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Abstract. Let R be a commutative ring and let M be an R-module. In this note, we give

a brief proof of the Hilbert basis theorem for Noetherian modules. This states that if R

contains the identity and M is a Noetherian unitary R-module, then M [X] is a Noetherian

R[X]-module. We also show that if M [X] is a Noetherian R[X]-module, then M is a

Noetherian R-module and there exists an element e ∈ R such that em = m for all m ∈ M .

Finally, we prove that if M [X] is a Noetherian R[X]-module and annR(M) = (0), then R

has the identity and M is a unitary R-module.

1. Introduction

Let R be a commutative ring and let R[X] be the polynomial ring over R. For
an R-module M , let M [X] be the set of polynomials in an indeterminate X with
coefficients in M . Then M [X] is an R[X]-module under the usual addition and the
scalar multiplication as follows: For f =

∑m
i=0 aiX

i, g =
∑n

i=0 biX
i ∈ M [X] with

m ≥ n and h =
∑ℓ

i=0 riX
i ∈ R[X],

f + g :=
∑n

i=0(ai + bi)X
i +

∑m
i=n+1 aiX

i

and

hf :=
∑ℓ+m

i=0 ciX
i,

where ci =
∑i

k=0 rkai−k for all i = 0, . . . , ℓ+m (cf. [2, Chapter 2, Exercise 6]). We
call M [X] the polynomial R[X]-module.

Let R be a commutative ring and let M be an R-module. Recall that M is
a Noetherian module if it satisfies the ascending chain condition on R-submodules
of M (or equivalently, every R-submodule of M is finitely generated); and R is a
Noetherian ring if R is a Noetherian R-module. It is well known as Hilbert basis
theorem for Noetherian modules that if R is a commutative ring with identity and
M is a Noetherian unitary R-module, then M [X] is a Noetherian R[X]-module [2,
Chapter 7, Exercise 10]. When M = R, it recovers the well-known Hilbert basis
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theorem which states that if R is a Noetherian ring, then R[X] is also a Noetherian
ring [2, Chapter 7, Theorem 7.5] (or [4, Theorem 69]).

In this note, we study Hilbert basis theorem for Noetherian modules. We first give
a brief proof of Hilbert basis theorem for Noetherian modules. We next consider the
converse of Hilbert basis theorem for Noetherian modules. More precisely, we show
that if M [X] is a Noetherian R[X]-module, then M is a Noetherian R-module and
there exists an element e ∈ R such that em = m for all m ∈ M . We also prove
that if M [X] is a Noetherian R[X]-module and annR(M) = (0), then R contains the
identity and M is a unitary R-module.

2. Main Results

We start this section with Hilbert basis theorem for Noetherian modules. While
the result appears in [2, Chapter 7, Exercise 10], we insert a brief proof for the sake
of reader’s easy understanding.

Theorem 1. Let R be a commutative ring with identity and let M be a unitary R-
module. If M is a Noetherian R-module, then M [X] is a Noetherian R[X]-module.

Proof. Suppose to the contrary that M [X] is not a Noetherian R[X]-module. Then
there exists an R[X]-submodule N of M [X] which is not finitely generated. Let f1
be a nonzero element of least degree in N . Then ⟨f1⟩ ⊊ N . Let f2 be an element
of least degree in N \ ⟨f1⟩. Then ⟨f1, f2⟩ ⊊ N . By repeating this process, for all
integers k ≥ 1, there exists an element fk+1 of least degree in N \ ⟨f1, . . . , fk⟩. For
each integer i ≥ 1, let ai be the leading coefficient of fi and let di be the degree
of fi. Then di ≤ di+1 for all integers i ≥ 1. Since M is a Noetherian R-module,
the ascending chain ⟨a1⟩ ⊆ ⟨a1, a2⟩ ⊆ · · · of R-submodules of M is stationary; so
there exists an integer ℓ ≥ 1 such that ⟨a1, . . . , aℓ⟩ = ⟨a1, . . . , aℓ+1⟩. Therefore
aℓ+1 ∈ ⟨a1, . . . , aℓ⟩. Write aℓ+1 = r1a1 + · · · + rℓaℓ for some r1, . . . , rℓ ∈ R. Let
g = fℓ+1 −

(
(r1X

dℓ+1−d1)f1 + · · ·+ (rℓX
dℓ+1−dℓ)fℓ

)
. Then g ∈ N \ ⟨f1, . . . , fℓ⟩ and

deg(g) < deg(fℓ+1). This is a contradiction to the choice of fℓ+1. Thus M [X] is a
Noetherian R[X]-module. □

We next consider the converse of Hilbert basis theorem for Noetherian modules.
In order to study the converse of Hilbert basis theorem for Noetherian modules, we
give a result which is required to prove the main theorem.

