• Title/Summary/Keyword: commutative

Search Result 618, Processing Time 0.024 seconds

A WEAKER NOTION OF THE FINITE FACTORIZATION PROPERTY

  • Henry Jiang;Shihan Kanungo;Hwisoo Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.313-329
    • /
    • 2024
  • An (additive) commutative monoid is called atomic if every given non-invertible element can be written as a sum of atoms (i.e., irreducible elements), in which case, such a sum is called a factorization of the given element. The number of atoms (counting repetitions) in the corresponding sum is called the length of the factorization. Following Geroldinger and Zhong, we say that an atomic monoid M is a length-finite factorization monoid if each b ∈ M has only finitely many factorizations of any prescribed length. An additive submonoid of ℝ≥0 is called a positive monoid. Factorizations in positive monoids have been actively studied in recent years. The main purpose of this paper is to give a better understanding of the non-unique factorization phenomenon in positive monoids through the lens of the length-finite factorization property. To do so, we identify a large class of positive monoids which satisfy the length-finite factorization property. Then we compare the length-finite factorization property to the bounded and the finite factorization properties, which are two properties that have been systematically investigated for more than thirty years.

A GENERALIZATION OF THE SYMMETRY PROPERTY OF A RING VIA ITS ENDOMORPHISM

  • Fatma Kaynarca;Halise Melis Tekin Akcin
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.373-397
    • /
    • 2024
  • Lambek introduced the concept of symmetric rings to expand the commutative ideal theory to noncommutative rings. In this study, we propose an extension of symmetric rings called strongly α-symmetric rings, which serves as both a generalization of strongly symmetric rings and an extension of symmetric rings. We define a ring R as strongly α-symmetric if the skew polynomial ring R[x; α] is symmetric. Consequently, we provide proofs for previously established outcomes regarding symmetric and strongly symmetric rings, directly derived from the results we have obtained. Furthermore, we explore various properties and extensions of strongly α-symmetric rings.

TOTALLY REAL AND COMPLEX SUBSPACES OF A RIGHT QUATERNIONIC VECTOR SPACE WITH A HERMITIAN FORM OF SIGNATURE (n, 1)

  • Sungwoon Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.547-564
    • /
    • 2024
  • We study totally real and complex subsets of a right quarternionic vector space of dimension n + 1 with a Hermitian form of signature (n, 1) and extend these notions to right quaternionic projective space. Then we give a necessary and sufficient condition for a subset of a right quaternionic projective space to be totally real or complex in terms of the quaternionic Hermitian triple product. As an application, we show that the limit set of a non-elementary quaternionic Kleinian group 𝚪 is totally real (resp. commutative) with respect to the quaternionic Hermitian triple product if and only if 𝚪 leaves a real (resp. complex) hyperbolic subspace invariant.

AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES

  • Gholamreza Pirmohammadi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.273-280
    • /
    • 2024
  • Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.

S-VERSIONS AND S-GENERALIZATIONS OF IDEMPOTENTS, PURE IDEALS AND STONE TYPE THEOREMS

  • Bayram Ali Ersoy;Unsal Tekir;Eda Yildiz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.83-92
    • /
    • 2024
  • Let R be a commutative ring with nonzero identity and M be an R-module. In this paper, we first introduce the concept of S-idempotent element of R. Then we give a relation between S-idempotents of R and clopen sets of S-Zariski topology. After that we define S-pure ideal which is a generalization of the notion of pure ideal. In fact, every pure ideal is S-pure but the converse may not be true. Afterwards, we show that there is a relation between S-pure ideals of R and closed sets of S-Zariski topology that are stable under generalization.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

GRADED PSEUDO-VALUATION RINGS

  • Fatima-Zahra Guissi;Hwankoo Kim;Najib Mahdou
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.953-973
    • /
    • 2024
  • Let R = ⊕α∈Γ Rα be a commutative ring graded by an arbitrary torsionless monoid Γ. A homogeneous prime ideal P of R is said to be strongly homogeneous prime if aP and bR are comparable for any homogeneous elements a, b of R. We will say that R is a graded pseudo-valuation ring (gr-PVR for short) if every homogeneous prime ideal of R is strongly homogeneous prime. In this paper, we introduce and study the graded version of the pseudo-valuation rings which is a generalization of the gr-pseudo-valuation domains in the context of arbitrary Γ-graded rings (with zero-divisors). We then study the possible transfer of this property to the graded trivial ring extension and the graded amalgamation. Our goal is to provide examples of new classes of Γ-graded rings that satisfy the above mentioned property.

ALGEBRAIC CONSTRUCTIONS OF GROUPOIDS FOR METRIC SPACES

  • Se Won Min;Hee Sik Kim;Choonkil Park
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.533-544
    • /
    • 2024
  • Given a groupoid (X, *) and a real-valued function d : X → R, a new (derived) function Φ(X, *)(d) is defined as [Φ(X, *)(d)](x, y) := d(x * y) + d(y * x) and thus Φ(X, *) : RX → RX2 as well, where R is the set of real numbers. The mapping Φ(X, *) is an R-linear transformation also. Properties of groupoids (X, *), functions d : X → R, and linear transformations Φ(X, *) interact in interesting ways as explored in this paper. Because of the great number of such possible interactions the results obtained are of necessity limited. Nevertheless, interesting results are obtained. E.g., if (X, *, 0) is a groupoid such that x * y = 0 = y * x if and only if x = y, which includes the class of all d/BCK-algebras, then (X, *) is *-metrizable, i.e., Φ(X, *)(d) : X2 → X is a metric on X for some d : X → R.

A Note on Noetherian Polynomial Modules

  • Jung Wook Lim
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.3
    • /
    • pp.417-421
    • /
    • 2024
  • Let R be a commutative ring and let M be an R-module. In this note, we give a brief proof of the Hilbert basis theorem for Noetherian modules. This states that if R contains the identity and M is a Noetherian unitary R-module, then M[X] is a Noetherian R[X]-module. We also show that if M[X] is a Noetherian R[X]-module, then M is a Noetherian R-module and there exists an element e ∈ R such that em = m for all m ∈ M. Finally, we prove that if M[X] is a Noetherian R[X]-module and annR(M) = (0), then R has the identity and M is a unitary R-module.

A study on teaching the system of numbers considering mathematical connections (수학적 연결성을 고려한 수 체계의 지도에 관한 연구)

  • Chung, Young-Woo;Kim, Boo-Yoon;Pyo, Sung-Soo
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.473-495
    • /
    • 2011
  • Across the secondary school, students deal with the algebraic conditions like as identity, inverse, commutative law, associative law and distributive law. The algebraic structures, group, ring and field, are determined by these algebraic conditions. But the conditioning of these algebraic structures are not mentioned at all, as well as the meaning of the algebraic structures. Thus, students is likely to be considered the algebraic conditions as productions from the number sets. In this study, we systematize didactically the meanings of algebraic conditions and algebraic structures, considering connections between the number systems and the solutions of the equation. Didactically systematizing is to construct the model for student's natural mental activity, that is, to construct the stream of experience through which students are considered mathematical concepts as productions from necessities and high probability. For this purpose, we develop the program for the gifted, which its objective is to teach the meanings of the number system and to grasp the algebraic structure conceptually that is guaranteed to solve equations. And we verify the effectiveness of this developed program using didactical experiment. Moreover, the program can be used in ordinary students by replacement the term 'algebraic structure' with the term such as identity, inverse, commutative law, associative law and distributive law, to teach their meaning.