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GRADED PSEUDO-VALUATION RINGS
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Abstract. Let R =
⊕

α∈Γ Rα be a commutative ring graded by an ar-

bitrary torsionless monoid Γ. A homogeneous prime ideal P of R is said
to be strongly homogeneous prime if aP and bR are comparable for any

homogeneous elements a, b of R. We will say that R is a graded pseudo-

valuation ring (gr-PVR for short) if every homogeneous prime ideal of R
is strongly homogeneous prime. In this paper, we introduce and study

the graded version of the pseudo-valuation rings which is a generalization

of the gr-pseudo-valuation domains in the context of arbitrary Γ-graded
rings (with zero-divisors). We then study the possible transfer of this

property to the graded trivial ring extension and the graded amalgama-
tion. Our goal is to provide examples of new classes of Γ-graded rings

that satisfy the above mentioned property.

1. Introduction

Throughout this paper it is assumed that all rings are with identity and all
modules are nonzero unitary and Γ denotes a torsionless grading monoid (i.e.,
a commutative, cancellative monoid, and the quotient group of Γ, ⟨Γ⟩ = {a−b |
a, b ∈ Γ} is a torsion-free Abelian group). Our goal is to generalize the study
of pseudo-valuation rings (PVRs for short) to the context of Γ-graded rings.
The notion of PVRs was introduced by D. F. Anderson, Badawi and Dobbs [9]
(this article is our motivation) and has been studied extensively thereafter in
[7, 10,20].

Let A be a ring and E be an A-module. Then A ∝ E, the trivial (ring)
extension of A by E, is the ring whose additive structure is that of the external
direct sum A⊕E and whose multiplication is defined by (a, e)(b, f) := (ab, af+
be) for all a, b ∈ A and all e, f ∈ E. (This construction is also known by
other terminology and other notation, such as the idealization A(+)E.) The
basic properties of trivial ring extensions are summarized in the books [14,19].
Trivial ring extensions have been generalized and studied extensively in graded
ring theory, often because of their usefulness in constructing new classes of
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examples of graded rings satisfying various properties (cf. [3, 6, 15]). Let Γ
be a commutative monoid. Let A =

⊕
α∈Γ Aα be a Γ-graded ring and E =⊕

α∈Γ Eα be a Γ-graded A-module. Then A ∝ E is a Γ-graded ring with
(A ∝ E)α = Aα ⊕ Eα for every α ∈ Γ (cf. [6, Proposition 2]). Consequently,
h(A ∝ E) =

⋃
α∈Γ(A ∝ E)α. The next two paragraphs summarize most of

the background on the underlying domain-theoretic properties and their ring-
theoretic generalizations that will be relevant in this paper. A reader may
choose to skim the next long paragraph first, and return to it later as needed.

In [18], Hedstrom and Houston introduced the class of pseudo-valuation
domains (PVDs for short), which is closely related to the class of valuation
domains. A domain R with quotient field K is called a PVD if, whenever P is
a prime ideal of R and xy ∈ P with x ∈ K and y ∈ K, either x ∈ P or y ∈ P .
For more information on PVDs, see the interesting survey article [8]. In [1], M.
T. Ahmed et al. generalized the study of pseudo-valuation domains (PVDs)
to the context of Γ-graded integral domains. Among other things they proved
that every gr-PVD is gr-local [1, Corollary 2.3]; and every gr-valuation domain
is a gr-PVD [1, Corollary 2.4], the converse fails in general: A counterexample
is obtained by taking R to be the group ring D[X; ⟨Γ⟩] of ⟨Γ⟩ over a non-
valuation domain PVD D (see [1, Example 2.11]). They further characterized
the gr-PVD in [2]. In [26,27], P. Sahandi also characterized gr-PVDs of special
types. In [9], D. F. Anderson, Badawi and Dobbs generalized the study of
PVDs to the context of arbitrary rings (possibly with nontrivial zero-divisors)
as follows. A prime ideal P of a ring R is said to be a strongly prime ideal
(of R) if aP and bR are comparable (under inclusion) for all a, b ∈ R; a ring
R is called a pseudo-valuation ring (PVR for short) if every prime ideal of R
is a strongly prime ideal of R. Obviously, every valuation ring is a PVR; the
converse fails [9, Examples 10]. As explained in [9, p. 58], a domain is a PVR
if and only if it is a PVD.

We can now specify the main objectives of this paper. In Section 2, we
review the definitions and preliminary results needed in this paper. In Section
3, we introduce the notion of graded pseudo-valuation rings (gr-PVRs), which
can be seen as an extension of two concepts: PVDs to the setting of arbitrary
Γ-graded rings (with zero-divisors) and the graded version of PVRs. Among
other things, and for a useful kind of condition, we show that a nontrivially
graded ring R =

⊕
α∈Γ Rα is never a PVR (Proposition 3.2). In Theorem

3.7, several characterizations of gr-PVRs are given; for example, a graded ring
R =

⊕
α∈Γ Rα is a gr-PVR if and only if R has a unique maximal homogeneous

ideal M and M is strongly homogeneous prime. As a consequence, we consider
the stability of the class of gr-PVRs with respect to the graded homomorphic
images (see Corollary 3.8), and every gr-valuation ring is a gr-PVR (Corollary
3.9); Proposition 4.7 and Example 4.15 show that the converse fails. In Section
4, we study the possible transfer of this generalized property for the graded
trivial ring extension (A ∝ E) and the graded amalgamation (A ▷◁f J). For
the main transfer result in this paper, see Theorems 4.4 and 4.9.
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As we continue to study the above classes of graded rings, the reader may
find it helpful to keep in mind the implications noted in the following figure.

valuation ring

pseudo-valuation ring gr-valuation ring

gr-pseudo-valuation ring

gr-quasi-local ring with linearly ordered prime homogeneous ideals

����)
PPPPq

PPPPq
����)
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Let A =
⊕

α∈Γ Aα and B =
⊕

α∈Γ Bα be two commutative rings graded
by an arbitrary commutative monoid Γ, J be a homogeneous ideal of B and
f : A −→ B be a graded ring homomorphism. Then R := A ▷◁f J , the
amalgamation of A with B along J with respect to f (introduced and studied by
D’Anna, Finocchiaro, and Fontana in [11,12]), is a graded ring R =

⊕
α∈Γ Rα

with the set h(R) =
⋃

α∈Γ Rα of all homogeneous elements of R, where for each
α ∈ Γ

Rα =
(
A ▷◁f J

)
α
:= {(aα, f (aα) + jα) | aα ∈ Aα, jα ∈ Jα} .

This construction, which was introduced and studied in [17], enables us to
meet the challenges posed by providing ample examples that enrich the current
literature of graded ring-theoretic. One of the key tools for studying A ▷◁f J
is based on the fact that the graded amalgamation can be studied in the frame
of pullback constructions [16, Section 3]. Other classical constructions such as
the graded amalgamated duplication of a ring along an ideal denoted by A ▷◁ I
and the graded trivial ring extension of A by E [6] (A⋉E), can be interpreted as
particular cases of the general graded amalgamation construction [17, Example
3.3 & 3.4].

2. Preliminaries

This section introduces some basic properties of graded rings and modules
used in the rest of the paper. Let Γ be a torsionless grading monoid (written
additively), with an identity element denoted by 0, and let the quotient group
of Γ be ⟨Γ⟩ = {a− b | a, b ∈ Γ}, a torsion-free Abelian group. It is well known
that a cancellative monoid is torsionless if and only if it can be given a total
order compatible with the monoid operation [23, p. 123].