Lemma 2. Let R be a commutative ring and let M be an R-module. If M [X] is a
Noetherian R[X]-module, then the following assertions hold.

(1) M is a Noetherian R-module.
(2) For each m ∈ M , there exists an element r ∈ R such that rm = m.

Proof. (1) Let N be an R-submodule of M . Then N [X] is an R[X]-submodule of
M [X]. Since M [X] is a Noetherian R[X]-module, there exist g1, . . . , gk ∈ N [X] such
that N [X] = ⟨g1, . . . , gk⟩. Let n ∈ N . Then we obtain

n = f1g1 + · · ·+ fkgk + ℓ1g1 + · · ·+ ℓkgk
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for some f1, . . . , fk ∈ R[X] and ℓ1, . . . , ℓk ∈ Z. For each i = 1, . . . , k, write fi =∑αi

j=0 rijX
j and gi =

∑βi

j=0 nijX
j . Then we have

n = r10n10 + · · ·+ rk0nk0 + ℓ1n10 + · · ·+ ℓknk0;

so N = ⟨n10, . . . , nk0⟩. Hence N is a finitely generated R-submodule of M . Thus M
is a Noetherian R-module.

(2) Let m ∈ M . Then ⟨m⟩ ⊆ ⟨m,mX⟩ ⊆ ⟨m,mX,mX2⟩ ⊆ · · · is an ascend-
ing chain of R[X]-submodules of M [X]. Since M [X] is a Noetherian R[X]-module,
there exists a nonnegative integer q such that ⟨m, . . . ,mXq⟩ = ⟨m, . . . ,mXq+1⟩; so
mXq+1 ∈ ⟨m, . . . ,mXq⟩. Therefore we have

mXq+1 = f0m+ · · ·+ fq(mXq) + ℓ0m+ · · ·+ ℓq(mXq)

for some f0, . . . , fq ∈ R[X] and ℓ0, . . . , ℓq ∈ Z. For each i = 0, . . . , q, write fi =∑αi

j=0 rijX
j . By comparing the coefficients of Xq+1 in both sides, we obtain

m = r0q+1m+ · · ·+ rq1m

= (r0q+1 + · · ·+ rq1)m.

Note that r0q+1 + · · ·+ rq1 ∈ R. Thus the proof is done. □

Let R be a commutative ring and let M be an R-module. Then annR(M) := {r ∈
R | rM = {0}} is an ideal of R and is called the annihilator of M in R. We are now
ready to give the main result in this note.

Theorem 3. Let R be a commutative ring and let M be an R-module. If M [X] is a
Noetherian R[X]-module, then the following conditions hold.

(1) There exists an element e ∈ R such that em = m for all m ∈ M .
(2) If annR(M) = (0), then R contains the identity and M is a unitary R-module.

Proof. (1) Suppose that M [X] is a Noetherian R[X]-module. Then by Lemma 2(1),
M is a Noetherian R-module; so M = ⟨m1, . . . ,mn⟩ for some m1, . . . ,mn ∈ M . By
Lemma 2(2), for each i = 1, . . . , n, there exists an element ri ∈ R such that rimi = mi.
Let e1 = r1+ r2− r1r2 and for each i ∈ {2, . . . , n−1}, let ei = ei−1+ ri+1− ei−1ri+1.
Then e1mi = mi for all i = 1, 2. Suppose that there exists an index k ∈ {1, . . . , n−2}
such that ekmi = mi for all i ∈ {1, . . . , k + 1}. Then we have

ek+1mi = (ek + rk+2 − ekrk+2)mi

= ekmi + rk+2mi − ekrk+2mi

= mi

for all i = 1, . . . , k + 1. Also, we obtain

ek+1mk+2 = (ek + rk+2 − ekrk+2)mk+2

= ekmk+2 + rk+2mk+2 − ekrk+2mk+2

= mk+2.
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Therefore ek+1mi = mi for all i = 1, . . . , k+2. Hence by the induction, en−1mi = mi

for all i = 1, . . . , n. Let m ∈ M . Then we have

m = s1m1 + · · ·+ snmn + ℓ1m1 + · · ·+ ℓnmn

for some s1, . . . , sn ∈ R and ℓ1, . . . , ℓn ∈ Z. Thus we obtain

en−1m = en−1(s1m1 + · · ·+ snmn + ℓ1m1 + · · ·+ ℓnmn)

= s1en−1m1 + · · ·+ snen−1mn + ℓ1en−1m1 + · · ·+ ℓnen−1mn

= s1m1 + · · ·+ snmn + ℓ1m1 + · · ·+ ℓnmn

= m.

