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A GENERALIZATION OF THE SYMMETRY PROPERTY OF

A RING VIA ITS ENDOMORPHISM

Fatma Kaynarca and Halise Melis Tekin Akcin

Abstract. Lambek introduced the concept of symmetric rings to expand

the commutative ideal theory to noncommutative rings. In this study,
we propose an extension of symmetric rings called strongly α-symmetric

rings, which serves as both a generalization of strongly symmetric rings
and an extension of symmetric rings. We define a ring R as strongly

α-symmetric if the skew polynomial ring R[x;α] is symmetric. Conse-

quently, we provide proofs for previously established outcomes regarding
symmetric and strongly symmetric rings, directly derived from the re-

sults we have obtained. Furthermore, we explore various properties and

extensions of strongly α-symmetric rings.

1. Introduction

Let R be an associative ring with identity and α be a non-zero and non-
identity endomorphism of R. We denote the polynomial ring with an inde-
terminate x over R by R[x] and the degree of f(x) ∈ R[x] by the notation
deg f .

Recall that a ring R is called reduced if it has no nonzero nilpotent elements.
Reversible rings are defined as a generalization of commutative rings by Cohn
[4] as follows: A ring R is called reversible if whenever a, b ∈ R satisfies ab = 0,
then ba = 0. These classes of rings have also found application in one of the
most famous conjectures in ring theory known as Köthe’s Conjecture. Cohn
[4] showed that reversible rings satisfy Köthe’s Conjecture.

According to Lambek [23], a ring R is called symmetric if abc = 0 implies
acb = 0 for a, b, c ∈ R. It is obvious that a commutative ring R is symmetric.
Also, if R is a symmetric ring, then it is reversible. But, in general, the other
aspects need not have to be satisfied (see [24, Example 5] and [1, Example
II.5]).
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In [19], Krempa introduced rigid endomorphisms. An endomorphism α of a
ring R is called rigid if aα(a) = 0 implies a = 0, where a ∈ R. For a ring R if
there exists a rigid endomorphism α, then R is called α-rigid. It is well-known
that any rigid endomorphism of a ring is a monomorphism and it is showed in
[9, Propositon 5] that α-rigid rings are reduced.

Armendariz rings are defined by Rege and Chhawchharia in [29] as a gene-
ralization of reduced rings. Let p(x) = p0 + p1x + · · · + pmxm and q(x) =
q0 + q1x + · · · + qnx

n ∈ R[x]. If p(x)q(x) = 0 implies piqj = 0 for each i
and j, then R is called an Armendariz ring. Also, note that Armendariz rings
can be used to establish an association between the annihilators of R and its
polynomial extension R[x].

According to [7], a skew polynomial ring over a coefficient ring R (also called
an Ore extension of endomorphism type) is defined as the ring obtained by
giving the polynomial ring over R with the new multiplication xr = α(r)x,
where r ∈ R and it is denoted by R[x;α]. This property makes the study of
Ore extensions of endomorphism type more difficult than that of the polynomial
rings. Note that for any skew polynomial ring R[x;α] of R we have α(1) = 1,
since 1 · x = x · 1 = α(1)x.

Armendariz property of a ring is extended to skew polynomial rings by
considering the polynomials inR[x;α] instead ofR[x]. R is called α-Armendariz
(resp., α-skew Armendariz ) if for p(x) =

∑m
i=0 pix

i and q(x) =
∑n

j=0 qjx
j in

R[x;α], p(x)q(x) = 0 implies piqj = 0 (resp., piα
i(qj) = 0) for all i, j (see [10]

and [13] for more details).
In [18, Example 2.1], Kim and Lee showed that polynomial rings over re-

versible rings need not be reversible. Following [31], Yang and Liu consider
reversible rings over which polynomial rings are reversible and called them
strongly reversible. According to Bell [3], a one-sided ideal I of a ring R is said
to have the insertion-of factors-principle (or simply IFP), if ab ∈ I implies
aRb ⊆ I for a, b ∈ R. A ring R is called an IFP ring if the zero ideal of R
has the IFP. Also, note that polynomial rings over IFP rings need not be IFP
by [15, Example 2]. Following [21], Kwak et al. called a ring R strongly IFP if
R[x] has IFP. Huh et al. proved in [14, Example 3.1] that polynomial rings over
symmetric rings need not be symmetric. In [6], Eltiyeb and Ayoub investigated
strongly symmetric rings over which polynomial rings are symmetric and a ring
R is called strongly symmetric if whenever polynomials p(x), q(x), r(x) in R[x]
satisfy p(x)q(x)r(x) = 0, then p(x)r(x)q(x) = 0. Recall that a ring R is called
abelian if every idempotent element of R is central.

Another approach to generalize reversible and IFP properties is obtained by
considering the properties on Ore extensions of endomorphism type. Following
Jin et al. [16], a ring R is called strongly α-skew reversible if the skew polynomial
ring R[x;α] is reversible and in [2], Başer et al. called a ring R strongly α-IFP
if the skew polynomial ring R[x;α] has IFP .
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Motivated by the above, in this paper, we introduce a new class of rings
which is called strongly α-symmetric ring to extend the symmetry property
on skew polynomials. The following diagram describes all known implications.
Also, note that no other implications in the diagram hold in general.

α-rigid

strongly α-symmetric strongly symmetric symmetric

strongly α-skew reversible strongly reversible reversible

strongly α-IFP strongly IFP IFP

abelian

In Section 2, we examine the relationships between several classes of rings
and strongly α-symmetric rings and prove some statements about the links
given in the above diagram. We also provide some examples of strongly α-
symmetric rings and counterexamples to several naturally raised situations.

In Section 3, as suggested by the literature, there is a considerable interest
whether strongly α-symmetric property is preserved under extensions. For this
aim, we examine whether some ring extensions over strongly α-symmetric ring
R again possess this property, where α is an endomorphism of the ring R. With
this generalization, several known results relating to symmetric rings can be
obtained as corollaries of our results.

2. Properties of strongly α-symmetric rings

In this section, we introduce the concept of a strongly α-symmetric ring for
an endomorphism α and investigate its ring-theoretical properties. Firstly, we
begin with the following example which illustrates the need to introduce the
symmetric property of skew polynomial rings.

Example 2.1. Consider the ring R = Z2 ⊕ Z2 with the usual addition and
multiplication. Since R is reduced, R is symmetric. Let α : R → R be an
endomorphism of R defined by α((a, b)) = (b, a). If we consider p(x) = (1, 1),
q(x) = (1, 0) and r(x) = (0, 1)x in R[x;α], then we have p(x)q(x)r(x) = 0.
On the other hand, p(x)r(x)q(x) = (1, 1)(0, 1)x(1, 0) = (1, 1)(0, 1)α((1, 0))x =
(0, 1)x ̸= (0, 0). Hence, R[x;α] is not symmetric.

Inspired by this example, we give the following definition.

Definition. Let R be a ring and α be an endomorphism of R. Then R is called
strongly α-symmetric if R[x;α] is symmetric.

Every strongly α-symmetric ring is symmetric, but the converse is not true
by Example 2.1. Any α-rigid ring R (i.e., R[x;α] is reduced) is clearly strongly
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α-symmetric. However, there exists a strongly α-symmetric ring which is not α-
rigid by [25, Example 3.4]. It is clear that any domain R with a monomorphism
α is strongly α-symmetric since R is α-rigid. Note that every subring S of a
strongly α-symmetric ring with α(S) ⊆ S is also strongly α-symmetric. Any
strongly α-symmetric ring is clearly strongly α-IFP, but the converse may not
be true.

Example 2.2. Let R = Z[x]. Consider the endomorphism

α : R → R

defined by α(p(x)) = p(0), where p(x) ∈ Z[x]. Then by [2, Example 2.3],
we know that R is strongly α-IFP. On the other hand, for the polynomials
p(y) = 1 + x, q(y) = xy and r(y) = x ∈ Z[x][y;α] we have p(y)q(y)r(y) = 0,
but p(y)r(y)q(y) ̸= 0. Therefore, R is not strongly α-symmetric.

