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TOTALLY REAL AND COMPLEX SUBSPACES OF A RIGHT

QUATERNIONIC VECTOR SPACE WITH A HERMITIAN

FORM OF SIGNATURE (n, 1)

Sungwoon Kim

Abstract. We study totally real and complex subsets of a right quater-
nionic vector space of dimension n+1 with a Hermitian form of signature

(n, 1) and extend these notions to right quaternionic projective space.

Then we give a necessary and sufficient condition for a subset of a right
quaternionic projective space to be totally real or complex in terms of

the quaternionic Hermitian triple product. As an application, we show
that the limit set of a non-elementary quaternionic Kleinian group Γ is

totally real (resp. commutative) with respect to the quaternionic Hermit-

ian triple product if and only if Γ leaves a real (resp. complex) hyperbolic
subspace invariant.

1. Introduction

Let H denote the algebra of quaternions H = R⊕iR⊕jR⊕kR, where i, j and
k satisfy i2 = j2 = k2 = −1, ij = −ji = k, and let Hn,1 be a right quaternionic
vector space Hn+1 with a Hermitian form ⟨·, ·⟩ of signature (n, 1). Denote by
PHn,1 the set of right quaternionic lines in Hn,1, that is, a right quaternionic
projective n-space.

Definition 1.1. A subset S of Hn,1 is said to be totally real (resp. complex ) if
⟨v, w⟩ is real (resp. complex) for all v, w ∈ S. A subset S ⊂ PHn,1 is said to be
totally real (resp. complex ) if there is a lift S of S to Hn,1 that is totally real
(resp. complex).

Note that not every lift of a totally real subset of PHn,1 is totally real. Hence,
in order to check whether a given subset S of PHn,1 is totally real or not, either
one needs to find a lift of S that is totally real, or needs to verify that every lift
of S is not totally real. The same problem also happens in the totally complex
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case. For this reason, it is not easy to know directly if a given subset of PHn,1

is totally real or complex. To resolve this problem, we introduce equivalent
notions for total reality and complexity in PHn,1 in terms of the quaternionic
Hermitian triple product.

We introduce new notions, totally real and commutative subsets with respect
to the quaternionic Hermitian triple product, in both Hn,1 and PHn,1. For
v1, v2, v3 ∈ Hn,1, their quaternionic Hermitian triple product is defined as

⟨v1, v2, v3⟩ = ⟨v2, v1⟩⟨v3, v2⟩⟨v1, v3⟩.
It was verified in [1] that the real part of ⟨v1, v2, v3⟩ is negative for vectors
v1, v2, v3 with non-positive norm. Through the quaternionic Hermitian triple
product, Apanosov and Kim [1] defined the quaternionic Cartan angular in-
variant of a triple of distinct points in a quaternionic hyperbolic space.

We say that S ⊂ Hn,1 is non-degenerate with respect to the quaternionic
Hermitian triple product if ⟨u, v, w⟩ ̸= 0 for all (u, v, w) ∈ S(3), where S(n)

denotes the set of n-tuples of distinct points of a set S. Furthermore a subset
S ⊂ PHn,1 is said to be non-degenerate with respect to the quaternionic Her-
mitian triple product if some (hence any) lift S ⊂ Hn,1 of S is non-degenerate
with respect to the quaternionic Hermitian triple product. Note that the non-
degeneracy of S with respect to the quaternionic Hermitian triple product does
not depend on the choice of a lift S of S.

Definition 1.2. A subset S ⊂ Hn,1 is totally real (resp. commutative) with
respect to the quaternionic Hermitian triple product if {⟨u0, v, w⟩ : (u0, v, w) ∈
S(3)} is real (resp. commutative) for some u0 ∈ S. A subset S ⊂ PHn,1 is to-
tally real (resp. commutative) with respect to the quaternionic Hermitian triple
product if there is a lift S ⊂ Hn,1 of S that is totally real (resp. commutative)
with respect to the quaternionic Hermitian triple product.

Obviously, if S ⊂ Hn,1 is totally real (resp. complex), S is totally real
(resp. commutative) with respect to the quaternionic Hermitian triple product.
In general, the converse does not hold. However, for non-degenerate subsets of
PHn,1 with respect to the quaternionic Hermitian triple product, it turns out
that Definitions 1.1 and 1.2 are equivalent to each other.