Recall that a (not necessarily unital) ring R is called a Γ-graded ring, or
simply a graded ring, if R =

⊕
γ∈Γ Rγ , each Rγ is an additive subgroup of

R, and RγRδ ⊆ Rγ+δ for all γ, δ ∈ Γ. The set of homogeneous elements of
R is denoted by h(R) =

⋃
γ∈γ Rγ . The nonzero elements of Rγ are called
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homogeneous of degree γ, and we write deg(r) = γ if r ∈ Rγ\{0}. We call the
set

ΓR = {γ ∈ Γ | Rγ ̸= 0}
the support of R. We say that R has a trivial grading, or R is concentrated in
degree zero if the support of R is the trivial group, i.e., R0 = R and Rγ = 0
for every γ ∈ Γ\{0}. Clearly R0 is a subring of R (intuitively 1 ∈ R0) and each
Rα is an R0-module.

Let I be an ideal of R. Then I is said to be a homogeneous ideal of R if one of
the following equivalent conditions holds: (i) I =

⊕
α∈Γ Iα, where Iα = I ∩Rα

for all α ∈ Γ and (ii) a = aα1
+ aα2

+ · · ·+ aαn
∈ I implies that aαi

∈ I, where
aαi ∈ Rαi . A homogeneous ideal M of R is called a maximal homogeneous
ideal (gr-maximal for short) if it is maximal among proper homogeneous ideals;
equivalently, if every nonzero homogeneous element of R/M is invertible. A
graded ring is said to be graded local (gr-local) if it has a unique gr-maximal
ideal, and a graded ring R is called a graded-field (gr-field for short) if every
nonzero homogeneous element of R is invertible. Obviously, every field is a
gr-field, but the converse is not generally true, see [22, p. 44].

We will use the following definition (which is the classical one if R is a
graded integral domain). Let R be a graded ring. A regular homogeneous
element a is indeed a homogeneous element a such that (0 : a) = 0. Denoted
by H the multiplicative set of regular homogeneous elements of R. Then,
by extending some definitions to the case where rings have zero-divisors, RH ,
called the homogeneous total ring of quotients of R, is a ring graded by ⟨Γ⟩,
where RH =

⊕
α∈⟨Γ⟩ (RH)α with

(RH)α =
{r

s
| r ∈ Rβ , s regular homogeneous in Rγ and β − γ = α

}
.

If R is a graded integral domain (an integral domain graded by Γ), then RH

is called the homogeneous quotient field of R. Obviously, every nonzero homo-
geneous element of RH is invertible and (RH)0 is a field. A graded R-module
E is gr-divisible if for every homogeneous element e ∈ E and every regular
homogeneous element a of R there exists f ∈ E such that e = af .

Finally, as usual, for any Γ-graded ring R, h-Spec(R) denotes the set of prime
homogeneous ideals of R, h-Max(R) denotes the set of maximal homogeneous
ideals of R, and h-Jac(R) denotes the graded Jacobson radical of R, i.e., the
intersection of all maximal homogeneous ideals of R.

Let I be a proper homogeneous ideal of a graded ring R. Then the graded
radical of I is denoted by h-rad(I) = {x =

∑
α∈Γ xα ∈ R | for every α ∈ Γ,

there exists n ∈ N such that xn
α ∈ I}. It is easy to see that h-rad(I) is always

a homogeneous ideal of R. Note that, if x is a homogeneous element, then
x ∈ h-rad(I) if and only if xn ∈ I for some positive integer n (see [24]). In the
case where the grading monoid Γ is a group, [24, Proposition 2.5] shows that
h-rad(I) is the intersection of all prime homogeneous ideals of R containing I.
The following proposition gives another proof for any grading monoid Γ.
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Proposition 2.1. Let R be a graded ring and I be a homogeneous ideal of
R. Then h-rad(I) is the intersection of all prime homogeneous ideals of R
containing I.

Proof. It is clear that h-rad(I) ⊆
⋂

I⊆P,P∈h-Spec(R) P . For the reverse contain-

ment, let x =
∑

α∈Γ xα ∈ R \ h-rad(I). Then there exists α ∈ Γ such that
xn
α /∈ I for each n > 0. Now, it is clear that the set

Ω := {L, a homogeneous ideal of R | I ⊆ L and xn
α /∈ L for all integers n > 0}

is not empty (it contains I) and inductive. Thus, by Zorn’s lemma, Ω contains
a maximal element P . We claim that P is a prime homogeneous ideal of R.
Otherwise, there exist a, b ∈ h(R)\P such that ab ∈ P . By the maximality of
P we have P + aR /∈ Ω and P + bR /∈ Ω. Since I ⊆ P , we get I ⊆ P + aR and
I ⊆ P + bR. Hence there exist integers n,m > 0 such that xn

α ∈ P + aR and
xm
α ∈ P + bR. Thus xn+m

α ∈ P , a contradiction. So P is a prime homogeneous
ideal of R and xα /∈ P , and so x /∈

⋂
I⊆P,P∈h-Spec(R) P . Hence h-rad(I) =⋂

I⊆P,P∈h-Spec(R) P . □

For future reference, we note the following results (cf. [5, Lemma 3.2, Corol-
lary 3.7, Proposition 3.8 and Theorem 3.10, p. 366–369]).

Theorem 2.2. The following assertions are equivalent for graded rings R ⊆ T :

(1) h-Spec(R) = h-Spec(T );
(2) h-Max(R) = h-Max(T );
(3) h-Max(R) ⊂ h-Max(T );
(4) h-Max(T ) ⊂ h-Max(R);
(5) R and T have the same graded radical ideals.

Furthermore, if (any of the above conditions hold) and R ̸= T , then R is
gr-local.

In fact, the following two lemmas are needed to prove Theorem 2.2.

Lemma 2.3. If R is a proper graded subring of a graded ring T , then R and
T have at most one maximal homogeneous ideal in common.

Proof. Suppose, on the contrary, that M and N are distinct maximal homo-
geneous ideals common to both R and T . Since M and N are comaximal
homogeneous ideals of R, we have M +N = R. Similarly, since M and N are
comaximal homogeneous ideals of T , we have M + N = T and hence R = T ,
as required. □

Lemma 2.4. Let R ⊆ T be graded rings such that R is gr-local and its maximal
homogeneous ideal M is also a homogeneous ideal of T . Then M ⊆ h-Jac(T ).

Proof. It suffices to show that M ⊆ N for any maximal homogeneous ideal N
of T . If this condition fails, then N ⊊ M +N for some maximal homogeneous
ideal N of T . By maximality of N we get M +N = T , and so m + n = 1 for
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some m ∈ M and n ∈ N (not necessarily homogeneous). Set n =
∑k

i=0 nαi

with deg(nαi
) = αi for each i ∈ {0, . . . , k}. Now if we assume that all αi ̸= 0

for all i ∈ {0, . . . , k}, then decomposing m into its homogeneous components
gives: m = n−1 = nα0+· · ·+nαk

−1 ∈ M , and thus 1 ∈ M by the homogeneity
of M , which is a contradiction. Therefore, without loss of generality, we can
assume that α0 = 0. Then we have n− 1 ∈ M and

n− 1 =

k∑
i=0

nαi − 1 = (nα0 − 1) +

k∑
i=1

nαi ∈ M.

Thus nα0 − 1 ∈ M . So nα0 is a unit of R, since nα0 is nonzero homogeneous
element and, a fortiori, a unit of T , which contradicts that n ∈ N . □

Lemma 2.5. Let R ⊆ T be graded rings such that R is gr-local with max-
imal homogeneous ideal M . Then h-Spec(R) = h-Spec(T ) if and only if
M ∈ h-Max(T ).

Proof. The “only if ” half is trivial. Conversely, suppose that M ∈ h-Max(T ).
By Lemma 2.4, M ⊆ h-Jac(T ), and so M is the only maximal homogeneous
ideal of T . Hence, h-Spec(T ) ⊆ h-Spec(R). For the reverse inclusion, let P ∈
h-Spec(R). First, we show that P is a homogeneous ideal of T . To do this, it

is enough to show that for every t =
∑k

i=0 tαi
∈ T and x =

∑n
j=0 xαj

∈ P (not

necessarily homogeneous elements), we get tx ∈ P . As tx =
∑k

i=0

∑n
j=0 tαi

xαj
,

it is only necessary to show that tαi
xαj

∈ P for all 0 ≤ i ≤ k and 0 ≤ j ≤ n.