Following Kwak [20, Definition 2.1], an endomorphism α of a ring R is called
right (resp., left) symmetric if whenever abc = 0 for a, b, c ∈ R, then acα(b) = 0
(resp., α(b)ac = 0). A ring R is called right (resp., left) α-symmetric if there
exists a right (resp., left) symmetric endomorphism α of R. R is called α-
symmetric if it is both right and left α-symmetric.

Proposition 2.3. Let R be a ring with an endomorphism α. If R is strongly
α-symmetric, then R is both symmetric and α-symmetric.

Proof. Let R be a strongly α-symmetric ring. Then it is clear that R is symmet-
ric. Assume now that abc = 0, where a, b, c ∈ R and consider the polynomials
p(x) = a, q(x) = b and r(x) = cx in R[x;α]. Then p(x)q(x)r(x) = 0. Since R
is strongly α-symmetric, we have p(x)r(x)q(x) = 0 and so, acα(b) = 0. Hence,
we obtain that R is right α-symmetric. Moreover, we have α(b)ac = 0 since R
is reversible. Therefore, R is left α-symmetric. □

Let R be a ring with an endomorphism α. Then by [11, Definition 2.1], R
is called α-skew quasi Armendariz if whenever p(x)R[x;α]q(x) = 0 for p(x) =∑m

i=0 pix
i and q(x) =

∑n
j=0 qjx

j ∈ R[x;α], then piRσi(qj) = 0 for all i, j.
Also, note that any α-skew Armendariz ring is α-skew quasi Armendariz, when
α is an epimorphism by [11]. But, α-skew quasi Armendariz rings need not be
α-skew Armendariz even if α is an automorphism by [11, Example 2.2(1)]. In
the following theorem, our aim is to show that over strongly α-symmetric rings
these concepts are equivalent.

Theorem 2.4. Let R be a ring with an endomorphism α. If R is strongly
α-symmetric, then R is α-skew Armendariz if and only if R is α-skew quasi
Armendariz.

Proof. It is enough to show that R is α-skew Armendariz when R is α-skew
quasi Armendariz. Let p(x)q(x) = 0, where p(x) =

∑m
i=0 pix

i and q(x) =∑n
j=0 qjx

j in R[x;α]. Then p(x)q(x)r(x) = 0 for each r(x) ∈ R[x;α]. By

the assumption, we have p(x)r(x)q(x) = 0 for each r(x) ∈ R[x;α]. Hence,
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p(x)R[x;α]q(x) = 0 and since R is α-skew quasi Armendariz, piRαi(qj) = 0
for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Therefore, piα

i(qj) = 0 for all 0 ≤ i ≤ m and
0 ≤ j ≤ n as required. □

Note that for a ring R being “α-skew Armendariz” and “strongly α-symmetric”
are independent of each other by the following examples.

Example 2.5. (1) Consider R = Z2[x] with an the endomorphism α, where α
is defined by α(p(x)) = p(0) for p(x) ∈ Z2[x]. Then R is α-skew Armendariz by
[10, Example 5], but is not strongly α-symmetric. Indeed, for p(y) = 1, q(y) =
(1̄ + x)y, r(y) = x ∈ Z2[x][y;α], we have p(y)q(y)r(y) = 0 and p(y)r(y)q(y) =
x(1̄ + x)y ̸= 0.

(2) Let S =

{(
ā b̄
0̄ ā

)
| ā, b̄ ∈ Z4

}
. By [10, Example 14], S is not IS-

skew Armendariz, where IS denotes the identity map of S. On the other hand,
it can be seen that S is strongly IS-symmetric.

Theorem 2.6. Let R be an α-Armendariz ring. Then the followings are
equivalent:

(1) R is right α-symmetric.
(2) R is symmetric.
(3) R is strongly α-symmetric.

Proof. (1) ⇒ (2) Assume that R is right α-symmetric. Let a, b, c ∈ R such that
abc = 0. Since R is right α-symmetric, we have acα(b) = 0. Then acb = 0 by
[13, Proposition 1.3(ii)] since R is α-Armendariz. Hence, R is symmetric.

(2) ⇒ (3) It is clear by [13, Theorem 3.6(i)] since R is α-Armendariz.
(3) ⇒ (1) Assume that R is strongly α-symmetric and abc = 0, where

a, b, c ∈ R. Let p(x) = a, q(x) = b and r(x) = cx in R[x;α]. Then p(x)q(x)r(x)
= 0 and by the assumption, we get p(x)r(x)q(x) = 0. Therefore, acα(b) = 0 as
required. □

Note that the condition of R being “α-Armendariz” in Theorem 2.6 is not
superfluous by Example 2.5(1). In [13, Example 1.9], it is proved that R = Z2[x]
is not α-Armendariz. Since R is a commutative domain, then R is symmetric
and right α-symmetric for any endomorphism.

Corollary 2.7 ([14, Proposition 3.4]). Let R be an Armendariz ring. Then R
is symmetric if and only if R[x] is symmetric.

The following lemma can be seen by using [16, Lemma 2.3], since any
strongly α-symmetric ring is strongly α-skew reversible. For the sake of com-
pleteness, we include the statements.

Lemma 2.8. Let R be a strongly α-symmetric ring. Then we have the following
results:

(1) R is symmetric.
(2) α is a monomorphism.
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(3) For any a, b ∈ R and nonnegative integer m and n, we have aαm(b) =
0 ⇔ ab = 0 ⇔ ba = 0 ⇔ αm(b)αn(a) = 0 ⇔ αn(a)αm(b) = 0.

(4) R is abelian and α(e) = e for any e2 = e ∈ R.

Following [8], a ring R with an endomorphism α is called α-compatible if
for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. It is a well-known fact that if R is a
α-compatible ring, then α is a monomorphism.

Lemma 2.9. Let R be a ring with an endomorphism α. If R is strongly α-
symmetric, then R is α-compatible.

Proof. If R is strongly α-symmetric, then R is strongly α-skew reversible and
by using [16, Corollary 2.4(1)], we obtain that R is α-compatible. □

On the other hand, α-compatible rings need not be strongly α-symmetric
by [16, Example 2.11]. In the following theorem, we show the relation between
α-compatible rings and strongly α-symmetric rings.

Theorem 2.10. Let R be a ring with an endomorphism α. Assume that R
is α-skew Armendariz. Then R is strongly α-symmetric if and only if R is
symmetric and α-compatible.

Proof. By using Lemma 2.9 and the fact that strongly α-symmetric prop-
erty is inherited by its subrings, it suffices to show the necessity. Suppose
that R is symmetric and α-compatible. Let p(x)q(x)r(x) = 0, where p(x) =∑m

i=0 pix
i, q(x) =

∑n
j=0 qjx

j and r(x) =
∑l

k=0 rkx
k in R[x;α]. Then we have

piα
i(qj)α

i+j(rk) = 0 for all 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ l. Since R is
α-compatible, we obtain piqjrk = 0. By symmetric property, we get pirkqj = 0.
Hence, piα

i(rk)α
i+j(qj) = 0 for all 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ l and this

implies that p(x)r(x)q(x) = 0. □

Note that the statements of R being “an α-compatible ring” and “an α-
skew Armendariz ring” in Theorem 2.10 can not be dropped by the following
examples.

Example 2.11. Consider the polynomial ring R = Z2[x] and the endomor-
phism α : R → R defined by α(p(x)) = p(0), where p(x) ∈ Z2[x]. Since R is
a domain, it is symmetric. Also by [10, Example 5], R is α-skew Armendariz.
On the other hand, R is not strongly α-symmetric by Example 2.5(1) and since
α is not a monomorphism, we get that R is not α-compatible.