Theorem 1.3. Let S ⊂ PHn,1 be a non-degenerate subset with respect to the
quaternionic Hermitian triple product. Then,

(i) S is totally real if and only if S is totally real with respect to the quater-
nionic Hermitian triple product.

(ii) S is totally complex if and only if S is totally commutative with respect
to the quaternionic Hermitian triple product.

One advantage of Definition 1.2 is that the total reality and commutativity
with respect to the quaternionic Hermitian triple product do not depend on
either of the choices of a lift S of S and u0 ∈ S. In other words, if there
exist a lift S of S and u0 ∈ S such that {⟨u0, v, w⟩ : (u0, v, w) ∈ S(3)} is
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real (resp. commutative), then for any lift T of S and any u1 ∈ T , the set
{⟨u1, v, w⟩ : (u1, v, w) ∈ T (3)} is real (resp. commutative). Hence, Theorem
1.3 makes it easy to check whether a given subset S of PHn,1 is totally real or
complex. More concretely, choose a lift S ⊂ Hn,1 of S and an element u0 ∈ S.
Then by checking the reality and commutativity of {⟨u0, v, w⟩ : (u0, v, w) ∈
S(3)}, one can see whether S is totally real or complex.

We apply our results to quaternionic hyperbolic n-space Hn
H ⊂ PHn,1.

Quaternionic hyperbolic space Hn
H is defined as the set of negative lines of

Hn,1, and its boundary ∂Hn
H is defined as the set of null lines of Hn,1. The

isometry group of Hn
H is PSp(n, 1). Let Γ be a discrete subgroup of PSp(n, 1).

The limit set ΛΓ of Γ is defined to be the smallest nonempty, closed, Γ-invariant
subset of ∂Hn

H, or the set of accumulation points of an orbit of a point of Hn
H in

Γ. The group Γ is said to be elementary if its limit set has at most two points.
From the fact that inner products of non-positive vectors in Hn,1 can not be
zero, it follows that every subset of Hn

H ∪ ∂Hn
H ⊂ PHn,1 is non-degenerate with

respect to the quaternionic Hermitian triple product. Futhermore it turns out
that totally real and complex subsets of Hn

H are contained in real and complex
hyperbolic subspaces of Hn

H, respectively. Therefore, as a corollary of Theorem
1.3, we characterize the non-elementary discrete subgroups of PSp(n, 1) pre-
serving a real or complex hyperbolic subspace of Hn

H through the quaternionic
Hermitian triple product.

Corollary 1.4. Let Γ be a non-elementary, discrete subgroup of PSp(n, 1).
Then its limit set is totally real (resp. commutative) with respect to the quater-
nionic Hermitian triple product if and only if Γ preserves a real (resp. complex)
hyperbolic subspace of Hn

H.

We explore the total reality and complexity of finite points in PHn,1. Ob-
viously, any one point in PHn,1 is totally real. Moreover, it can be easily seen
that any two distinct points in PHn,1 are also totally real. The total reality
first fails for 3 distinct points in PHn,1. On the other hand, total complexity
holds for 3 distinct points in PHn,1 but fails for more than 3 distinct points. As
an application, we prove that every quaternionic hyperbolic triangle group in
H2

H leaves a complex hyperbolic 2-subspace of Hn
H invariant, which generalizes

the result of Cao and Huang in [2].

Theorem 1.5. Let Γ ⊂ PSp(2, 1) be a quaternionic hyperbolic triangle group
acting on H2

H. Then Γ preserves a complex hyperbolic 2-subspace of H2
H. There-

fore, Γ is conjugate to a subgroup of PU(2, 1).

Theorem 1.5 implies that every quaternionic hyperbolic triangle group is
indeed a complex hyperbolic triangle group. Goldman and Parker [4] and
Schwartz [6] classified which complex hyperbolic ideal triangle groups are dis-
crete and faithful through the Cartan angular invariant. Theorem 1.5 makes it
possible to apply their theorems to the quaternionic hyperbolic ideal triangle
groups.
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2. Preliminaries

In this section, we collect basic definitions and facts on quaternionic hyper-
bolic geometry. For more details, we refer the reader to [1, 3, 5].