Note that xαj
∈ P ⊆ M . So t2αi

xαj
∈ M ⊆ R, since M is an ideal of T . Then

we obtain

(tαixαj )
2 = xαj t

2
αi
xαj ∈ MTP = MP ⊆ P.

Since tαi
xαj

is a homogeneous element of R and P ∈ h-Spec(R), we have that
tαi

xαj
∈ P . Therefore, P is a homogeneous ideal of T . Finally, to see that

P is prime homogeneous in T , suppose xαiyαj ∈ P for homogeneous elements
xαi and yαj of T ; our task is to show that at least one of xαi and yαj is
in P . This is obvious in the case that both xαi

and yαj
are in M , since P is

prime homogeneous in R. For the remaining possibility, suppose without loss of
generality that xαi

∈ T\M . Then x−1
αi

∈ T and yαj
= x−1

αi
(xαi

yαj
) ∈ TP ⊂ P ,

as needed. □

Now we can give the demonstration of Theorem 2.2.
Proof of Theorem 2.2. We will prove this theorem in the following order:
(1) ⇒ (5) ⇒ (2) ⇒ (3) ⇒ (1) and (2) ⇔ (4). Since every graded radical ideal
of a ring is just the intersection of prime homogeneous ideals of the graded ring,
(1) ⇒ (5) is immediate. (1) ⇒ (5) is immediate. Moreover, (5) ⇒ (2) holds,
since the maximal homogeneous ideals of a graded ring are just the maximal
elements (with respect to inclusion) of the set of graded radical ideals of the
ring. The implication (2) ⇒ (3) is trivial. To show that (3) ⇒ (1), we can
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assume R ̸= T . By Lemma 2.3 and (3), R is gr-local (thus disposing of the last
statement of the theorem), and Lemma 2.5 can be applied to obtain (1).

Since (2) ⇒ (4) is trivial, it remains to show (4) ⇒ (2). Assume that
h-Max(T ) ⊂ h-Max(R). Then all maximal homogeneous ideals of T are also
maximal homogeneous ideals of R. Thus, T is a graded-local ring according
to Lemma 2.3. Let M denote the unique maximal homogeneous ideal of T . It
suffices to prove that R cannot have a maximal homogeneous ideal N ̸= M .
Given such N , choose x ∈ M\N and y ∈ N\M , x (resp. y) can be assumed
to be homogeneous. Since y ∈ T\M , it follows that y is a unit of T , and
so xy−1 ∈ MT = M , from which x =

(
xy−1

)
y ∈ MN ⊂ N , the desired

contradiction. □

3. Graded pseudo-valuation rings

In this section, we introduce the notion of graded pseudo-valuation rings.
Let R =

⊕
α∈Γ Rα be a graded ring. Then a homogeneous prime ideal P of

R is said to be strongly homogeneous prime if aP and bR are comparable for
every homogeneous elements a, b of R. We will say that a graded ring R is a
graded pseudo-valuation ring (gr-PVR for short) if every homogeneous prime
ideal of R is strongly homogeneous prime. Of course, the notions of “gr-PVRs”
and “PVRs” coincide if the ring is trivially graded. Note that a nontrivially
graded integral domain R =

⊕
α∈Γ Rα is never a PVD (see [1, Proposition

2.1]). Next, we explain why this result does not hold beyond the context of
graded integral domains.

Example 3.1. Let k be a field, and let X and Y be indeterminates. Then
R = k[X,Y ]/

(
X2, XY, Y 2

)
is a PVR by [9, Example 10], which is not trivially

graded (R is a Z-graded ring with R0 = k, R1 = kX + kY , and Rn = 0 for
n ∈ Z\{0, 1}).

However, in the case where the Γ-graded ring R has a homogeneous regular
element of nonzero degree that is not a unit, we show that R is never a PVR.

Proposition 3.2. Let R be a Γ-graded ring which has a homogeneous nonunit
regular element x with nonzero degree. Then R is never a PVR.

Proof. Let x be a homogeneous nonunit regular element of R with nonzero
degree. First we claim that (1 − x2)R is a proper ideal of R. Suppose, for
contradiction, that (1−x2)R = R. This implies that 1−x2 is a unit, i.e., there
exist n ∈ N and a = aα0

+ · · ·+ aαn
with aαi

∈ Rαi
\ {0} such that

1 = a(1− x2) = aα0 + · · ·+ aαn − x2aα0 − · · · − x2aαn .

On the other hand, since Γ is torsionless, we get

{α0, . . . , αn} ≠ {2deg(x) + α0, . . . , 2deg(x) + αn}.
Let αi, αj ∈ Γ such that

αi ∈ {α0, . . . , αn} \ {2deg(x) + α0, . . . , 2deg(x) + αn}
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and

(2deg(x) + αj) ∈ {2deg(x) + α0, . . . , 2deg(x) + αn} \ {α0, . . . , αn}.
Because of the grading, the grade αi part of 1 (resp., 2deg(x) + αj) must
be aαi

̸= 0 (resp., −x2aαj
̸= 0 as x is regular), which contradicts the fact

that 1 is homogeneous and αi ̸= 2deg(x) + αj . Now we claim that neither
x2R ⊆ (1 + x2)R nor (1 + x2)R(1 − x2)R ⊆ x2R, in which case R is not a
PVR by [9, Theorem 5 (3)], and we are done. Indeed, if x2R ⊆ (1 + x2)R,
then 1 = (1 + x2) − x2 ∈ (1 + x2)R, and so 1 + x2 is a unit, which is a
contradiction, as we mentioned above. If (1 + x2)R(1 − x2)R ⊆ x2R, then
1 = (1 + x2)(1− x2) + x4 ∈ x2R, and so x2 is a unit, which is a contradiction.
Hence R is not a PVR. □

After considering Proposition 3.2, we have observed in Example 3.1 that R
has a graduation of type Z (clearly a torsionless grading monoid). However, R
is a PVR with M = Z(R), which shows the necessity of the condition that R
must have a homogeneous nonunit regular element x with nonzero degree in
Proposition 3.2.

Remark 3.3. (cf. [1, Proposition 2.2]) If R =
⊕

α∈Γ Rα is a graded integral
domain and P is a homogeneous prime ideal of R, then aP and bR are compa-
rable for any homogeneous elements a, b of R if and only if whenever xy ∈ P
with x, y homogeneous elements of RH , then either x ∈ P or y ∈ P .

Example 3.4. Armed with Remark 3.3, we already have many examples of
the gr-PVR:

(1) Graded valuation domains; see [4].
(2) Graded pseudo-valuation domains, in particular; the group ring

D[X; ⟨Γ⟩] of ⟨Γ⟩ over a non-valuation domain PVD D (see [1, Example
2.11]).

(3) Any graded homomorphic image of a graded-valuation domain (Corol-
lary 3.8).

Proposition 3.5. Let I be a homogeneous ideal of a graded ring R and P be
a strongly homogeneous prime ideal of R. Then I and P are comparable.

Proof. Suppose I is not contained in P . Then there exists b ∈ I \ P . So we
can assume that b is homogeneous, and for a = 1 (with deg(a) = 0), bR is not
contained in P = aP , and so P ⊆ bR ⊆ I. □

The following corollary is an immediate consequence of Proposition 3.5 (cf.
[9, Lemma 1]).

Corollary 3.6. Let R =
⊕

α∈Γ Rα be a gr-PVR. Then h-Spec(R) is totally
ordered under inclusion. In particular, R is gr-local.

Next, we give several equivalent “comparability” conditions for a (not nec-
essarily gr-local) graded ring R to be a gr-PVR (cf. [1, Theorem 2.8] and
[9, Theorem 5]).
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Theorem 3.7. Let R =
⊕

α∈Γ Rα be a graded ring. Then the following con-
ditions are equivalent.