(2) Let a be any element of R. By (1), there exists an element e ∈ R such
that em = m for all m ∈ M ; so aem = am for all m ∈ M , which indicates that
(ae − a)m = 0 for all m ∈ M . Therefore (ae − a)M = {0}. Since annR(M) = (0),
ae− a = 0. Hence ae = a. Thus e is the identity of R, which also shows that M is a
unitary R-module. □

As an immediate consequence of Theorems 1 and 3(2) and Lemma 2(1), we have

Corollary 4. Let R be a commutative ring and let M be an R-module with annR(M) =
(0). Then the following conditions are equivalent.

(1) R contains the identity and M is a Noetherian unitary R-module.
(2) M [X] is a Noetherian R[X]-module.

By applying M = R to Theorem 3(1), we regain

Corollary 5. ([3, Theorem]) Let R be a commutative ring. If R[X] is a Noetherian
ring, then R contains the identity.

We next give two examples which show that the converse of Theorem 3(2) is not
true in general and the annihilator condition in Theorem 3(2) is essential.

Example 6. Let M = {0, 2, 4} be a Z6-submodule of Z6. Then Z6 contains the
identity and M is a unitary Z6-module. Note that Z6[X] is a Noetherian Z6[X]-
module by Theorem 1 (or [2, Chapter 7, Exercise 10]) andM [X] is a Z6[X]-submodule
of Z6[X]. Hence M [X] is a Noetherian Z6[X]-module. However, annZ6

(M) = {0, 3}.

Example 7. Let R = {0, 2, 4, 6, 8, 10} be a subring of Z12 and let M = {0, 4, 8}
be an R-submodule of Z12. Then R is a commutative ring without identity and M
is a nonunitary R-module with annR(M) = {0, 6}. Also, 4m = m for all m ∈ M .
Finally, M [X] is a Noetherian R[X]-module. (To see this, suppose to the contrary
that M [X] is not a Noetherian R[X]-module. Then there exists an R[X]-submodule
N of M [X] which is not finitely generated. Let f1 be a nonzero element of least
degree in N . Then ⟨f1⟩ ⊊ N ; so there exists an element f2 of least degree in N \ ⟨f1⟩.
For all i = 1, 2, let ai be the leading coefficient of fi and let di be the degree of fi.
Then d1 ≤ d2. If a1 = a2 = 4 or a1 = a2 = 8, then we let g = f2 − (4Xd2−d1)f1.
Then g ∈ N \ ⟨f1⟩ and deg(g) < deg(f2). This is a contradiction to the choice of
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f2. If a1 = 4 and a2 = 8, then we let g = f2 − (2Xd2−d1)f1. Then g ∈ N \ ⟨f1⟩
and deg(g) < deg(f2). This is impossible because of the choice of f2. Similarly, if
a1 = 8 and a2 = 4, then we let g = f2 − (2Xd2−d1)f1. Then g ∈ N \ ⟨f1⟩ and
deg(g) < deg(f2). This is also absurd because of the minimality of the degree of f2
in N \ ⟨f1⟩. Hence M [X] is a Noetherian R[X]-module.)

Let R be a commutative ring and let M be an R-module. Then the Nagata’s
idealization of M in R (or the trivial extension of R by M) is a commutative ring

R(+)M := {(r,m) | r ∈ R and m ∈ M}
with usual addition and multiplication defined by (r1,m1)(r2,m2) = (r1r2, r1m2 +
r2m1) for all (r1,m1), (r2,m2) ∈ R(+)M . It is routine to check that (R(+)M)[X]
is isomorphic to R[X](+)M [X] (cf. [1, Corollary 4.6(1)]). It was shown that if R
contains the identity and M is a unitary R-module, then R(+)M is a Noetherian
ring if and only if R is a Noetherian ring and M is finitely generated [1, Theorem
4.8] (or [5, Corollary 3.9]).

Corollary 8. Let R be a commutative ring and let M be an R-module. If R[X](+)M [X]
is a Noetherian ring, then R contains the identity and M is a unitary R-module.

Proof. Suppose that R[X](+)M [X] is a Noetherian ring. Since R[X](+)M [X] is
isomorphic to (R(+)M)[X], (R(+)M)[X] is a Noetherian ring. Hence by Corollary
5, R(+)M contains the identity.

Let (a, n) be the identity of R(+)M . For each r ∈ R, (a, n)(r, 0) = (r, 0); so
ar = r. Thus a is the identity of R. Let m ∈ M . Then (a, n)(0,m) = (0,m); so
am = m. Thus M is a unitary R-module. □
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