Let Hn,1 be a right quaternionic vector space of dimension n + 1 with a
Hermitian form of signature (n, 1). Vectors are multiplied by quaternions from
the right:

Hn,1 ×H → Hn,1, (v, λ) 7→ vλ.

An element of Hn,1 is a column vector v = (v1, . . . , vn+1)
t ∈ Hn+1. More

precisely, set

J =

0 0 1
0 In−1 0
1 0 0

 ,

where In−1 is the identity matrix of size n− 1 and choose the Hermitian form
on Hn,1 given by

⟨u, v⟩ = v∗Ju = vn+1u1 + v2u2 + · · ·+ vnun + v1un+1

for v = (v1, . . . , vn+1)
t, u = (u1, . . . , un+1)

t ∈ Hn+1. By the definition, for
λ, µ ∈ H,

⟨uλ, vµ⟩ = µ̄⟨u, v⟩λ.
The group Sp(n, 1) is the subgroup of GL(n+1,H) which, when acting on the
left, preserves the Hermitian form J given above.

Let 0 be the zero vector in Hn+1 and P : Hn,1 \ {0} → PHn,1 be the
canonical projection onto a right quaternionic projective space PHn,1. Consider
the following subspaces in Hn,1;

V0 = {v ∈ Hn,1 − {0} | ⟨v, v⟩ = 0},
V− = {v ∈ Hn,1 | ⟨v, v⟩ < 0}.

The n-dimensional quaternionic hyperbolic space Hn
H is defined as P(V−) and

its boundary ∂Hn
H is defined as P(V0). There is a metric on Hn

H called the
Bergman metric and the isometry group of Hn

H with respect to this metric is

PSp(n, 1) =
{
[A] |A ∈ GL(n+ 1,H), ⟨u, v⟩ = ⟨Au,Av⟩ for all u, v ∈ Hn,1

}
= {[A] |A ∈ GL(n+ 1,H), J = A∗JA} ,

where [A] : PHn,1 → PHn,1;xH 7→ (Ax)H for A ∈ Sp(n, 1). Here we adopt
the convention that Sp(n, 1) acts on Hn

H on the left and the projectivization
of Sp(n, 1) acts on the right. In fact PSp(n, 1) is the quotient of Sp(n, 1) by
its center, which is just {±In+1}. Naturally, the real hyperbolic space Hn

R
and the complex hyperbolic space Hn

C are embedded in Hn
H. Indeed, the real

hyperbolic m-space Hm
R and the complex hyperbolic m-space for m ≤ n are

identified with P(SpanR{e1, . . . , em, en+1}) and P(SpanC{e1, . . . , em, en+1}) in
Hn

H, respectively. A subspace of Hn
H isometric to Hm

R (resp. Hm
C ) for some

m ≤ n is called a real (resp. complex) hyperbolic subspace of Hn
H.
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3. Totally real and complex subspaces

In this section, we define and classify the totally real and complex vector
subspaces of Hn,1 instead of the totally real and complex subsets of Hn,1 since
the totally real and complex vector subsets span the totally real and complex
subspaces, respectively.

3.1. Totally F-vector subspaces

Let F = R,C or H and denote the set of non-zero elements of F by F∗. We
define the notion of a totally F-vector subspace of Hn,1.

Definition 3.1. Let V ⊂ Hn,1 be a vector space over F for F = R,C or H.
An F-vector space V ⊂ Hn,1 is called a totally F-vector subspace of Hn,1 if
⟨v, w⟩ ∈ F for all v, w ∈ V .

Clearly, a totally real subset of Hn,1 spans a totally R-vector subspace of
Hn,1 and a totally complex subset of Hn,1 spans a totally C-vector subspace
of Hn,1. Any F-vector subspace of dimension 1 is a totally R-vector subspace
and hence a totally F-vector subspace for any F = R,C or H. We begin with a
simple observation.

Lemma 3.2. Let V be a totally F-vector subspace of Hn,1. Let v be a non-zero
vector in V such that ⟨v, v⟩ ≠ 0. If vq ∈ V for some quaternion q ∈ H, then
q ∈ F.