Example 2.12. Inspired by [14, Example 3.1], let us construct a ring R as
follows:

Let A = Z2[a0, a1, a2, b0, b1, b2, c] be the free algebra of polynomials with
noncommuting indeterminates a0, a1, a2, b0, b1, b2, c over Z2, where Z2 denotes
the ring of integers modulo 2. Let α be an automorphism of A defined by

a0, a1, a2, b0, b1, b2, c 7→ b0, b1, b2, a0, a1, a2, c,
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respectively. Let B be the set that consists of all polynomials in A with zero
constant terms and I be the ideal of A generated by

a0b0, b0a0, a2b2, b2a2, a0a0, a2a2, b0b0, b2b2

a0rb0, b0ra0, a2rb2, b2ra2, a0ra0, a2ra2, b0rb0, b2rb2, r1r2r3r4

a0b1 + a1b0, b0a1 + b1a0, a1b2 + a2b1, b1a2 + b2a1, a0a1 + a1a0, b0b1 + b1b0

a1a2 + a2a1, b1b2 + b2b1, a0b2 + a1b1 + a2b0, b0a2 + b1a1 + b2a0, a0a2 + a1a1 + a2a0

b0b2 + b1b1 + b2b, (a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2)

(a0 + a1 + a2)r(a0 + a1 + a2), (b0 + b1 + b2)r(b0 + b1 + b2)

for r, r1, r2, r3, r4 ∈ B. It can be seen that B4 ⊆ I. Now set R = A/I. Since
α(I) ⊆ I, an automorphism ᾱ of R can be induced by defining ᾱ(a + I) =
α(a) + I, where a ∈ A. Also, note that α2 = IR. By [16, Example 2.5], R is
ᾱ-compatible, but not strongly ᾱ-skew reversible. Therefore, R is not strongly
ᾱ-symmetric. Moreover, by [14, Example 2.10(1)], R is not ᾱ-skew Armendariz.

Now we show that R is symmetric. Recall that p ∈ A a monomial of degree
n if it is a product of exactly n number of indeterminates. The set of all linear
combinations of monomials of degree n over Z2 is denoted by Hn. Then Hn is
finite for any n. In addition, the ideal I is homogeneous (i.e., if

∑t
i=1 ri ∈ I

with ri ∈ Hi then every ri is in I) by the construction.

Claim. If p1q1s1 ∈ I where p1, q1, s1 ∈ H1, then p1q1s1 ∈ I.

Proof of Claim. Based on the construction of I we have the following cases;
Case 1:

(p1 = a0, q1 = b0, s1 = r), (p1 = a0, q1 = r, s1 = b0), (p1 = b0, q1 = a0, s1 = r),

(p1 = b0, q1 = r, s1 = a0), (p1 = a0, q1 = a0, s1 = r), (p1 = a0, q1 = r, s1 = a0),

(p1 = b0, q1 = b0, s1 = r), (p1 = b0, q1 = r, s1 = b0), (p1 = r, q1 = a0, s1 = b0),

(p1 = r, q1 = b0, s1 = a0), (p1 = a2, q1 = b2, s1 = r), (p1 = a2, q1 = r, s1 = b2),

(p1 = b2, q1 = a2, s1 = r), (p1 = b2, q1 = r, s1 = a2), (p1 = a2, q1 = a2, s1 = r),

(p1 = a2, q1 = r, s1 = a2), (p1 = b2, q1 = b2, s1 = r), (p1 = b2, q1 = r, s1 = b2),

(p1 = r, q1 = a2, s1 = b2), (p1 = r, q1 = b2, s1 = a2), (p1 = r, q1 = a0, s1 = a0),

(p1 = r, q1 = a2, s1 = a2), (p1 = r, q1 = b0, s1 = b0), (p1 = r, q1 = b2, s1 = b2),

(p1 = a0+a1+a2, q1 = r, s1 = b0+b1+b2), (p1 = a0+a1+a2, q1 = b0+b1+b2, s1 = r),

(p1 = r, q1 = a0+a1+a2, s1 = b0+b1+b2), (p1 = b0+b1+b2, q1 = r, s1 = a0+a1+a2),

(p1 = b0+b1+b2, q1 = a0+a1+a2, s1 = r), (p1 = r, q1 = b0+b1+b2, s1 = a0+a1+a2),

(p1 = a0+a1+a2, q1 = a0+a1+a2, s1 = r), (p1 = a0+a1+a2, q1 = r, s1 = a0+a1+a2),

(p1 = r, q1 = a0+a1+a2, s1 = a0+a1+a2), (p1 = b0+b1+b2, q1 = b0+b1+b2, s1 = r),

(p1 = b0+b1+b2, q1 = r, s1 = b0+b1+b2), (p1 = r, q1 = b0+b1+b2, s1 = b0+b1+b2),

where r ∈ H1 and these cases are clear by the construction of I.
Case 2:

• If (p1 = a0, q1 = b1, s1 = a0), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
a0b1a0 = a0b1a0 + a1b0a0 = (a0b1 + a1b0)a0 ∈ I and a0a0b1 ∈ I.

• If (p1 = b0, q1 = a1, s1 = b0), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
b0a1b0 = b0a1b0 + b1a0b0 = (b0a1 + b1a0)b0 ∈ I and b0b0a1 ∈ I.
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• If (p1 = b2, q1 = a1, s1 = b2), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
b2a1b2 = b2a1b2 + b2a2b1 = b2(a1b2 + a2b1) ∈ I and b2b2a1 ∈ I.

• If (p1 = a2, q1 = b1, s1 = a2), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
a2b1a2 = a2b1a2 + a2b2a1 = a2(b1a2 + b2a1) ∈ I and a2a2b1 ∈ I.

• If (p1 = b0, q1 = a1, s1 = a0), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
b0a1a0 = b0a1a0 + b0a0a1 = b0(a0a1 + a1a0) ∈ I and b0a0a1 ∈ I.

• If (p1 = a0, q1 = a1, s1 = b0), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
a0a1b0 = a0a1b0 + a1a0b0 = (a0a1 + a1a0)b0 ∈ I and a0b0a1 ∈ I.

• If (p1 = a0, q1 = b1, s1 = b0), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
a0b1b0 = a0b1b0 + a0b0b1 = a0(b0b1 + b1b0) ∈ I and a0b0b1 ∈ I.

• If (p1 = b0, q1 = b1, s1 = a0), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
b0b1a0 = b0b1a0 + b1b0a0 = (b0b1 + b1b0)a0 ∈ I and b0a0b1 ∈ I.

• If (p1 = a2, q1 = a1, s1 = b2), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
a2a1b2 = a2a1b2 + a1a2b2 = (a1a2 + a2a1)b2 ∈ I and a2b2a1 ∈ I.

• If (p1 = b2, q1 = a1, s1 = a2), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
b2a1a2 = b2a1a2 + b2a2a1 = b2(a1a2 + a2a1) ∈ I and b2a2a1 ∈ I.

• If (p1 = a2, q1 = b1, s1 = b2), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
a2b1b2 = a2b1b2 + a2b2b1 = a2(b1b2 + b2b1) ∈ I and a2b2b1 ∈ I.

• If (p1 = b2, q1 = b1, s1 = a2), then p1q1s1 ∈ I and p1s1q1 ∈ I, since
b2b1a2 = b2b1a2 + b1b2a2 = (b1b2 + b2b1)a2 ∈ I and b2a2b1 ∈ I.

Thus, we obtain that p1q1s1 ∈ I implies p1s1q1 ∈ I for each case and it proves
our claim. Now let p = p1+p2+p3+p4, q = q1+q2+q3+q4, s = s1+s2+s3+s4
with pi, qi, si ∈ Hi for i = 1, 2, 3 and p4, q4, s4 ∈ I. Let pqs ∈ I, where
p, q, s ∈ A. We want to see that R is symmetric. Since each monomial of
degree ≥ 4 is contained in I, then we have pqs = p1q1s1 + s′ ∈ I, where s′ ∈ I.
Hence, p1q1s1 ∈ I and p1s1q1 ∈ I. Therefore, we have psq ∈ I as required.

Recall that an ideal I of R is called an α-ideal if α(I) ⊆ I, where α is an
endomorphism of R.

Definition ([12, Definition 1.1]). Let R be a ring with an automorphism α.
For an α-ideal I of R, I is called strongly α-semiprime ideal of R if aRα(a) ⊆ I
implies a ∈ I for any a ∈ R. R is called a strongly α-semiprime ring if the zero
ideal is strongly α-semiprime.

For an automorphism α of R, every α-rigid ring is strongly α-semiprime.
Also, recall that any α-rigid ring is strongly α-symmetric. The following propo-
sition shows when strongly α-symmetric rings are α-rigid.

Proposition 2.13. Let R be a ring with an automorphism α. Then R is α-
rigid if and only if R is strongly α-semiprime and R is strongly α-symmetric.