(1) R is a gr-PVR.
(2) (R,M) is a gr-local ring and M is strongly homogeneous prime.
(3) For all homogeneous elements α, β of R, either α|β or β|αγ for every

nonunit homogeneous element γ of R.
(4) For all homogeneous ideals I, J of R, either I ⊆ J or JL ⊆ I for every

proper homogeneous ideal L of R.
(5) For all homogeneous elements α, β of R, either α|β or αN ⊆ βN ,

where N is the set of all nonunit homogeneous elements of R.

Proof. We will prove this theorem in the following order: (1) ⇒ (2)⇒ (3)⇒
(4) ⇒ (5)⇒ (2) and (2) ⇒ (1).

(1) ⇒ (2) This follows directly from Corollary 3.6 and the fact that a max-
imal homogeneous ideal is prime.

(2) ⇒ (3) This is straightforward.
(3) ⇒ (4) Let I, J be homogeneous ideals of R. Suppose I ⊈ J . Let

x ∈ I \ J . To show that JL ⊆ I, where L is a proper homogeneous ideal of R,
let y ∈ J . Since I (resp. J) is homogeneous, x (resp. y) can be assumed to be
homogeneous elements, and by (3) we get x|ry for every homogeneous element
r ∈ L. So ry ∈ I for all homogeneous elements r ∈ L and y ∈ J . So JL ⊆ I.

(4)⇒ (5) Let α, β be two homogeneous elements ofR. Set I := βR, J := αR,
in the case where I ⊆ J , we get α|β. In the remaining case, we want to show
that αN ⊆ βN . Let n ∈ N . Then by (4) we have JL ⊆ I for L = nR.
Consequently, there exists a homogeneous element t in R such that αn = βt.
Note that t ∈ N since I ⊈ J . Hence αN ⊆ βN .

(5) ⇒ (2) First, we observe that R is gr-local. If not, R has distinct maximal
homogeneous ideals P and Q. Pick two homogeneous elements a ∈ P \Q and
b ∈ Q \ P . If a|b, then b ∈ P , a contradiction. If aN ⊂ bN , then a2 ∈ bN ⊆ Q,
and hence a ∈ Q, which is also a contradiction. So by (5), R is gr-local with
maximal homogeneous ideal M , so ⟨N⟩ = M . Let α, β be two homogeneous
elements in R. Suppose α|β. Then β = αr for some homogeneous element
r ∈ R. Then βR ⊆ αM if r ∈ M ; otherwise, α = r−1β and αM ⊆ βR. If
α ∤ β, then by (5), αM ⊆ βM ⊆ βR. So M is strongly homogeneous prime.

(2) ⇒ (1) Suppose R is gr-local and M is strongly homogeneous prime.
We need to show that every non-maximal homogeneous prime ideal P of R is
strongly homogeneous prime. Let a and b be two homogeneous elements in R.
We show that aP and bR are comparable. Since M is strongly homogeneous
prime, aM and bR are comparable. If aM ⊆ bR, then aP ⊆ aM ⊆ bR.
Thus we can assume that bR is properly contained in aM , and hence b = am
for some m ∈ M (m can be assumed to be homogeneous). If m ∈ P , then
b = am ∈ aP , and hence bR ⊂ aP . So we can assume that m /∈ P . We show
that P ⊂ mM . Let x be a homogeneous element in P . Then xR and mM are
comparable. If mM ⊆ xR ⊆ P , then either m ∈ P or M ⊆ P , a contradiction.
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So xR ⊂ mM for every homogeneous element x in P , and hence P ⊂ mM .
Thus aP ⊆ amM = bM ⊆ bR. □

Corollary 3.8. Every graded homomorphic image of a gr-PVR is a gr-PVR.

It is well known that a ring R is a valuation ring if its ideals are linearly
ordered by inclusion (equivalently, its principal ideals are linearly ordered by
inclusion). Analogously, we define this notion in the setting of Γ-graded rings as
follows. A graded ring R =

⊕
α∈Γ Rα is called a gr-valuation ring if its homoge-

neous ideals are linearly ordered by inclusion (equivalently, its principal homo-
geneous ideals are linearly ordered by inclusion). Indeed, ifR is a valuation ring,
then it is a gr-valuation ring; while the converse is not true in general; the eas-
iest example is given by any gr-valuation ring R =

⊕
α∈G Rα with 2 ̸= 0 which

has a homogeneous regular element x of R with deg(x) ̸= 0 and G is a torsion-
free Abelian group (for example, R = A[X,X−1], where A is a valuation ring
such that 2 ̸= 0). Then we can observe that (1 + x4)R is not comparable with
(1+x2)R. If (1+x4)R ⊆ (1+x2)R, then 2 = 1+x4+(1−x2)(1+x2) ∈ (1+x2)R
and hence 2 = (1+x2)a is a homogeneous element, a contradiction since x is reg-
ular andG is a torsion-free Abelian group (analogous to the proof of Proposition
3.2). Also if (1+x2)R ⊆ (1+x4)R, then 2 = 1+x4+(1−x2)(1+x2) ∈ (1+x4)R
and thus, as in above, 2 = (1+x4)a is a homogeneous element, which is a con-
tradiction.

Corollary 3.9. Every gr-valuation ring R is a gr-PVR.

Proof. Let R be a gr-valuation ring with maximal homogeneous ideal M and
a, b ∈ h(R). Since R is a gr-valuation ring, the homogeneous ideals aM and
bR are comparable. Thus M is strongly homogeneous prime, and so R is a
gr-PVR by Theorem 3.7(2). □

In the light of Theorem 2.2, if R is a proper graded subring of a graded
ring T , then h-Spec(R) = h-Spec(T ) if and only if h-Max(R) is comparable to
h-Max(T ), and in this case R (and hence T ) is gr-local. In the context of this
study, we have the following result.

Theorem 3.10. Let T be a gr-local ring with maximal homogeneous ideal
M and R be a graded subring of T with maximal homogeneous ideal M (so
h-Spec(R) = h-Spec(T )). Then R is a gr-PVR if and only if T is a gr-PVR.

Proof. First, suppose that R is a gr-PVR. Let a, b ∈ h(T ). We can assume
that a, b ∈ M . Then aM and bR are comparable since R is a gr-PVR. Thus
aM ⊂ bR implies aM ⊆ bR ⊆ bT ; so we can assume that bR ⊆ aM . But then
bT ⊆ aMT = aM , and hence T is a gr-PVR by Theorem 3.7(2).

Conversely, suppose that T is a gr-PVR. Let a, b ∈ h(R). Again, we can
assume that a, b ∈ M . Then aM and bT are comparable since T is a gr-PVR.
If bT ⊆ aM , then bR ⊆ aM ; so we can assume that aM ⊆ bT . If aM is not
contained in bR, then am = bt for some homogeneous elements m ∈ M and
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t ∈ T \ R. Thus t is a unit of T ; so b = a
(
mt−1

)
∈ aM , and thus bR ⊆ aM .

Hence R is a gr-PVR by Theorem 3.7. □

Let R be a Γ-graded ring and H be the multiplicative subset of regular
homogeneous elements of R. An overring of a ring R is a subring of the total
quotient ring of R containing R. An overring T of R is said to be a homogeneous
overring of R if R ⊆ T ⊆ RH and T =

⊕
α∈⟨Γ⟩(T ∩ (RH)α). So T is a

⟨Γ⟩-graded ring. Obviously, for any homogeneous ideal I of R, the subset
(I : I) = {x ∈ RH | xI ⊆ I} is a homogeneous overring. If R is a gr-local
ring with maximal homogeneous ideal M , we denote (M : M) as the largest
homogeneous overring of R in RH in which M is a homogeneous ideal. Armed
with the previous theorem, we have the next result.

Proposition 3.11. Let R be a gr-local ring with maximal homogeneous ideal
M . If V = (M : M) is a gr-valuation ring with maximal homogeneous ideal
M , then R is a gr-PVR.