Proof. Suppose that vq ∈ V for some quaternion q ∈ H. By the assumption
that V is a totally F-vector subspace, we have that ⟨vq, v⟩ = ⟨v, v⟩q = |v|2q ∈ F.
Since |v|2 is a non-zero real number, it immediately follows that q ∈ F. □

By Lemma 3.2, one can easily see that if ⟨v, v⟩ ̸= 0, then SpanF{v} is the
unique one-dimensional totally F-vector subspace of Hn,1 containing v.

If V is a totally F-vector subspace of Hn,1, then g ·V is also a totally F-vector
subspace of Hn,1 for any g ∈ Sp(n, 1). For F = R, C or H, we classify all totally
F-vector subspaces of Hn,1 up to the action of Sp(n, 1) on Hn,1 as follows.

Proposition 3.3. Let V be a totally F-vector subspace of Hn,1 with dimension
≥ 1, where F = R,C or H. Then V is isomorphic, up to the action of Sp(n, 1)
on Hn,1, to one of the following:

(i) SpanF{e1q1, . . . , e1qb}, where 1 ≤ b ≤ dimF H and qi ∈ H∗ for each
i = 1, . . . , b;

(ii) SpanF{e2};
(iii) SpanF{e1 − en+1};
(iv) SpanF{e2, . . . , ea+1, e1q1, . . . , e1qb}, where 1 ≤ a ≤ n − 1 and 1 ≤ b ≤

dimF H;
(v) SpanF{e1 + en+1, e2, . . . , ea}, where 2 ≤ a ≤ n;
(vi) SpanF{e1, . . . , ea, en+1}, where 1 ≤ a ≤ n.
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Proof. Choose a basis {v1, . . . , vm} of V . Clearly we can write V = SpanF{v1,
. . . , vm}. We first suppose that dimH(SpanH{v1, . . . , vm}) = 1, i.e., SpanH{v1,
. . . , vm} = vH for some non-zero vector v ∈ Hn,1. Then for each 1 ≤ l ≤ m
there is a non-zero quaternion ql such that vl = vql. Since vH is an F-vector
space of dimension dimF H, the dimension of V can not exceed dimF H. Thus
1 ≤ m ≤ dimF H. If v is a null vector, there is an element of Sp(n, 1) mapping
v to e1 and thus we conclude that V is isomorphic to (i). If v is not a null
vector, Lemma 3.2 implies that V = SpanF{vq} for some non-zero quaternion
q ∈ H∗. It can be easily seen that if ⟨v, v⟩ > 0, SpanF{vq} is isomorphic to
SpanF{e2} and if ⟨v, v⟩ < 0, SpanF{vq} is isomorphic to SpanF{e1 − en+1}, up
to the action of Sp(n, 1) on Hn,1.

We now suppose that dimH(SpanH{v1, . . . , vm}) ≥ 2. We will apply Gram–
Schmidt orthogonalization to the basis {v1, . . . , vm} of V. One problem here
is the existence of null vectors in Hn,1. For example, if v1, . . . , vm are all null
vectors, one can not even start the Gram–Schmidt orthogonalization proce-
dure. Assume that v1, . . . , vm are all null vectors. By the hypothesis that
dimH(SpanH{v1, . . . , vm}) ≥ 2, there are two linearly independent null vectors
vc and vd over H for some distinct integers 1 ≤ c, d ≤ m. Recalling that two
linearly independent null vectors in Hn,1 can not be orthogonal, it is easy to
see that both vc − vd and vc + vd are non-null vectors and obviously they are
linearly independent. Replacing vc and vd by vc − vd and vc + vd in the basis
{v1, . . . , vm}, we obtain a new basis of V in which there is a non-null vector.
By this process, two linearly independent null vectors over H can be always
replaced by two linearly independent non-null vectors over H in a basis of V .
Hence we may assume that there is a non-null vector in {v1, . . . , vm} whenever
dimH(SpanH{v1, . . . , vm}) ≥ 2.

Let v1 be a non-null vector. Since V is a totally F-vector subspace, one can
see that projv1(vl) ∈ V for all l = 2, . . . ,m, where

proju(v) = u · ⟨v, u⟩⟨u, u⟩−1.