Proof. Suppose that R is strongly α-semiprime and strongly α-symmetric ring
and let aα(a) = 0, where a ∈ R. Now, consider the polynomials p(x) = ax and
q(x) = a in R[x;α]. Then we have p(x)q(x)r(x) = 0 for any r(x) ∈ R[x;α].
Since R is strongly α-symmetric, we obtain p(x)r(x)q(x) = 0 for any r(x) ∈
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R[x;α]. This implies that aRα(a) = 0 since α is onto. By using the fact that
R is strongly α-semiprime, we get a = 0. □

The following examples show that the concepts of strongly α-symmetric ring
and strongly α-semiprime ring are independent of each other.

Example 2.14. (1) Let F be a field with char(F ) ̸= 2. Consider the ring R =

M2(F ) and let α : R → R be an endomorphism defined by α

((
a b
c d

))
=(

a −b
−c d

)
. Then it is proved in [12, Example 2.1] that R is strongly α-

semiprime. On the other hand, for the polynomials p(x) =

(
0 1
0 1

)
, q(x) =(

1 1
1 1

)
x and r(x) =

(
1 1
1 1

)
in R[x;α], we have p(x)q(x)r(x) = 0, but

p(x)r(x)q(x) =

(
0 1
0 1

)(
1 1
1 1

)(
1 1
1 1

)
x =

(
2 2
2 2

)
x ̸= O.

Hence, R is not strongly α-symmetric. Moreover, R is not α-rigid since(
1 1
1 1

)
α

((
1 1
1 1

))
= 0 and

(
1 1
1 1

)
̸= 0. This example shows that in

Theorem 2.13, being strongly α-symmetric is not superfluous.

(2) Consider the ring R =

{(
a t
0 a

)
| a ∈ Z, t ∈ Q

}
and let α be the

identity endomorphism of R. R is not strongly α-semiprime since(
0 1
0 0

)(
a t
0 a

)
α

((
0 1
0 0

))
= 0

for any a ∈ Z and t ∈ Q. On the other hand, suppose that p(x)q(x)r(x) = 0,

where p(x) =
∑m

i=0

(
ai ti
0 ai

)
xi, q(x) =

∑n
j=0

(
bj t′j
0 bj

)
xj and r(x) =∑l

k=0

(
ck t′′k
0 ck

)
xk in R[x;α]. Then we obtain

0 = p(x)q(x)r(x)

=

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

(
ai ti
0 ai

)
ᾱi

(
bj t′j
0 bj

)
ᾱs

(
ck t′′k
0 ck

)))
xt

=

m+n+l∑
t=0

∑
t=s+k

∑
s=i+j

(
aibjck aibjt

′′
k + ait

′
jck + tibjck

0 aibjck

)
xt

= p(x)r(x)q(x).

Therefore, R is strongly α-symmetric.

Corollary 2.15. Let R be a ring with an automorphism α. Then the following
statements are equivalent:
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(1) R is strongly α-semiprime and strongly α-symmetric.
(2) R is α-rigid.
(3) R[x, x−1;α] is reduced.

Proof. (1) ⇔ (2) is obtained by Theorem 2.13. It can be seen that (2) ⇔ (3)
follows from [28, Theorem 3]. □

By using Proposition 2.13, we obtain a generalization of the following result.

Corollary 2.16 ([14, Proposition 2.7(1)]). R is reduced if and only if R is
semiprime and R is symmetric.

Proposition 2.17. Let R be a ring with an endomorphism α and Iλ be an
ideal of R with α(Iλ) ⊆ Iλ for all λ ∈ Λ. Let αλ : R/Iλ → R/Iλ be the induced
endomorphism of R/Iλ. If R is a subdirect sum of strongly αλ-symmetric rings
for all λ ∈ Λ, then R is a strongly α-symmetric ring.

Proof. Since R is a subdirect sum of strongly αλ-symmetric rings, by [27,
Theorem 3], we have R/Iλ is a strongly αλ-symmetric ring for all λ ∈ Λ
and ∩λ∈ΛIλ = 0. Suppose that p(x)q(x)r(x) = 0, where p(x) =

∑m
i=0 pix

i,

q(x) =
∑n

j=0 qjx
j and r(x) =

∑l
k=0 rkx

k in R[x;α]. Then p̄(x)q̄(x)r̄(x) = 0̄ in(
R/Iλ

)
[x;αλ] for all λ ∈ Λ. Since R/Iλ is strongly αλ-symmetric for all λ ∈ Λ,

we can deduce that p̄(x)r̄(x)q̄(x) = 0̄. Then
∑

t=s+j

∑
s=i+k piα

i(rk)α
s(qj) ∈

Iλ for all λ ∈ Λ. Since ∩λ∈ΛIλ = 0, we obtain that∑
t=s+j

∑
s=i+k

piα
i(rk)α

s(qj) = 0.

Therefore, p(x)r(x)q(x) = 0 as required. □

Let αi be an endomorphism of a ring Ri for each i ∈ I. Then the map
α :

∏
i∈I Ri →

∏
i∈I Ri defined by α((ai)) = (αi(ai)), where (ai) ∈

∏
i∈I Ri

is an endomorphism. The proof of the following lemma can be obtained by
routine computations.

Lemma 2.18. Let Ri be a ring with an endomorphism αi for each i ∈ I. Then
the followings are equivalent:

(i) Ri is strongly αi-symmetric for each i ∈ I.
(ii) The direct product

∏
i∈I Ri is strongly α-symmetric.

(iii) The direct sum
⊕

i∈I Ri is strongly α-symmetric.

Recall that a ring R is called local if R/J(R) is a division ring, where J(R)
denotes the Jacobson radical of R. R is called semilocal if R/J(R) is semisimple
Artinian and R is called semiperfect if R is semilocal and idempotents can be
lifted modulo J(R) (see [23] for more details). Also, note that local rings are
abelian and semilocal.

Proposition 2.19. Let R be a ring with an endomorphism α. Then we have
the followings.
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(i) R is a strongly α-symmetric and semiperfect ring if and only if R =⊕n
i=1 Ri such that Ri is local and strongly αi-symmetric ring, where

αi is an endomorphism of Ri for all i = 0, 1, . . . , n.
(ii) Let R be a ring and e be a central idempotent of R. Then eR and (1−

e)R are strongly α-symmetric if and only if R is strongly α-symmetric.

Proof. (i) Suppose that R is strongly α-symmetric and semiperfect. Since R
is semiperfect, by using [22, Corollary 3.7.2], R has a finite orthogonal set
{e1, . . . , en} of local idempotents whose sum is 1. Then R =

∑n
i=1 eiR such

that eiRei is a local ring for all i = 1, . . . , n. Since R is strongly α-symmetric,
then R is abelian and eiRei = eiR. Also, by Lemma 2.8(iv), α(eiR) ⊆ eiR for
all i = 1, . . . , n. Let αi be an endomorphism of eiR induced by α. Then eiR is
strongly αi-symmetric and local subring of R.

Conversely, let R be a finite direct sum of strongly αi-symmetric local rings
Ri for all i = 0, 1, . . . , n. Since local rings are semiperfect and R is strongly
α-symmetric by Lemma 2.18, then we get R is semiperfect.

(ii) It can be seen by using the fact R ∼= eR⊕ (1−e)R and Lemma 2.18. □

3. Extensions of strongly α-symmetric rings

In this section, we investigate properties of strongly α-symmetric rings and
their extensions. First, we deal with the polynomial extensions of strongly α-
symmetric rings. Note that an endomorphism α of a ring R can be extended
to an endomorphism ᾱ of the polynomial ring R[x], where

ᾱ

(
m∑
i=0

aix
i

)
=

m∑
i=0

α(ai)x
i.

It is obvious that the polynomial rings over commutative (resp., reduced) rings
are commutative (resp., reduced). But, this is not true for IFP, reversible and
symmetric rings by [15, Example 2], [18, Example 2.1] and [14, Example 3.1],
respectively.

Based on these results, one may ask whether a polynomial ring over a
strongly α-symmetric ring is strongly ᾱ-symmetric. We remark that the idea
of the following proof is similar to [10, Theorem 6].

