 (1993) [hep-ph/9305266]. https://doi.org/10.1103/PhysRevD.48.3160
  14. Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R.Webber, JHEP 9708, 001 (1997) [hep-ph/9707323].
  15. C. W. Bauer, S. Fleming and M. E. Luke, Phys. Rev. D 63, 014006 (2000) [hep-ph/0005275]. https://doi.org/10.1103/PhysRevD.63.014006
  16. C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020 (2001) [hep-ph/0011336]. https://doi.org/10.1103/PhysRevD.63.114020
  17. C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D 65, 054022 (2002) [hep-ph/0109045]. https://doi.org/10.1103/PhysRevD.65.054022
  18. C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Phys. Rev. D 66, 014017 (2002) [hep-ph/0202088]. https://doi.org/10.1103/PhysRevD.66.014017
  19. M. Procura and W. J. Waalewijn, Phys. Rev. D 85, 114041 (2012) [arXiv:1111.6605 [hep-ph]]. https://doi.org/10.1103/PhysRevD.85.114041
  20. C. W. Bauer, F. J. Tackmann, J. R.Walsh and S. Zuberi, Phys. Rev. D 85, 074006 (2012) [arXiv:1106.6047 [hep-ph]]. https://doi.org/10.1103/PhysRevD.85.074006
  21. M. Procura, W. J.Waalewijn and L. Zeune, JHEP 1502, 117 (2015) [arXiv:1410.6483 [hep-ph]].
  22. T. Becher, M. Neubert, L. Rothen and D. Y. Shao, Phys. Rev. Lett. 116, 192001 (2016) [arXiv:1508.06645 [hep-ph]]. https://doi.org/10.1103/PhysRevLett.116.192001
  23. Y. T. Chien, A. Hornig and C. Lee, Phys. Rev. D 93, 014033 (2016) [arXiv:1509.04287 [hep-ph]]. https://doi.org/10.1103/PhysRevD.93.014033
  24. L. Dai, C. Kim and A. K. Leibovich, Phys. Rev. D 95, 074003 (2017) [arXiv:1701.05660 [hep-ph]]. https://doi.org/10.1103/PhysRevD.95.074003
  25. M. Procura and I. W. Stewart, Phys. Rev. D 81, 074009 (2010) Erratum: [Phys. Rev. D 83, 039902 (2011)] [arXiv:0911.4980 [hep-ph]]. https://doi.org/10.1103/PhysRevD.83.074009
  26. A. Jain, M. Procura and W. J. Waalewijn, JHEP 1105, 035 (2011) [arXiv:1101.4953 [hep-ph]].
  27. M. Ritzmann and W. J. Waalewijn, Phys. Rev. D 90, 054029 (2014) [arXiv:1407.3272 [hep-ph]]. https://doi.org/10.1103/PhysRevD.90.054029
  28. S. D. Ellis, C. K. Vermilion, J. R. Walsh, A. Hornig and C. Lee, JHEP 1011, 101 (2010) [arXiv:1001.0014 [hep-ph]].
  29. W. M. Y. Cheung, M. Luke and S. Zuberi, Phys. Rev. D 80, 114021 (2009) [arXiv:0910.2479 [hep-ph]]. https://doi.org/10.1103/PhysRevD.80.114021
  30. J. Chay, C. Kim and I. Kim, Phys. Rev. D 92, 034012 (2015) [arXiv:1505.00121 [hep-ph]]. https://doi.org/10.1103/PhysRevD.92.034012
  31. A. V. Manohar and I. W. Stewart, Phys. Rev. D 76, 074002 (2007) [hep-ph/0605001]. https://doi.org/10.1103/PhysRevD.76.074002
  32. J. Chay, C. Kim, Y. G. Kim and J. P. Lee, Phys. Rev. D 71, 056001 (2005) [hep-ph/0412110]. https://doi.org/10.1103/PhysRevD.71.056001
  33. G. P. Korchemsky and A. V. Radyushkin, Nucl. Phys. B 283, 342 (1987). https://doi.org/10.1016/0550-3213(87)90277-X
  34. I. A. Korchemskaya and G. P. Korchemsky, Phys. Lett. B 287, 169 (1992). https://doi.org/10.1016/0370-2693(92)91895-G
  35. M. Neubert, Phys. Rev. D 72, 074025 (2005) [hep-ph/0506245]. https://doi.org/10.1103/PhysRevD.72.074025
  36. T. Becher and M. Neubert, Phys. Rev. Lett. 97, 082001 (2006) [hep-ph/0605050]. https://doi.org/10.1103/PhysRevLett.97.082001
  37. M. Dasgupta and G. P. Salam, Phys. Lett. B 512, 323 (2001) [hep-ph/0104277]. https://doi.org/10.1016/S0370-2693(01)00725-0
  38. A. Banfi, G. Marchesini and G. Smye, JHEP 0208, 006 (2002) [hep-ph/0206076].
  39. T. Becher, B. D. Pecjak and D. Y. Shao, JHEP 1612, 018 (2016) [arXiv:1610.01608 [hep-ph]].
  40. M. Beneke, P. Falgari, S. Klein and C. Schwinn, Nucl. Phys. B 855, 695 (2012) [arXiv:1109.1536 [hep-ph]]. https://doi.org/10.1016/j.nuclphysb.2011.10.021
  41. A. Banfi and M. Dasgupta, Phys. Lett. B 628, 49 (2005) [hep-ph/0508159]. https://doi.org/10.1016/j.physletb.2005.08.125
  42. Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, JHEP 0612, 044 (2006) [hep-ph/0610242].
  43. M. Dasgupta, A. Fregoso, S. Marzani and G. P. Salam, JHEP 1309, 029 (2013) [arXiv:1307.0007 [hep-ph]].
  44. A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, JHEP 1405, 146 (2014) [arXiv:1402.2657 [hep-ph]].
  45. C. Frye, A. J. Larkoski, M. D. Schwartz and K. Yan, JHEP 1607, 064 (2016) [arXiv:1603.09338 [hep-ph]].

Cited by

  1. Factorized Groomed Jet Mass Distribution in Inclusive Jet Processes vol.74, pp.5, 2018, https://doi.org/10.3938/jkps.74.439
  2. NLL′ resummation of jet mass vol.2019, pp.4, 2018, https://doi.org/10.1007/jhep04(2019)020
  3. Collinear drop vol.2020, pp.6, 2018, https://doi.org/10.1007/jhep06(2020)064
  4. Invariant jet mass measurements in $ pp$ collisions at $ \sqrt{s}=200 \mathrm{GeV}$ at RHIC vol.104, pp.5, 2021, https://doi.org/10.1103/physrevd.104.052007