One can easily check that

⟨v − proju(v), u⟩ = ⟨v, u⟩ − ⟨u · ⟨v, u⟩⟨u, u⟩−1, u⟩
= ⟨v, u⟩ − ⟨u, u⟩⟨v, u⟩⟨u, u⟩−1 = 0,

which implies that v−proju(v) is orthogonal to u. Replace vl by vl−projv1(vl) ∈
V for each l = 2, . . . ,m. For simplicity, denote vl − projv1(vl) ∈ V again
by vl. Then vl is orthogonal to v1 for all l = 2, . . . ,m. Applying both
the process of switching two linearly independent null vectors over H into
two linearly independent non-null vectors and the Gram–Schmidt orthogonal-
ization procedure inductively, we finally get a basis {v1, . . . , vm} such that
v1, . . . , va are pairwise orthogonal non-null vectors and SpanH{va+1, . . . , vm} is
a 1-dimensional vector space over H spanned by a null vector for some integer
1 ≤ a ≤ m and moreover it is orthogonal to SpanH{v1, . . . , va}. If a = m, we
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set SpanH{va+1, . . . , vm} = ∅. By normalizing v1, . . . , va, we can assume that
⟨vl, vl⟩ = ±1 for all l = 1, . . . , a.

Consider two cases: a < m and a = m. If a < m, then vm is a null vector and
all vectors of v1, . . . , va are orthogonal to the null vector vm. The orthogonal
complement of a null vector vm includes vm itself and has dimension n. Thus
1 ≤ a ≤ n − 1. The fact that any vector with negative norm can not be
orthogonal to any null vector leads us to conclude that every non-null vector vl
must have a positive norm and hence ⟨vl, vl⟩ = 1 for all l = 1, . . . , a. There is an
element of Sp(n, 1) which maps v1, . . . , va, vm to e2, . . . , ea+1, e1, respectively.
Therefore, V is isomorphic to (iv).

If a = m, every vector vl is a non-null vector for l = 1, . . . ,m. If every vec-
tor vl has a positive norm, V is isomorphic to (v) since there is an element of

Sp(n, 1) which maps v1, . . . , vm to e1+en+1√
2

, e2, . . . , em, respectively. Otherwise,

since no two vectors with negative norm can be orthogonal, only one vector of
v1, . . . , vm has a negative norm. Let ⟨v1, v1⟩ = −1 and ⟨vl, vl⟩ = 1 for all l =

2, . . . ,m. Then {v1, . . . , vm} is isomorphic to {(e1−en+1)/
√
2, e2, . . . , em−1, (e1+

en+1)/
√
2} up to the action of Sp(n, 1) on Hn,1 and thus V is isomorphic to

(vi). □

Note that (iii) and (vi) are the only types of totally F-vector subspaces of
Hn,1 in Proposition 3.3 which contains a negative vector. From this observation,
we immediately obtain the following corollary.

Corollary 3.4. Let V be a totally F-vector subspace of Hn,1, where F = R,C
or H. If V has a vector with negative norm, then V is isomorphic to either
SpanF{e1 − en+1} or SpanF{e1, . . . , em, en+1} up to the action of Sp(n, 1) on
Hn,1 for some integer 1 ≤ m ≤ n.

3.2. Totally projective F-subspaces

In this section, we treat the notion of totally projective F-subspace in the
right quaternionic projective space PHn,1.

Definition 3.5. A subset V ⊂ PHn,1 is said to be a totally projective F-
subspace if V is a projectivization of a totally F-vector subspace V of Hn,1.

In particular, if dimF V = 2 and V is a totally F-vector subspace of Hn,1,
we call PV a totally projective F-line in PHn,1. Now we will explore how many
totally projective F-lines pass through two given distinct points of PHn,1. Ob-
viously, given two distinct points of PHn,1, there is exactly one H-line through
them. However, the situation is a little different when F = R or C.

3.2.1. Totally projective R-lines. Projectivizations of totally R-vector sub-
spaces of Hn,1 make it possible that two distinct totally R-vector subspaces
have the same projectivization onto PHn,1. In order to study this issue, we
begin with the following simple observation.
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Lemma 3.6. Let v1, v2 ∈ Hn+1 be linearly independent vectors over H and
λ1, λ2, µ1, µ2 be non-zero quaternions. Then

PSpanR(v1λ1, v2λ2) = PSpanR(v1µ1, v2µ2)

if and only if µ−1
1 λ1, µ

−1
2 λ2 ∈ R∗q for some non-zero quaternion q ∈ H.