Theorem 3.1. Let R be a ring and let α be an endomorphism of R with αt =
IR for some positive integer t, where IR denotes the identity endomorphism of
R. Then R is strongly α-symmetric if and only if R[x] is strongly ᾱ-symmetric.

Proof. It is enough to prove that R[x] is strongly ᾱ-symmetric when R is
strongly α-symmetric. Assume that

p(y) = p0 + p1y + · · ·+ pmym,

q(y) = q0 + q1y + · · ·+ qny
n,

r(y) = r0 + r1y + · · ·+ rly
l
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in R[x][y; ᾱ] such that p(y)q(y)r(y) = 0. We also let

pi = pi0 + pi1x+ · · ·+ piui
xui ,

qj = qj0 + qj1x+ · · ·+ qjvj x
vj ,

rk = rk0 + rk1x+ · · ·+ rkwk
xwk

in R[x], where ui, vj , wk ≥ 0 for each 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ l. We
want to show that p(y)r(y)q(y) = 0. Take a positive integer s such that

s > max{deg pi,deg qj ,deg rk}
for any i, j and k, where the degree is considered as polynomials in R[x]. Also,
note that we assume the degree of zero polynomial is zero. Let

p(xts+1) = p0 + p1x
ts+1 + · · ·+ pmxmts+m,

q(xts+1) = q0 + q1x
ts+1 + · · ·+ qnx

nts+n,

r(xts+1) = r0 + r1x
ts+1 + · · ·+ rlx

lts+l.

Then the set of coefficients of the pi(resp., qj and rk) equals the set of coef-
ficients of p(xts+1) (resp., q(xts+1) and r(xts+1)). Since p(y)q(y)r(y) = 0, x
commutes with elements of R in the polynomial ring R[x] and αts = IR, we
get p(xts+1)q(xts+1)r(xts+1) = 0 ∈ R[x, α]. Then p(xts+1)r(xts+1)q(xts+1) =
0 ∈ R[x, α] since R is strongly α-symmetric. Thus, we obtain p(y)r(y)q(y) = 0
as required. □

In the following example, we show that there exists a non-identity endomor-
phism α of a strongly α-symmetric ring R such that αt = IR for some positive
integer t.

Example 3.2. Consider the ring

R =

{(
a b̄
0 a

)
| a ∈ Z, b̄ ∈ Z4

}
and let α be an endomorphism defined by α

((
a b̄
0 a

))
=

(
a −b̄
0 a

)
. By

[13, Example 1.10], R is α-Armendariz and we also have R is symmetric since
it is commutative. Then by using Theorem 2.6, we obtain R is strongly α-
symmetric and α2 = IR.

Let R be a ring and u be an element of R. Recall that if ur = 0 implies r = 0
for r ∈ R, then the element u is called r ight regular and left regular elements is
defined, similarly. An element is called regular if it is both left and right regular.
Following [7], a ring R is called left Ore for given a, b ∈ R with b regular, there
exist a1, b1 ∈ R with b1 regular such that b1a = a1b. In [26, Theorem 2.1.12], it
is showed that the classical left quotient ring S−1R exists if and only if S is a
left Ore set and the set S̄ = {s+ass(S) ∈ R/ass(S) | s ∈ S} consists of regular
elements, where ass(S) := {r ∈ R | sr = 0 for some s ∈ S}. In [14, Theorem
4.1]), it is proved that R is symmetric if and only if Q(R) is symmetric. In
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the following theorem, we consider the classical left quotient rings of strongly
α-symmetric rings. Let R be a ring with the classical left quotient ring Q(R).
Then each automorphism α of R can be extended to an endomorphism ᾱ of
Q(R) with ᾱ(b−1a) = α(b)−1α(a), where a, b ∈ R with b regular.

Theorem 3.3. Let R be a ring with an automorphism α. If the classical left
quotient ring Q(R) of R exists, then R is strongly α-symmetric if and only if
Q(R) is strongly ᾱ-symmetric.

Proof. It is enough to prove that Q(R) is strongly ᾱ-symmetric whenever R
is strongly α-symmetric. Let p(x) =

∑m
i=0 u

−1
1 pix

i, q(x) =
∑n

j=0 v
−1
1 qjx

j

and r(x) =
∑l

k=0 w
−1
1 rkx

k ∈ Q(R)[x; ᾱ] such that p(x)q(x)r(x) = 0, where
pi, qj , rk ∈ R and u, v, w are regular elements in R for 0 ≤ i ≤ m, 0 ≤ j ≤ n
and 0 ≤ k ≤ l. Then we obtain

0 = p(x)q(x)r(x)

= u−1
1

( m∑
i=0

pix
iv−1

1

)( n∑
j=0

qjx
jw−1

1

)( l∑
k=0

rkx
k

)

=

( m∑
i=0

piα
i(v1)

−1xi

)( n∑
j=0

qjα
j(w1)

−1xj

)( l∑
k=0

rkx
k

)
.

There exist p′i, q
′
j ∈ R and regular elements v2, w2 ∈ R such that

(1) piα
i(v1)

−1 = v−1
2 p′i,

(2) qjα
j(w1)

−1 = w−1
2 q′j

for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Thus, we have

0 =

( m∑
i=0

v−1
2 p′ix

i

)( n∑
j=0

w−1
2 q′jx

j

)( l∑
k=0

rkx
k

)

= v−1
2

( m∑
i=0

p′iα
i(w2)

−1xi

)( n∑
j=0

q′jx
j

)( l∑
k=0

rkx
k

)
.

There exist p′′i ∈ R and regular element w3 ∈ R such that

(3) p′iα
i(w2)

−1 = w−1
3 p′′i

for 0 ≤ i ≤ m. Then we have

(∑m
i=0 p

′′
i x

i

)(∑n
j=0 q

′
jx

j

)(∑l
k=0 rkx

k

)
= 0.

Using strongly α-symmetric property of R, we deduce that

(4)

( m∑
i=0

p′′i x
i

)( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)
= 0.
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Since R is strongly α-IFP, we obtain that

0 =

( m∑
i=0

p′′i x
i

)
w2v1

( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)

=

( m∑
i=0

p′′i α
i(w2v1)x

i

)( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)
.(5)

By multiplying (5) on the left hand side with (w3v2)
−1 and using (1) and (3),

we obtain

0 =

( m∑
i=0

(w3v2)
−1p′′i α

i(w2v1)x
i

)( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)

=

( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)
.

Thus, we get

(6)

( n∑
j=0

q′jx
j

)
w1

( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)
= 0

since R is strongly α-skew reversible and strongly α-IFP. If we multiply (6) by
w−1

2 on the left hand side and use (2), then we have

0 = w−1
2

( n∑
j=0

q′jα
j(w1)x

j

)( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)

=

( n∑
j=0

qjx
j

)( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)

=

( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)( n∑
j=0

qjx
j

)
.(7)

By using (7) and similar arguments as above, we get p(x)r(x)q(x) = 0. Hence,
Q(R) is strongly ᾱ-symmetric. □

LetR be a ring and α be an endomorphism ofR. The set of all central regular
elements of R is denoted by ∆. It can be seen that ∆ is a multiplicatively closed
subset of R. Then the map

ᾱ : ∆−1R → ∆−1R

defined by ᾱ(u−1r) = α(u)−1α(r) is also an automorphism, where r ∈ R and
u ∈ ∆.

In the following proposition, we are able to remove the condition in [14,
Lemma 3.2] which states that “α(u) = u for any central regular element u”.
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And hence, we obtain a generalization of [14, Lemma 3.2] without any condition
on the automorphism α.

Proposition 3.4. Let R be a ring and α be an endomorphism of R. Then R
is strongly α-symmetric if and only if ∆−1R is strongly ᾱ-symmetric.

Proof. Let p(x)q(x)r(x) = 0, where p(x)=
∑m

i=0 u
−1pix

i, q(x)=
∑n

j=0 v
−1qjx

j

and r(x) =
∑l

k=0 w
−1rkx

k ∈ ∆−1R[x; ᾱ] with pi, qj , rk ∈ R and u, v, w are
central regular elements in R for all 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ l. Then
we have

0 = p(x)q(x)r(x)

=

( m∑
i=0

u−1pix
i

)( n∑
j=0

v−1qjx
j

)( l∑
k=0

w−1rkx
k

)

= u−1

( m∑
i=0

piα
i(v)−1xi

)( n∑
j=0

qjα
j(w)−1xj

)( l∑
k=0

rkx
k

)

= u−1

( m∑
i=0

αi(v)−1pix
i

)( n∑
j=0

αj(w)−1qjx
j

)( l∑
k=0

rkx
k

)
.