Proof. By Corollary 3.9, V is a gr-PVR. Hence R is a gr-PVR by Theorem
3.10. □

Let R be a gr-local ring (e.g. a gr-PVR) with maximal homogeneous ideal
M . If every homogeneous element of M is a homogeneous zero-divisor of R,
then RH = R and in particular (M : M) = R. If M contains a regular
homogeneous element, then this observation can be strengthened to give the
converse of Proposition 3.11.

Theorem 3.12. Let R be a gr-PVR whose maximal homogeneous ideal M
contains a regular homogeneous element. Then V = (M : M) is a gr-valuation
ring with maximal homogeneous ideal M .

Proof. Let a/s, b/t be two homogeneous elements of V , where a, b ∈ h(R) and
s, t ∈ R are regular homogeneous elements. Then at, bs are homogeneous in R.
We show that atV and bsV are comparable, and hence (a/s)V and (b/t)V are
comparable. So we only need to show that aV and bV are comparable for a, b
homogeneous in R. In fact, we can assume that a, b ∈ M . First, aM and bR
are comparable since R is a gr-PVR. If bR ⊆ aM , then b = an for some n ∈ M ,
and hence bV ⊆ aV . Thus we can assume that aM is properly contained in
bR. Let s ∈ h(M) be regular. Then as = br for some r ∈ R, where r can be
assumed to be homogeneous. Therefore rM and sR are comparable since R
is a gr-PVR. If sR ⊆ rM , then s = rm for some m ∈ M (m can be assumed
to be homogeneous). Then r and m are regular since s is regular. Thus, since
as = br, we have arm = br, and am = b since r is regular. Thus bV ⊆ aV .
So we can assume that rM is properly contained in sR. Hence rM ⊆ sM , so
(r/s)M ⊆ M , and hence r/s ∈ (M : M) = V . Since as = br, it follows that
a = b(r/s) with r/s ∈ V . Hence aV ⊂ bV , and V is a gr-valuation ring.

Finally, we show that M is the maximal homogeneous ideal of V , i.e., every
homogeneous element x ∈ V \M is a unit of V . Let x = r/s ∈ V \M , where
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r is a homogeneous element of R and s is a regular homogeneous element of
R. If s ∈ R \M , then s is a unit of R. Thus x = rs−1 ∈ R \M , and so x is
a unit in R, and thus a unit in V . Hence we can assume that s ∈ M . Thus
sM and rR are comparable since R is a gr-PVR. If rR ⊆ sM , then r = sm
for some m ∈ M , and hence x = r/s = sm/s = m ∈ M , a contradiction. Thus
sM is properly contained in rR. Hence s2 = rt for some t ∈ R, where t can be
assumed to be homogeneous. Thus both r and t are regular since s is regular.
Hence x−1 = s/r ∈ RH . Since sM is properly contained in rR, it follows that
sM ⊂ rM , and hence (s/r)M ⊂ M . Thus x−1 = s/r ∈ (M : M) = V . So M
is the unique maximal ideal of V . □

4. Graded pseudo-valuation rings in some graded ring constructions

Before stating the first main result of this section which investigates the
possible transfer of the gr-PVR between a graded ring A and a graded trivial
ring extension A ∝ E, we make the following useful remark.

Remark 4.1. Let E be a graded R-module. Then E is gr-divisible if and only
if ax = e, with e ∈ E and a regular element a ∈ h(R), has a solution in E.

Proof. If ax = e, where a is a regular homogeneous element of R and e ∈ E has
a solution in E, then E is gr-divisible. Conversely, suppose E is gr-divisible and
let a be a regular homogeneous element of R and e =

∑
g∈Γ eg ∈ E. Then for

every g ∈ Γ there exists fg ∈ E such that afg = eg and hence a
∑

g∈Γ fg = e,
as desired. □

Proposition 4.2. Let A =
⊕

α∈Γ Aα be a graded ring, E =
⊕

α∈Γ Eα be a
nonzero graded A-module, and R := A ∝ E be the graded trivial ring extension.
If R is a gr-PVR, then A is a gr-PVR and E is a gr-divisible A-module.

Proof. This follows easily from Corollary 3.8 and the observation that A is a
graded homomorphic image of R. It remains to show that E is a gr-divisible
A-module. We show that if r is a regular homogeneous element of A and e
is a nonzero homogeneous element of E, then there exists f ∈ E such that
rf = e. Without loss of generality, r is a nonunit of R, and so r ∈ P for some
P ∈ h-Spec(A). Put Q := P ∝ E ∈ h-Spec(R), and consider the homogeneous
elements a := (r, 0) and b := (0, e) of R. Simple calculations show that Qa =
Pr ∝ rE and Rb = 0 ∝ Ae. If Qa ⊆ Rb, then Pr = 0, from which P = 0
(since r is regular) and thus r = 0 by the choice of P , which contradicts the
condition that r is regular. Hence, since R is a gr-PVR, Rb ⊆ Qa. In particular,
Ae ⊆ rE, and so a suitable f can be found. □

In this context, it is very important to note that Badawi and Dobbs stated
in their paper [10] that: If A is a PVD and E is a divisible A-module, then
R := A ∝ E is a PVR (cf. [10, Theorem 3.1(b)]). However, a counterexample
to this theorem was recently given by Riffi in [25]. This allows us to state that
the converse of Proposition 4.2 is false.
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Example 4.3. Let A := Q+XR[X], E := C
[
X,X−1

]
, and R = A ∝ E, where

X an indeterminate over C. Then A is Z-graded via A0 = Q, An = RXn for
n ≥ 1, and An = 0 otherwise; and E is Z-graded via En = CXn for n ∈ Z.
Now, A is a gr-PVD by [2, Example 3.16] and E is a gr-divisible A-module.
But R is not a gr-PVR. Indeed, for u := (0, X), v := (0, iX), P = XR[X], and
Q := P ∝ E, we have neither u ∈ Qv nor Qv ⊂ Ru.

Theorem 4.4. Let A =
⊕

α∈Γ Aα be a graded ring, E =
⊕

α∈Γ Eα be a
nonzero graded A-module, and R := A ∝ E be the graded trivial ring extension.
Then:

(1) If R is a gr-PVR, then so is A.
(2) Suppose Ann(E) ̸= 0. Then R is a gr-PVR if and only if A is a gr-

local ring with maximal homogeneous ideal M such that M2 = 0 and
ME = 0.

(3) Suppose R is a gr-PVR. Then A is a gr-local ring, say with maximal
homogeneous ideal M ; E is a gr-divisible A-module; either A is a gr-
PVD or M2 = 0; and for every homogeneous elements e, f ∈ E, either
Ae ⊆ Mf or Mf ⊆ Ae.

(4) If E is a nonzero finitely generated graded A-module and R is a gr-
PVR, then A is gr-local and its maximal homogeneous ideal, say M ,
satisfies M2 = 0.

Proof. (1) If R is a gr-PVR, then by Proposition 4.2 A is too.
(2) Since the assignment P 7→ P ∝ E determines an order-isomorphism

h-Spec(A) → h-Spec(R), we can assume, without loss of generality, that A is
gr-local, with unique maximal homogeneous ideal M . Then R is gr-local, with
unique maximal homogeneous ideal N := M ∝ E (cf. [6, Theorem 2]). By
hypothesis, we can pick a nonzero homogeneous element a ∈ Ann(E).

Suppose first that R is a gr-PVR. To show that ME = 0, it suffices to
prove that if µ ∈ h(M) and e ∈ h(E), then µe = 0. In fact, since R is a
gr-PVR, either (a, 0)R ⊆ (0, e)N or (0, e)N ⊆ (a, 0)R. The first possibility
cannot hold since (0, e)N ⊆ 0 ∝ E and a ̸= 0, and so (0, e)N ⊆ (a, 0)R. Thus
(0, e)(µ, 0) = (a, 0)(b, t) for some (b, t) ∈ R, whence (0, µe) = (ab, at) = (ab, 0),
and so µe = 0, which proves that ME = 0.