Proof. Suppose that PSpanR(v1λ1, v2λ2) = PSpanR(v1µ1, v2µ2). Then there
exist r1, r2 ∈ R∗ and q ∈ H∗ such that v1λ1+v2λ2 = (v1µ1r1+v2µ2r2)q. Since
v1 and v2 are linearly independent over H, it is obvious that λ1 = µ1r1q and
λ2 = µ2r2q. Thus µ

−1
a λa ∈ R∗q for all a = 1, 2.

Conversely, suppose that λ1 = µ1r1q and λ2 = µ2r2q for some r1, r2 ∈ R∗

and some q ∈ H∗. Then, for any s1, s2 ∈ R,
v1λ1s1 + v2λ2s2 = (v1µ1(r1s1) + v2µ2(r2s2))q,

which implies PSpanR(v1λ1, v2λ2) = PSpanR(v1µ1, v2µ2). □

Due to Lemma 3.6, we easily get its generalization as follows.

Corollary 3.7. Let v1, . . . , vm ∈ Hn+1 be linearly independent vectors over H
and λ1, . . . , λm, µ1, . . . , µm be non-zero quaternions. Then

PSpanR(v1λ1, . . . , vmλm) = PSpanR(v1µ1, . . . , vmµm)

if and only if µ−1
1 λ1, . . . , µ

−1
m λm ∈ R∗q for some q ∈ H∗.

Proof. Suppose that PSpanR(v1λ1, . . . , vmλm) = PSpanR(v1µ1, . . . , vmµm).
From the hypothesis that v1, . . . , vm ∈ Hn+1 are linearly independent vectors
over H, it follows that for any distinct integers 1 ≤ a, b ≤ m,

PSpanR(vaλa, vbλb) = PSpanR(vaµa, vbµb).

Applying Lemma 3.6, there is a quaternion q ∈ H∗ such that µ−1
a λa ∈ R∗q for

all a = 1, . . . ,m. The converse is obvious. □

Now we are ready to answer the question of how many totally projective
R-lines pass through two distinct points of PHn,1.

Lemma 3.8. Let v1, . . . , vm ∈ Hn,1 be linearly independent vectors over H.
Then SpanF{v1, . . . , vm} is a totally F-vector subspace of Hn+1 if and only if
⟨va, vb⟩ ∈ F for all integers 1 ≤ a, b ≤ m.

Proof. The lemma easily follows from the formula〈
m∑

a=1

vara,

m∑
b=1

vbsb

〉
=

m∑
a=1

m∑
b=1

s̄b⟨va, vb⟩ra.

The details are left to the reader. □

Proposition 3.9. Let v1 and v2 be linear independent vectors in Hn,1 over H.
If ⟨v1, v2⟩ = 0, then PSpanR{v1q1, v2q2} is a totally projective R-line for any
non-zero quaternions q1, q2 and moreover, the set of totally projective R-lines
through P(v1) and P(v2) in PHn is identified with RP3. If ⟨v1, v2⟩ ̸= 0, then
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PSpanR{v1, v2⟨v1, v2⟩} is the unique totally projective R-line through P(v1) and
P(v2) in PHn,1.

Proof. First, suppose that ⟨v1, v2⟩ = 0. By Lemma 3.8, SpanR{v1q1, v2q2} is
a totally R-vector space of Hn,1 for any non-zero quaternions q1, q2 and hence
PSpanR{v1q1, v2q2} is a totally projective R-line for any q1, q2 ∈ H∗. Noting
that

PSpanR{v1q1, v2q2} = PSpanR{v1, v2q2q−1
1 },

any totally projective R-line through P(v1) and P(v2) can be written as
PSpanR{v1, v2q} for q ∈ H∗. According to Lemma 3.6, PSpanR{v1, v2p} =
PSpanR{v1, v2q} if and only if p ∈ R∗q, which implies that there is a one-to-
one correspondence between the space of totally projective R-lines through two
distinct points P(v1) and P(v2) in PHn,1 and the space of one-dimensional real
vector subspaces of H, that is, RP3.

Now we suppose that ⟨v1, v2⟩ ̸= 0. By Lemma 3.8, SpanR{v1q1, v2q2} is a
totally R-vector space if and only if

⟨v1q1, v2q2⟩ = q̄2⟨v1, v2⟩q1 ∈ R∗, i.e., q2 = r⟨v1, v2⟩q1 for some r ∈ R∗.