There exist p′i, p
′
j ∈ R and central regular elements v1, w1 ∈ R such that

(8) αi(v)−1pi = v−1
1 p′i,

(9) αj(w)−1qj = w−1
1 q′j

for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then we have

0 = u−1v−1
1

( m∑
i=0

p′iα
i(w1)

−1xi

)( n∑
j=0

q′jx
j

)( l∑
k=0

rkx
k

)

= u−1v−1
1

( m∑
i=0

αi(w1)
−1p′ix

i

)( n∑
j=0

q′jx
j

)( l∑
k=0

rkx
k

)
.

There exist p′′i ∈ R and central regular element w2 ∈ R such that

(10) αi(w1)
−1p′i = w−1

2 p′′i

for all 0 ≤ i ≤ m. Then we obtain

0 = u−1v−1
1 w−1

2

( m∑
i=0

p′′i x
i

)( n∑
j=0

q′jx
j

)( l∑
k=0

rkx
k

)
.
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Hence, we get

(∑m
i=0 p

′′
i x

i

)(∑n
j=0 q

′
jx

j

)(∑l
k=0 rkx

k

)
= 0. Since R is

strongly α-symmetric, we deduce that

0 =

( m∑
i=0

p′′i x
i

)( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)
.

By using the fact that R is strongly α-IFP, we have

0 =

( m∑
i=0

p′′i x
i

)
vw1

( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)
.(11)

If we multiply (11) by (w2v1)
−1 on the left hand side and if we use (8) and

(10), we get

0 = (w2v1)
−1

( m∑
i=0

p′′i α
i(vw1)x

i

)( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)

=

( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)( n∑
j=0

q′jx
j

)
.

Since R is strongly α-skew reversible and strongly α-IFP, we obtain that

0 =

( n∑
j=0

q′jx
j

)
w

( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)
.(12)

By multiplying (12) with w−1
1 on the left hand side and using (9), we get

0 = w−1
1

( n∑
j=0

q′jx
j

)
w

( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)

=

( n∑
j=0

w−1
1 q′jα

j(w)xj

)( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)

=

( n∑
j=0

qjx
j

)( m∑
i=0

pix
i

)( l∑
k=0

rkx
k

)
.

Then we have

(∑m
i=0 pix

i

)(∑l
k=0 rkx

k

)(∑n
j=0 qjx

j

)
= 0. Therefore,

∆−1R is strongly ᾱ-symmetric. □

Recall that the ring of Laurent polynomials over a ring R consists of all
formal sums

∑n
i=k pix

i with usual addition and multiplication, where pi ∈ R
and k, n are (possibly negative) integers and denoted by R[x, x−1]. Note that
an endomorphism α of R can be extend an endomorphism ᾱ of R[x, x−1] with
ᾱ(
∑n

i=k pix
i) =

∑n
i=k α(pi)x

i.
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Corollary 3.5. Let R be a ring with an endomorphism α. Then R[x] is strongly
ᾱ-symmetric if and only if so is R[x, x−1].

Proof. Let ∆ = {1, x, x2, . . .}. It can be easily seen that ∆ is a multiplicatively
closed subset of R[x] and R[x, x−1] = ∆−1R[x]. By Proposition 3.4, it follows
that R[x, x−1] is strongly ᾱ-symmetric. □

Therefore, we obtain a generalization of the following results.

Corollary 3.6 ([14, Lemma 3.2]). (1) Let R be a ring and ∆ be a multi-
plicatively closed subset of R consisting of central regular elements. Then R is
symmetric if and only if so is ∆−1R.

(2) For a ring R, R[x] is symmetric if and only if so is R[x;x−1].

Let R be a ring with a monomorphism α. Recall that the Jordan’s con-
struction of R by α is the minimal extension of R to which α extends as an
automorphism. Let

A(R,α) = {x−irxi | r ∈ R and i ≥ 0}

be a subset of the skew Laurent polynomial ring R[x, x−1;α]. The multiplica-
tion is defined by xr = α(r)x and rx−1 = x−1α(r) for all r ∈ R. Also, note
that x−irxi = x−(i+j)αj(r)xi+j for each j ≥ 0. It follows that A(R,α) forms
a subring of R[x, x−1;α] with the following operations:

x−irxi + x−jsxj = x−(i+j)(αj(r) + αi(s))x(i+j),

(x−irxi)(x−jsxj) = x−(i+j)αj(r)αi(s)x(i+j)

for r, s ∈ R and i, j ≥ 0. Furthermore, A(R,α) is an extension of R by
α and the map α can be extended to an automorphism ᾱ of A(R,α) with
ᾱ(x−irxi) = x−iα(r)xi. In [17], Jordan proved that for any pair of (R,α) such
an extension always exists and A(R,α) is called Jordan extension of R by α.

Proposition 3.7. Let R be a ring with a monomorphism α. Then R is strongly
α-symmetric if and only if A(R,α) is strongly ᾱ-symmetric.

Proof. Suppose that R is strongly α-symmetric and let p(y)q(y)r(y) = 0, where

p(y) =
∑m

i=0 piy
i, q(y) =

∑n
j=0 qjy

j and r(y) =
∑l

k=0 rky
k in A(R,α)[y; ᾱ]

such that pi = x−uip′ix
ui , qj = x−vjq′jx

vj , rk = x−wkr′kx
wk for p′i, q

′
j , r

′
k ∈ R

and ui, vj , wk ≥ 0 for all 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ l. Then we have

pi = x−µp′′i x
µ, qj = x−µq′′j x

µ and rk = x−µr′′kx
µ

for some µ ≥ 0, where p′′i , q
′′
j , r

′′
k ∈ R for all 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ l.

Since p(y)q(y)r(y) = 0, we have

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

piᾱ
i(qj)ᾱ

s(rk)

))
yt = 0.
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Thus

(13)
∑

t=s+k

∑
s=i+j

piᾱ
i(qj)ᾱ

s(rk) =
∑

t=s+k

∑
s=i+j

x−µp′′i α
i(q′′j )α

s(r′′k)x
µ = 0.

Let p′(y) =
∑m

i=0 p
′′
i y

i, q′(y) =
∑n

j=0 q
′′
j y

j and r′(y) =
∑l

k=0 r
′′
ky

k ∈ R[x;α].

Then by (13), we get p′(y)q′(y)r′(y) = 0 and p′(y)r′(y)q′(y) = 0 since R
is strongly α-symmetric. Therefore, p(y)r(y)q(y) = 0 and hence, A(R,α) is
strongly ᾱ-symmetric. □

Let R be a ring with an endomorphism α and I be an ideal of R. The
map ᾱ defined by ᾱ(r + I) = α(r) + I is an endomorphism of R/I, where
r ∈ R. Note that although R is a strongly α-symmetric ring, R/I need not be
a strongly ᾱ-symmetric ring. Indeed, when we consider the ring R is the ring
of quaternions with integer coefficients and α is a monomorphism of R, then
R is a domain and so strongly α-symmetric; while for any odd prime integer q,
we have R/qR ∼= Mat2(Zq) by [7, Exercise 3A]. Notice that Mat2(Zq) is not
strongly ᾱ-symmetric since it is not abelian and thus, the factor ring R/qR is
not strongly ᾱ-symmetric.

Let S be a subset of the ring R and then the set rR(S) = {c ∈ R | Sc = 0}
is called the right annihilator of S in R. The left annihilator of S in R, lR(S),
is defined similarly.

Proposition 3.8. Let R be a ring with an endomorphism α. Suppose that R is
a strongly α-symmetric ring. If I is a one-sided annihilator in R and α(I) ⊆ I,
then R/I is strongly ᾱ-symmetric.