Next, to show that M2 = 0, it suffices to prove that mn = 0 for all ho-
mogeneous elements m,n ∈ M . By hypothesis, we can choose a nonzero ho-
mogeneous element g ∈ E. Since R is a gr-PVR, either (0, g)R ⊆ (m, 0)N or
(m, 0)N ⊆ (0, g)R. The first possibility cannot hold since (m, 0)N ⊆ mM ∝
mE ⊆ M2 ∝ 0 and g ̸= 0, and so (m, 0)N ⊆ (0, g)R. Thus (m, 0)(n, 0) =
(0, g)(c, s) for some (c, s) ∈ R, from which mn = 0, which proves that M2 = 0.

Conversely, suppose that M2 = 0 and ME = 0. To show that R is a gr-
PVR, Theorem 3.7(2) reduces our task to showing that if ξ = (d, k), η = (h, f)
are homogeneous elements in R, then either ξR ⊆ ηN or ηN ⊆ ξR. We will
examine three cases. If d ̸∈ M , then ξ is a unit of R (cf. [6, Proposition 5]), so
that ηN ⊆ R = ξR. Next, if d ∈ M and h ̸∈ M , then η is a unit of R, so that
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ξR ⊆ dA ∝ E ⊆ M ∝ E = N = ηN . Finally, if both d and h are in M , then,
since M2 = 0 and ME = 0, we have ηN ⊆ hM ∝ (hE +Mf) ⊆ M2 ∝ ME =
{(0, 0)} ⊆ ξR.

(3) As in the proof of (2), A is a gr-local ring, say with maximal homogeneous
ideal M , so that R is a gr-local ring with maximal homogeneous ideal N =
M ∝ E. Let e, f be two homogeneous elements of E. Since R is a gr-PVR,
either (0, e)R ⊆ (0, f)N or (0, f)N ⊆ (0, e)R. Since (0, e)R = 0 ∝ Ae and
(0, f)N = 0 ∝ Mf , it follows that either Ae ⊆ Mf or Mf ⊆ Ae.

Next, by Proposition 4.2, E is a gr-divisible A-module. Also, by Proposition
4.2 (or (1)), A is a gr-PVR, and so if A is a graded integral domain, then A
is a gr-PVD. So all that remains is to prove that either A is a graded integral
domain or M2 = 0.

By (2) we can assume, without loss of generality, that Ann(E) = 0. Suppose
first that A = AH . We will prove that in this case M2 = 0. It suffices to
show that am = 0 for all homogeneous elements a,m ∈ M \ {0}. Since A
is a homogeneous total quotient ring, every regular homogeneous element of
A is a unit. Thus there exists a nonzero homogeneous element b ∈ M such
that ba = 0. Since b ̸∈ Ann(E), there exists g =

∑
α∈Γ gα ∈ E such that

bg =
∑

α∈Γ bgα ̸= 0. Then bgα ̸= 0 for some α ∈ Γ. Since R is a gr-PVR,
either (0, gα)R ⊆ (a, 0)N or (a, 0)N ⊆ (0, gα)R. The first possibility cannot
hold, because if (0, gα) = (a, 0)(c, d) for some (c, d) ∈ N , then gα = ad, which
gives bgα = (ba)d = 0 · d = 0, a contradiction. So (a, 0)N ⊆ (0, gα)R. In
particular, (a, 0)(m, 0) ∈ (0, gα)R ⊆ 0 ∝ E, hence am = 0. This completes the
proof that M2 = 0 when A = AH .

In the remaining case, A ̸= AH , we will give an indirect proof that A is
a graded integral domain. In other words, we assume that A is not a graded
integral domain and look for a contradiction. Pick two homogeneous elements
a, b ∈ A \ {0} such that ab = 0. Since A is not the homogeneous total quotient
ring, M must contain some homogeneous regular element d of A. Since R is
a gr-PVR, we get that for every nonzero homogeneous element e ∈ E, either
(a, 0)N ⊆ (0, e)R or (0, e) ∈ (a, 0)N . The first possibility cannot hold, because
(0, e)R ⊆ 0 ∝ E and a ̸= 0. Therefore, (0, e) = (a, 0)(c, f) for some (c, f) ∈ N .
It follows that e = af , and so be = baf = (ab)f = 0 · f = 0; i.e., b ∈ Ann(E).
However, since R is a gr-PVR, we also have that either (b, 0)N ⊆ (0, e)R or
(0, e) ∈ (b, 0)N . We see as above that the first condition cannot hold (since
b ̸= 0). So for every 0 ̸= e ∈ h(E), there exists (d, h) ∈ N such that (0, e) =
(b, 0)(d, h). Then e = bh ∈ bE = 0, the desired contradiction.

(4) As above, A is a gr-local ring, say with maximal homogeneous ideal M ,
and R is gr-local with maximal homogeneous ideal N = M ∝ E. Suppose the
claim fails. Then, by (2) and the proof of (3), A is a gr-PVD but not a gr-field.
Pick nonzero homogeneous elements d ∈ M and e ∈ h(E). Since R is a gr-
PVR, either (d, 0)N ⊆ (0, e)R or (0, e) ∈ (d, 0)N . As above, the first condition
cannot hold (since d ̸= 0). Hence (0, e) = (d, 0)(c, f) for some (c, f) ∈ N .
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Therefore, e = df ∈ ME. Consequently E = ME. Then Nakayama’s graded
analog Lemma (cf. [21, Lemma 4.2]) gives E = 0, the desired contradiction. □

Remark 4.5. Theorem 4.4 can be viewed as a graded analog of [13, Theorem
2.8]. However, it is important to note that the proof of [13, Theorem 2.8]
depends on pre-existing results, among which [10, Theorem 3.1(b)] has been
proven incorrect. To circumvent these issues, we opted not to rely on external
work in our proof. Instead, all necessary results have been carefully examined
and detailed in the preceding sections. This approach ensures the reliability
and accuracy of our results without dependence on potentially problematic
sources.

Corollary 4.6. Let A be a graded integral domain. Then:

(1) Let E be a nonzero finitely generated graded A-module. Then R := A ∝
E is a gr-PVR if and only if A is a gr-field.

(2) A ∝ A is a gr-PVR if and only if A is a gr-field.

Proof. Since (2) is a special case of (1), we only need to prove (1). If R is
a gr-PVR, then Theorem 4.4(4) gives that the graded integral domain A is
gr-local and its maximal homogeneous ideal M satisfies M2 = 0, hence M = 0
and A is a gr-field. Conversely, if A is a gr-field (regardless of whether E is
finitely generated as a graded A-module), then R is gr-local ring with a maximal
homogenous ideal M := 0 ∝ E. Since (R,M) is a gr-local ring with M2 = 0,
by applying Theorem 3.7(4) we can conclude that R is a gr-PVR. □

Recall from [6] that a graded ring R is said to be a graded finite-conductor
ring if (0 : a) and Rb∩Rc are finitely generated for every homogeneous elements
a, b, c of R.

Proposition 4.7. Let (A,M) be a gr-local ring, but not a gr-field, such that
M2 = 0. Let E be a non-zero graded A-module such that ME = 0 and R :=
A ∝ E be the graded trivial ring extension. Then:

(1) R is a gr-PVR.
(2) Suppose M is a finitely generated homogeneous ideal of A and E is a

finitely generated graded A-module. Then R is a graded finite-conductor
ring.

(3) Suppose that M is the only homogeneous prime ideal of A. Then RH =
R is not a gr-valuation ring.

Proof. The hypotheses ensure that Ann(E) ̸= 0. Thus, (1) follows from Theo-
rem 4.4 (2).