Applying Lemma 3.6,

PSpanR{v1q1, v2q2} = PSpanR{v1q1, v2r⟨v1, v2⟩q1} = PSpanR{v1, v2⟨v1, v2⟩},

which implies that PSpanR{v1, v2⟨v1, v2⟩} is the unique totally projective R-line
passing through P(v1) and P(v2). This completes the proof. □

Let v1 and v2 be vectors with non-positive norm such that P(v1) ̸= P(v2).
In other words, P(v1) and P(v2) are two distinct points in Hn

H ∪ ∂Hn
H. Then

⟨v1, v2⟩ ≠ 0. By Proposition 3.9, there is a unique totally projective R-line
through P(v1) and P(v2). This R-line can be written as PSpanR(v1, v2⟨v1, v2⟩).
Moreover, SpanR(v1, v2⟨v1, v2⟩) has a vector v1−v2⟨v1, v2⟩ with negative norm:

⟨v1 − v2⟨v1, v2⟩, v1 − v2⟨v1, v2⟩⟩=⟨v1, v1⟩ − 2|⟨v1, v2⟩|2 + ⟨v2, v2⟩|⟨v1, v2⟩|2 < 0.

According to Corollary 3.4, SpanR(v1, v2⟨v1, v2⟩) is isomorphic to SpanR(e1,
en+1) up to the action of Sp(n, 1) on Hn,1 and the intersection of PSpanR(e1,
en+1) and Hn

H is H1
R, which is a geodesic in Hn

H. Summarizing, we have the
following corollary.

Corollary 3.10. The totally projective R-line passing through two given dis-
tinct points in Hn

H ∪ ∂Hn
H is unique. Furthermore its intersection with Hn

H is
the geodesic joining those two points.

3.2.2. Totally projective C-lines. We now turn to totally projective C-lines
through two distinct points of PHn,1. The complex case is a little more compli-
cated than the real case since complex numbers do not commute with quater-
nion numbers while real numbers do. To handle this issue, we begin by proving
an elementary fact about quaternions.
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Lemma 3.11. Suppose that p and q are non-zero quaternions such that p ·C =
C · q. Then either both p and q are complex numbers or they are elements of
C · j.

Proof. From the hypothesis that p ·C = C · q, we can write p = zq and pi = wq
for some z, w ∈ C∗. Then p = zq = −wqi and thus qiq̄ = −w−1z|q|2 ∈ C. Let
q = q1+q2i+q3j+q4k for q1, q2, q3, q4 ∈ R. By a straightforward computation,

qiq̄ = (q21 + q22 − q23 − q24)i+ 2(q2q3 + q1q4)j + 2(−q1q3 + q2q4)k.

Thus qiq̄ ∈ C is equivalent to

q2q3 + q1q4 = −q1q3 + q2q4 = 0.(3.1)

From these two equations,

q1q2(q
2
3 + q24) = (q1q3)(q2q3) + q1q2q

2
4 = (q2q4)(−q1q4) + q1q2q

2
4 = 0.

If q23 + q24 = 0, then q ∈ C and hence p ∈ C · q = C. If q23 + q24 ̸= 0, then
q1q2 = 0 which is equivalent to q1 = 0 or q2 = 0. In either case, one can easily
conclude that q1 = q2 = 0 by (3.1). Therefore, q ∈ C · j and p = zq ∈ C · j.
This completes the proof. □

Projectivizations of totally C-vector subspaces of Hn,1 onto PHn,1 may cause
two distinct totally C-vector subspaces to have the same projectivization. To
count how many totally projective C-lines pass through two given distinct
points of PHn,1, we first prove the following lemma.

Lemma 3.12. Let v1 and v2 be linearly independent vectors over H and λ1,
λ2, µ1, µ2 be non-zero quaternions. Then

PSpanC(v1λ1, v2λ2) = PSpanC(v1µ1, v2µ2)

if and only if either λaiλ
−1
a = µaiµ

−1
a for all a = 1, 2 or λaiλ

−1
a = −µaiµ

−1
a

for all a = 1, 2.