Proof. Let I = rR(S) for some S ⊆ R. We write R̄ = R/I and r̄ = r + I,
where r ∈ R. We have R is symmetric and so, has IFP since R is strongly α-
symmetric. Thus, by [30, Lemma 1.2], I is an ideal of R. Let p̄(x)q̄(x)r̄(x) = 0̄,

where p̄(x) =
∑m

i=0 p̄ix
i, q̄(x) =

∑n
j=0 q̄jx

j and r̄(x) =
∑l

k=0 r̄kx
k in R̄[x; ᾱ].

Then p(x)q(x)r(x) ∈ I[x;α] and so Sp(x)q(x)r(x) = 0. Since R is strongly α-
symmetric, we obtain Sp(x)r(x)q(x) = 0 and this implies that p̄(x)r̄(x)q̄(x) =
0̄. Therefore, R/I is strongly ᾱ-symmetric. The left annihilator case can be
shown similarly. □

As a converse of Proposition 3.8, we give the following result.

Proposition 3.9. Let R be a ring with an endomorphism α and I be an α-ideal
of R. If R/I is a strongly ᾱ-symmetric ring and I is an α-rigid ring without
identity, then R is strongly α-symmetric.

Proof. Let’s take p(x), q(x), r(x) ∈ R[x;α] such that p(x)q(x)r(x) = 0. Then
p̄(x)q̄(x)r̄(x) = 0̄ and we get p̄(x)r̄(x)q̄(x) = 0̄ since R/I is strongly ᾱ-
symmetric. Thus, p(x)r(x)q(x) ∈ I[x, α]. By [10, Proposition 3], we have
that I[x;α] is reduced and hence, symmetric. Also, by [23, Proposition 1], we
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get that all the possible products of p(x), q(x) and r(x) is in I[x;α]. Then we
obtain

(q(x)r(x)p(x))2 = q(x)r(x)[p(x)q(x)r(x)]p(x) = 0

and so q(x)r(x)p(x) = 0 since I[x;α] is reduced. Thus, we have

0 = p(x)r(x)[q(x)r(x)p(x)]r(x)q(x)

= [p(x)r(x)q(x)][r(x)p(x)r(x)q(x)]

= [r(x)p(x)r(x)q(x)][p(x)r(x)q(x)](14)

by using the fact that I[x;α] is symmetric and hence, reversible. If we multiply
(14) on the right hand side by p(x), then we obtain

0 = r(x)[p(x)r(x)q(x)p(x)r(x)q(x)p(x)]

= [p(x)r(x)q(x)p(x)r(x)q(x)p(x)]r(x).(15)

If we multiply (15) on the right hand side by q(x), then we get (p(x)r(x)q(x))3 =
0 and hence, p(x)r(x)q(x) = 0. Therefore, R is strongly α-symmetric. □

As a consequence of Proposition 3.8 and Proposition 3.9, we give the follow-
ing corollary.

Corollary 3.10. (1) [14, Proposition 3.5] Let R be a symmetric ring and I be
an ideal of R. If I is an annihilator in R, then R/I is symmetric.

(2) [14, Proposition 3.6(1)] Let R be a ring and I be a proper ideal of R.
If R/I is symmetric and I is reduced (as a ring without identity), then R is
symmetric.

The following example shows that the condition on I in Proposition 3.9 is
necessary.

Example 3.11. Let R be the ring U2(F ), where F is a division ring and α be

an automorphism of R is defined by α

((
a b
0 c

))
=

(
a −b
0 c

)
. Then R is

not strongly α-symmetric because R is not abelian. Also Aα(A) = 0, but for

0 ̸= A =

(
0 1
0 0

)
∈ I. Thus, the α-ideal I =

(
F F
0 0

)
of R is not α-rigid.

In addition, the factor ring R/I ∼= F is reduced and ᾱ is the identity map on
R/I and hence, R/I is ᾱ-rigid. Therefore, R/I is strongly ᾱ-symmetric.

Let S be a commutative ring and R be an algebra over S. Following [5],
the Dorroh extension of R by S is defined by D = R ⊕ S with multiplica-
tion (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2), where ri ∈ R and si ∈ S.
For an S-algebra homomorphism α of R, α can be extended to an S-algebra
homomorphism ᾱ : D → D with ᾱ((r, s)) = (α(r), s).

Theorem 3.12. Let S be a commutative domain, R be an algebra over S and
α be an S-algebra homomorphism of R. Then R is strongly α-symmetric if and
only if the Dorroh extension D of R by S is strongly ᾱ-symmetric.
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Proof. We assume that R is strongly α-symmetric. Suppose that p(x)q(x)r(x)

=0, where p(x)=
∑m

i=0(ai, bi)x
i, q(x)=

∑n
j=0(cj , dj)x

j and r(x)=
∑l

k=0(ek, fk)x
k

∈ D[x; ᾱ]. Then we obtain that

0 =

(m+n∑
s=0

( ∑
s=i+j

(ai, bi)ᾱ
i(cj , dj)x

s

))( l∑
k=0

(ek, fk)x
k

)

=

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

(ai, bi)ᾱ
i(cj , dj)ᾱ

s(ek, fk)

))
xt

=

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

(ai, bi)(α
i(cj), dj)(α

s(ek), fk)

))
xt.(16)

Let p′(x) =
∑m

i=0 bix
i, q′(x) =

∑n
j=0 djx

j and r′(x) =
∑l

k=0 fkx
k ∈ S[x].

Then by (16), we get p′(x)q′(x)r′(x) = 0. Since S[x] is a domain, either
p′(x) = 0 or q′(x) = 0 or r′(x) = 0. Let p′(x) = 0. If we use the facts that R
is an S-algebra and αi(s) = s for each s ∈ S and i ∈ N, then the equation (16)
becomes

0 =

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

(ai, 0)(α
i(cj), dj)(α

s(ek), fk)

))
xt

=

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

(aiα
i(cj) + djai, 0)(α

s(ek), fk)

))
xt

=

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

(aiα
i(cj)α

s(ek) + djaiα
s(ek) + fkaiα

i(cj)

+ fkdjai, 0)

))
xt

=

m+n+l∑
t=0

( ∑
t=s+k

( ∑
s=i+j

(aiα
i(cj)α

s(ek) + aiα
i(dj)α

s(ek) + aiα
i(cj)α

s(fk)

+ aiα
i(dj)α

s(fk), 0)

))
xt.

Let p′′(x) =
∑m

i=0 aix
i, q′′(x) =

∑n
j=0(cj + dj)x

j and r′′(x) =
∑l

k=0(ek +

fk)x
k ∈ R[x;α]. Then p′′(x)q′′(x)r′′(x) = 0. Since R is strongly α-symmetric,

we have p′′(x)r′′(x)q′′(x) = 0 and this implies that p(x)r(x)q(x) = 0. For
the cases q′(x) = 0 and r′(x) = 0, the proof can be seen by using similar
arguments. □

Corollary 3.13 ([14, Proposition 4.2(2)]). Let S be a commutative ring and
R be an algebra over S. If S is domain and R is symmetric, then the Dorroh
extension D is symmetric.
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In the following result, we give a criteria to transfer strongly α-symmetric
property from one ring to another.

Proposition 3.14. Let ϕ : R → R′ be a ring isomorphism. Then R is a
strongly α-symmetric ring if and only if R′ is a strongly ϕαϕ−1-symmetric
ring.

Proof. The proof is obvious since an isomorphism from R[x;α] to S[x;ϕαϕ−1]
can be defined via the isomorphism ϕ. □

We denote the ring of full matrices (resp., upper triangular matrices) of n×n
type on R by Matn(R) (resp., Un(R)) for n ≥ 2. The following rings

Dn(R) =




a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n

...
...

...
. . .

...
0 0 0 · · · a

 | a, aij ∈ R, i = 1, . . . , n, j = 2, . . . , n


and

Vn(R) = {(aij) ∈ Dn(R) | aij = a(i+1)(j+1) for i = 1, . . . , n− 2, j = 2, . . . , n− 1}

are subrings of Matn(R). It is easy to see that Vn(R) ∼= R[x]/(xn), where (xn)
denotes the ideal of R[x] generated by xn. An endomorphism α of a ring R can
be extended to an endomorphism ᾱ of Dn(R) (resp., Vn(R)) with ᾱ((aij)) =
(α(aij)). We use the same notation ᾱ for the extension endomorphism ofDn(R)
and Vn(R). It is known that Matn(R) and Un(R) do not have IFP for n ≥ 2
since U2(R) is not abelian. Also, note that by [18, Example 1.3], Dn(R) does
not have IFP for n ≥ 4. Thus, Matn(R) and Un(R) are not strongly ᾱ-IFP and
so, are not strongly ᾱ-symmetric for n ≥ 2. Similarly, Dn(R) is not strongly
ᾱ-symmetric for n ≥ 4. In [2, Proposition 3.7], it is proved that D2(R) and
D3(R) are strongly ᾱ-IFP whenever R is an α-rigid ring. Naturally, one might
ask whether D2(R) and D3(R) are strongly ᾱ-symmetric when R is an α-rigid
ring. In the following example, we eliminate the case for D3(R).