(2) Since (A,M) is a gr-local ring, so is (R,N), where N := M ∝ E.
Moreover, N is a finitely generated homogeneous ideal of R, for if M =

∑
Ami

and E =
∑

Aej , then N =
∑

i R(mi, 0) +
∑

j R(0, ej). Since M2 = 0 and

ME = 0, it also follows that N2 = 0. Hence, by [6, Proposition 9], R is a
graded finite-conductor ring.
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(3) Since M ∝ E is the only homogeneous prime ideal of R, it immediately
follows that RH = R. Now, suppose the statement fails. In other words,
suppose R is a gr-valuation ring. Since A is not a gr-field, we conclude thatM ̸=
0. Pick a nonzero homogeneous element m ∈ M and let v be a homogeneous
element of E. Then either (m, 0)|(0, v) or (0, v)|(0,m). As above, the first
condition cannot hold (since m ̸= 0). Therefore (0, v) = (0,m)(c, f) for some
(c, f) ∈ R. Thus v = mc = 0 and so E = 0, the desired contradiction. □

Next, we study the transfer of the gr-PVR to the graded amalgamation of
rings. We start with the following lemma.

Lemma 4.8. Let A and B be a pair of graded rings and f : A −→ B be a
graded ring homomorphism. Let J be a nonzero proper homogeneous ideal of
B. If A ▷◁f J is a gr-PVR, then so are A and f(A) + J and J ⊆ h-Jac(B).

Proof. If A ▷◁f J is a gr-PVR, then it follows from [17, Theorem 3.5(4)] that
A▷◁fJ
{0}×J

∼= A and A▷◁fJ
f−1(J)×{0}

∼= f(A)+J. Thus, by Corollary 3.8, A and f(A)+J

are gr-PVRs. Moreover, since A ▷◁f J is gr-local, then J ⊆ h-Jac(B) by
[16, Theorem 4.1(4)]. □

Our next theorem studies the transfer of the gr-PVR to graded amalgama-
tion of rings.

Theorem 4.9. Let A and B be a pair of graded rings, f : A −→ B be a graded
ring homomorphism, and J be a nonzero homogeneous ideal of B such that
f−1(J) ̸= 0. Then R := A ▷◁f J is a gr-PVR if and only if A is a gr-local
ring with maximal homogeneous ideal M such that J2 = 0, f(M)J = 0 and
M2 = 0.

Proof. Suppose R is a gr-PVR. Then R is gr-local with maximal homogeneous
ideal M ′f

g = M ▷◁f J such that M is the maximal homogeneous ideal of A.

Let 0 ̸= i ∈ f−1(J) and 0 ̸= j ∈ J . Since f−1(J) (resp. J) is homogeneous,
i (resp. j) can be assumed to be homogeneous, (i, 0) (resp. (0, j)) is a homo-
geneous element of A ▷◁f J . Then (i, 0) ∈ (0, j)M ′f

g or (0, j)M ′f
g ⊆ (i, 0)R.

If (i, 0) = (0, j)(m, f(m) + k) for some (m, f(m) + k) ∈ M ′f
g , then i = 0,

which is a contradiction. So for any homogeneous element m ∈ M we have
(0, j)(m, f(m)) = (i, 0)(a, f(a) + k) for some (a, f(a) + k) ∈ R. Also, for
any homogeneous element t ∈ J we have (0, j)(0, t) = (i, 0)(b, f(b) + r) for
some (b, f(b) + r) ∈ R. So f(m)j = 0 and jt = 0. Hence f(M)J = 0 and
J2 = 0. To show that M2 = 0, it suffices to prove that mn = 0 for all
homogeneous elements m,n ∈ M , together with the hypothesis that R is a
gr-PVR. Let 0 ̸= j ∈ J ∩ h(B) and m ∈ h(M). We conclude that (0, j) ∈
(m, f(m))M ′f

g or (m, f(m))M ′f
g ⊆ (0, j)R. If (0, j) = (m, f(m)(n, f(n)+ k)

for some (n, f(n) + k) ∈ M ′f
g , then mn = 0 and j = f(mn) + f(m)k = 0,

which is a contradiction. Hence for any homogeneous element n ∈ M we have
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(m, f(m))(n, f(n)) = (0, j)(a, f(a) + k) for some (a, f(a) + k) ∈ R. Hence
mn = 0, which implies that M2 = 0.

Conversely, suppose that A is a gr-local ring with maximal homogeneous
ideal M such that J2 = 0, f(M)J = 0, and M2 = 0. To show that R is a
gr-PVR, Theorem 3.7(2) reduces our task to showing that R is a gr-local ring
with maximal homogeneous ideal M ′f

g and M ′f
g is strongly homogeneous prime.

By [16, Theorem 4.1(4)], R is a gr-local ring with maximal homogeneous ideal
M ′f

g . Let (a, f(a) + i) and (b, f(b) + j) be homogeneous elements in R. We
may assume, without loss of generality, that (a, f(a)+ i) and (b, f(b)+j) are in
M ′f

g . So a and b are in h(M). Then (b, f(b)+j)M ′f
g = ((0, 0)) ⊆ (a, f(a)+ i)R.

Therefore R is a gr-PVR. □

In light of Theorem 4.9, we have the following corollary.

Corollary 4.10. Let A be a graded ring and I be a nonzero proper homogeneous
ideal of A. Then A ▷◁ I is a gr-PVR if and only if A is a gr-local ring with
maximal homogeneous ideal M such that M2 = 0.

Proof. If B := A and I =
⊕

α∈Γ Iα is a homogeneous ideal of A. Consider the

identity map f = idA. Then we have f−1(I) = I ̸= 0. Therefore, by Theorem
4.9, if A ▷◁ I = A ▷◁f I is a gr-PVR, then A is a gr-local ring with maximal
homogeneous ideal M and M2 = 0. Conversely, suppose A is a gr-local ring
with maximal homogeneous ideal M and M2 = 0. Then it is easy to see that
I2 = 0 and MI = 0 since I ⊆ M . So A ▷◁ I is a gr-PVR. □

If A is a graded integral domain and J is a nonzero proper homogeneous
ideal of B, then we have the following result.

Proposition 4.11. Let A and B be graded rings, f : A −→ B be a graded ring
homomorphism, and J be a nonzero proper homogeneous ideal of B. Suppose
A is a graded integral domain. Then R = A ▷◁f J is a gr-PVR if and only if
the following conditions hold:

(a) f−1(J) = 0, J ⊆ h-Jac(B), and A is a gr-PVD with maximal homoge-
neous ideal M .

(b) J = (f(a)+ j)J for every homogeneous element 0 ̸= a ∈ A, j ∈ J such
that deg(a) = deg(j).

(c) For any two homogeneous elements i, j ∈ J, j(f(A)+J) and i(f(M)+J)
are comparable.

Proof. Assume that R is a gr-PVR. Then Lemma 4.8 gives that J ⊆ h-Jac(B),
and A is a gr-PVD with maximal homogeneous ideal M . Hence, M ′f

g := M ▷◁f

J is the maximal homogeneous ideal of R. Let a ∈ f−1(J) and 0 ̸= j ∈ J .
Then a (resp. j) can be assumed to be homogeneous. Since R is a gr-PVR,
we get (a, 0)M ′f

g ⊆ (0, j)R or (0, j) ⊆ (a, 0)M ′f
g . If (0, j) ⊆ (a, 0)M ′f

g , then
j = 0, which is impossible. Hence (a, 0)(a, 0) = (0, j)(r, f(r) + k) for some
(r, f(r) + k) ∈ R. This implies a2 = 0 and thus a = 0, since A is a graded
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integral domain. Therefore, f−1(J) = 0. Now let 0 ̸= a ∈ A, j ∈ J be
homogeneous elements such that deg(a) = deg(j). Then (a, f(a) + j) is a
homogeneous element of R. Let t be a nonzero homogeneous element in J .
Without loss of generality, we may assume that a is a nonunit homogeneous
element. Hence (a, f(a) + j)M ′f

g ⊆ (0, t)R or (0, t)R ⊆ (a, f(a) + j)M ′f
g . If

(a, f(a)+j)M ′f
g ⊆ (0, t)R, then a = 0, which gives a contradiction. Hence there

exists (r, f(r) + k) ∈ R such that (0, t) = (a, f(a) + j)(r, f(r) + k). Therefore
r = 0 and t = (f(a) + j)k and hence J = (f(a) + j)J . On the other hand,
for any two homogeneous elements i, j ∈ J we have (0, i)M ′f

g ⊆ (0, j)R or

(0, j)R ⊆ (0, i)M ′f
g . Therefore i(f(M) + J) ⊆ j(f(A) + J) or j(f(A) + J) ⊆

i(f(M) + J).
Conversely, since A is gr-local with maximal homogeneous ideal M and

J ⊆ h-Jac(B), it follows by [16, Theorem 4.1(4)] that M ′f
g := M ▷◁f J is the

maximal homogeneous ideal of R. Let (a, f(a) + i) and (b, f(b) + j) be two
homogeneous elements of R. Consider first that aA ⊈ bM . Since A is a gr-
PVD, we have bM ⊆ aA. Hence if m ∈ M , there is r ∈ A such that bm = ar.
Since a ̸= 0 and deg(a) = deg(i), we have J = (f(a) + i)J . For t ∈ J , there
is k ∈ J such that f(b)t + j(f(m) + t) = (f(a) + i)k + f(r)i. Thus we have
that (b, f(b) + j)(m, f(m) + t) = (a, f(a) + i)(r, f(r) + k) ∈ (a, f(a) + i)R.
Now, suppose that a = bm for some m ∈ M . If b = 0, then a = 0, and so it
follows by (c) that (0, j) ∈ (0, i)M ′f

g or (0, i)M ′f
g ⊆ (0, j)R. We can assume

that b ̸= 0. Then there exists k ∈ J such that i = jf(m) + (f(b) + j)k. So we
have that (a, f(a) + i) = (b, f(b) + j)(m, f(m) + k) ∈ (b, f(b) + j)M ′f

g . Thus R
is a gr-PVR. □

Remark 4.12. (1) It is easy to see that if J = 0, then A ▷◁f J ∼= A, and so
A ▷◁f J is a gr-PVR if and only if so is A.

(2) If J ̸= 0 and A ▷◁f J is a gr-PVR, then either A is a homogeneous total
quotient ring or A is a graded integral domain. In fact, assume that A ▷◁f J
is a gr-PVR. By Lemma 4.8, A is a gr-PVR with maximal homogeneous ideal
M . If f is not injective, then f−1(J) ̸= 0. Hence, Theorem 4.9 implies that
M2 = 0 and so A = AH .

Now, assume that f is injective such that A is not a homogeneous total
quotient ring. Let a and b be nonzero homogeneous elements of A such that
ab = 0 and a nonzero homogeneous element j ∈ J . Since A ▷◁f J is a gr-PVR,
we get that A ▷◁f J is a gr-local ring with maximal homogeneous ideal M ▷◁f

J . Furthermore, we have (0, j) ∈ (a, f(a))M ▷◁f J or (a, f(a))M ▷◁f J ⊆
(0, j)A ▷◁f J . If (a, f(a))M ▷◁f J ⊆ (0, j)A ▷◁f J , then (a, f(a))(d, f(d)) =
(0, j)(t, f(t) + k) for some regular element d ∈ M and (t, f(t) + k) ∈ A ▷◁f J .
Hence ad = 0 implies that a = 0, which gives a contradiction. Therefore
(0, j) = (a, f(a))(t, f(t) + k) for some (t, f(t) + k) ∈ M ▷◁f J . Hence at = 0
and j = f(a)(f(t) + k). Then f(b)j = 0 for every homogeneous element
j ∈ J . By similar reasoning as above, we have (0, j) ∈ (b, f(b))M ▷◁f J . Hence
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j = f(b)k for some k ∈ J and thus j = 0, which is a contradiction. Therefore
A is a graded integral domain.

Next, we give another result for the gr-PVR in graded amalgamation.

Theorem 4.13. Let A and B be a pair of graded rings and f : A −→ B be a
graded ring homomorphism. Let J be a nonzero homogeneous ideal of B with
no nontrivial homogeneous nilpotent. Let R := A ▷◁f J . Then R is a gr-PVR
if and only if f is injective, f(A) ∩ J = 0, and f(A) + J is a gr-PVR.

Proof. Suppose R is a gr-PVR. Then R is gr-local with maximal homogeneous
idealM ′f

g := M ▷◁f J such thatM is a maximal homogeneous idealA. To prove
that f is injective, it suffices to show that the restriction of f to Aα is injective
for any α ∈ Γ. Let iα be nonzero homogeneous in Ker (f) and 0 ̸= jβ ∈ h(J).
Then (iα, 0) ∈ (0, jβ)M

′f
g or (0, jβ)M

′f
g ⊆ (iα, 0)R. If (iα, 0) ∈ (0, jβ)(r, f(r) +

k) for some (r, f(r) + k) ∈ M ′f
g , then i = 0, which is a contradiction. If

(0, jβ)M
′f
g ⊆ (iα, 0)R, then (0, jβ)(0, jβ) = (iα, 0)(a, f(a)+t) for some (a, f(a)+

t) ∈ A ▷◁f J . Hence j2 = 0 and so j = 0, a desired contradiction. Therefore
Ker (f) = 0 and so f injective. Now, let 0 ̸= f(a) ∈ f(A) ∩ J such that
a =

∑
α∈Γ aα. Then it is easy to see that (aα, 0), (0, f(aα)) ∈ h(A ▷◁f J)

for each α ∈ Γ. Hence (aα, 0) ∈ (0, f(aα))M
′f
g or (0, f(aα))M

′f
g ⊆ (aα, 0)R. If

(aα, 0) = (0, f(aα))(r, f(r)+k) for some (r, f(r)+k) ∈ M ′f
g , then aα = 0 and so

f(aα) = 0 for every α ∈ Γ, which implies f(a) = 0. If (0, f(aα))M
′f
g ⊆ (aα, 0)R,

then (0, f(aα))(0, f(aα)) = (aα, 0)(b, f(b)+ t) for some (b, f(b)+ t) ∈ R. Hence
f(aα)

2 = 0 and so f(a) = 0. In any case we have f(a) = 0, which is a
contradiction. So f(A) ∩ J = 0. By Lemma 4.8, f(A) + J is a gr-PVR.

Conversely, since f is injective and f(A) ∩ J = 0, we have R ∼= f(A) + J .
So R is a gr-PVR, since f(A) + J is a gr-PVR. □

The following corollary is a direct consequence of Theorem 4.13, which ex-
amines the case of graded amalgamated duplication.

Corollary 4.14. Let A be a graded integral domain and I be a proper homo-
geneous ideal of A. Then A ▷◁ I is a gr-PVR if and only if A is a gr-PVR and
I = 0.

Proof. Note that A ▷◁ I = A ▷◁f I, where f = id : A −→ A. Suppose that I is
a nonzero homogeneous ideal of A. By Theorem 4.13 , if A ▷◁ I is a gr-PVR,
then f(A) ∩ I = A ∩ I = 0. Hence I = 0, a contradiction. Therefore, Theorem
4.13 implies that A ▷◁ I is a gr-PVR if and only if A is a gr-PVR and I = 0. □

Example 4.15. Let K be a gr-field and E be a graded K-vector space. Set
A := K ∝ E. Then A is a gr-PVR by the proof of Corollary 4.6, with a
maximal homogeneous ideal M := 0 ∝ E satisfying M2 = 0. Now if we
consider the graded amalgamation duplication R = A ▷◁ M . So R is a gr-PVR
according to Corollary 4.10. However R is not a gr-valuation ring. To address
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this, let a be a non-zero homogeneous element in M . As R(0, a) = 0 ∝ Aa and
R(a, 0) = aA ∝ aM = aA ∝ 0. We get (0, a) /∈ R(a, 0) and (a, 0) /∈ R(0, a).
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