Example 3.15. Recall that D3(R)[x; ᾱ] ∼= D3(R[x;α]). Consider the matrices

p =

1 x3 0
0 1 0
0 0 1

 , q =

0 3x4 x5

0 0 x
0 0 0

 and r =

0 2x2 3x
0 0 0
0 0 0


in D3(R)[x; ᾱ]. Then we have pqr = 0, but prq ̸= 0. Thus, D3(R) is not
strongly ᾱ-symmetric.

In the following theorem, it is proved that n×n upper triangular matrix ring
over a strongly α-symmetric ring has a subring which is strongly ᾱ-symmetric.

Theorem 3.16. Let R be a ring with an endomorphism α. If R is α-rigid,
then Vn(R) is strongly ᾱ-symmetric.
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Proof. Firstly, note that Vn(R)[x; ᾱ] ∼= Vn(R[x;α]) and hence, p ∈ Vn(R)[x; ᾱ]
can be written as p = (p1, p2, . . . , pn) for some pi ∈ R[x;α]. We assume
that p(x)q(x)r(x) = 0, where p(x) =

∑m
i=0 Aix

i = (p1, p2, . . . , pn), q(x) =∑n
j=0 Bjx

j = (q1, q2, . . . , qn) and r(x) =
∑l

k=0 Ckx
k = (r1, r2, . . . , rn) ∈

Vn(R)[x; ᾱ], for Ai = (a
(i)
st ), Bj = (b

(j)
uv ), Ck = (c

(k)
zw ) ∈ Vn(R) for 1 ≤

u, s, t, u, v, z, w ≤ n. In this case we obtain that the following system of equa-
tions in R[x;α]:

p1q1r1 = 0,(17)

p1q1r2 + p1q2r1 + p2q1r1 = 0,(18)

p1q1r3 + p1q2r2 + p1q3r1 + p2q1r2 + p2q2r1 + p3q1r1 = 0,(19)

...

p1q1rn−1 + p1q2rn−2 + · · ·+ p1qn−1r1 + · · ·+ pn−1q1r1 = 0,(20)

p1q1rn + p1q2rn−1 + · · ·+ p1qnr1 + · · ·+ pnq1r1 = 0.(21)

By the assumption, R[x;α] is reduced and therefore, p(x)q(x) = 0 requires
p(x)R[x;σ] q(x) = 0 and q(x)p(x) = 0. Also, p(x)q(x)2 = 0 implies p(x)q(x) =
0 for any p(x), q(x) ∈ R[x;α]. Considering these facts and (17), we have
p1r1q1 = 0 and r1p1q1 = 0. If the equality (18) is multiplied by q1r1 from
the right hand side, then we have p2q1r1 = 0 and p2r1q1 = 0. Now, (18)
becomes

(22) p1q1r2 + p1q2r1 = 0.

If we multiply (22) on the right hand side by q2r1, we have p1q2r1 = 0 and thus,
p1q1r2 = 0. Hence, we obtain p1r1q2 = 0 and p1r2q1 = 0. Similarly, If equality
(19) is multiplied by q1r1 from the right hand side, then we get p3q1r1 = 0 and
p3r1q1 = 0. So, (19) becomes

(23) p1q1r3 + p1q2r2 + p1q3r1 + p2q1r2 + p2q2r1 = 0.

If equality (23) is multiplied by q2r1 from the right hand side, then we have
p2q2r1 = 0 and p2r1q2 = 0. Hence, (23) becomes

(24) p1q1r3 + p1q2r2 + p1q3r1 + p2q1r2 = 0.

If we multiply (24) on the right hand side by q1r2, q3r1, q2r2, respectively, we
obtain p2q1r2 = 0, p1q3r1 = 0, p1q2r2 = 0 and p1q1r3 = 0. Inductively, assume
that piqjrk = 0, where 1 ≤ i, j, k ≤ n− 1 and i+ j+ k = n+1 for n ≥ 2. If we
multiply (21) on the right hand side by q1r1, we get pnq1r1 = 0 and pnr1q1 = 0.
Then (21) becomes

(25) p1q1rn + p1q2rn−1 + · · ·+ p1qnr1 + · · ·+ pn−1q2r1 = 0.

If we multiply (25) on the right hand side by q2r1, we have pn−1q2r1 = 0 and
pn−1r1q2 = 0. Continuing this procedure, by multiplying the equation by the
appropriate qjrk on the right side, we get piqjrk = 0 and hence, pirkqj = 0,
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where 1 ≤ i, j, k ≤ n such that i + j + k = n + 2. Consequently, we get
p(x)r(x)q(x) = 0 and therefore, Vn(R) is strongly ᾱ-symmetric. □

By Theorem 3.16, it may be asked whether Vn(R) is strongly ᾱ-symmetric
for a strongly α-symmetric ring R. But, the following example shows that this
statement is not correct.

Example 3.17. Consider

R =

{(
a b̄
0 a

)
| a ∈ Z, b̄ ∈ Z4

}
and let α be an endomorphism of R defined by α

((
a b̄
0 a

))
=

(
a −b̄
0 a

)
.

By Example 3.2, we know that R is strongly α-symmetric. For

A =


(

1 0̄
0 1

) (
0 0̄
0 0

)
(

0 0
0 0

) (
1 0̄
0 1

)
 , B =


(

0 1̄
0 0

) (
−1 1̄
0 −1

)
(

0 0
0 0

) (
0 1̄
0 0

)
 ,

C =


(

0 1̄
0 0

) (
1 1̄
0 1

)
(

0 0
0 0

) (
0 1̄
0 0

)
x

in V2(R)[x; ᾱ] we have ABC = 0, but

ACB =


(

0 0̄
0 0

) (
0 2̄
0 0

)
(

0 0
0 0

) (
0 0̄
0 0

)
 ̸= 0.

Therefore, V2(R) is not strongly ᾱ-symmetric.

Corollary 3.18. Let R be a ring and α be an endomorphism of R. If R is
α-rigid, then R[x]/(xn) is strongly ᾱ-symmetric, where (xn) denotes the ideal
of R[x] generated by xn.

Proof. It is clear since R[x]/(xn) ∼= Vn(R). □

Let R be a ring and let M be an (R,R)-bimodule. The ring T (R,M) =
R ⊕ M is called the trivial extension of R by M with the componentwise
addition and the multiplication defined as following:

(r,m)(r′,m′) = (rr′, rm′ +mr′).

It is easy to see that this ring is isomorphic to the ring

(
r m
0 r

)
, where r ∈ R

and m ∈ M with the usual matrix operations. An endomorphism α of the
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ring R can be extended to an endomorphism ᾱ of T (R,R) by ᾱ

((
r r′

0 r

))
=(

α(r) α(r′)
0 α(r)

)
, where r, r′ ∈ R. Also, note that T (R, 0) ∼= R.

Corollary 3.19. Let R be a ring with an endomorphism α. If R is an α-rigid
ring, then T (R,R) is strongly ᾱ-symmetric.

Proof. It is clear by Theorem 3.16, since T (R,R) ∼= V2(R). □

If we consider Example 2.5(2), it may be seen that the converse of the
Corollary 3.19 is not true. On the other hand, we obtain a generalization of
the following results by using Theorem 3.16.

Corollary 3.20 ([14, Theorem 2.3]). Let R be a reduced ring. Then R[x]/(xn)
is symmetric, where (xn) denotes the ideal of R[x] generated by xn.

Corollary 3.21 ([14, Corollary 2.4]). If R is a reduced ring, then T (R,R) is
symmetric.
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