Proof. First suppose that PSpanC(v1λ1, v2λ2) = PSpanC(v1µ1, v2µ2). This
means that given complex numbers z1 and z2, there exist w1, w2 ∈ C and
q ∈ H such that

v1λ1z1 + v2λ2z2 = (v1µ1w1 + v1µ2w2)q.

By the linear independence of v1 and v2 over H, it follows that

λ1z1 − µ1w1q = λ2z2 − µ2w2q = 0

which gives q=w−1
1 µ−1

1 λ1z1 = w−1
2 µ−1

2 λ2z2 and hence (µ−1
2 λ2)z2z

−1
1 (µ−1

1 λ1)
−1

= w2w
−1
1 ∈ C. Therefore we obtain that (µ−1

2 λ2) ·C = C · (µ−1
1 λ1). By Lemma

3.11, we conclude that µ−1
1 λ1 and µ−1

2 λ2 are either both in C or both in C · j.
If µ−1

1 λ1 and µ−1
2 λ2 are in C, then λ1 = µ1z1 and λ2 = µ2z2 for some

z1, z2 ∈ C∗. Then for a = 1, 2,

λaiλ
−1
a = µazaiz

−1
a µ−1

a = µaiµ
−1
a .
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If µ−1
1 λ1 and µ−1

2 λ2 are in C · j, then λ1 = µ1z1j and λ2 = µ2z2j for some
z1, z2 ∈ C∗. Then for a = 1, 2,

λaiλ
−1
a = µazajij

−1z−1
a µ−1

a = −µaiµ
−1
a .

Conversely, suppose that λaiλ
−1
a = µaiµ

−1
a for all a = 1, 2 or λaiλ

−1
a =

−µaiµ
−1
a for all a = 1, 2. If λaiλ

−1
a = µaiµ

−1
a for all a = 1, 2, it follows from

Lemma 3.11 that µ−1
a λa ∈ C for all a = 1, 2, which means that λ1 = µ1z1 and

λ2 = µ2z2 for some z1, z2 ∈ C∗. Then it is obvious that

PSpanC(v1λ1, v2λ2) = PSpanC(v1µ1z1, v2µ2z2) = PSpanC(v1µ1, v2µ2).

If λaiλ
−1
a = −µaiµ

−1
a for all a = 1, 2, then by Lemma 3.11, λ1 = µ1z1j and

λ2 = µ2z2j for some z1, z2 ∈ C∗. Noting that zj = jz̄ for any complex number
z, we have that for any complex numbers w1, w2 ∈ C,

v1λ1w1 + v2λ2w2 = v1µ1z1jw1 + v2µ2z2jw2

= v1µ1z1w̄1j + v2µ2z2w̄2j

= (v1µ1z1w̄1 + v2µ2z2w̄2)j,

which implies PSpanC(v1λ1, v2λ2) = PSpanC(v1µ1, v2µ2). □

As a corollary, we have a generalized version of Lemma 3.12 as follows.

Corollary 3.13. Let v1, . . . , vm ∈ Hn,1 be linearly independent vectors over H
and λ1, . . . , λm, µ1, . . . , µm be non-zero quaternions. Then

PSpanC(v1λ1, . . . , vmλm) = PSpanC(v1µ1, . . . , vmµm)

if and only if λaiλ
−1
a = µaiµ

−1
a for all a = 1, . . . ,m or λaiλ

−1
a = −µaiµ

−1
a for

all a = 1, . . . ,m.

Proof. First of all, observe that by the linear independence of v1, . . . , vm ∈ Hn,1

over H, the condition that PSpanC(v1λ1, . . . , vmλm)=PSpanC(v1µ1, . . . , vmµm)
implies that for any integers 1 ≤ a, b ≤ m,

PSpanC(vaλa, vbλb) = PSpanC(vaµa, vbµb).

Applying Lemma 3.12, we conclude that λaiλ
−1
a = µaiµ

−1
a and λbiλ

−1
b =

µbiµ
−1
b for any distinct integers 1 ≤ a, b ≤ m or λaiλ

−1
a = −µaiµ

−1
a and

λbiλ
−1
b = −µbiµ

−1
b for any distinct integers 1 ≤ a, b ≤ m. This leads us to

conclude that λaiλ
−1
a = µaiµ

−1
a for all a = 1, . . . ,m or λaiλ

−1
a = −µaiµ

−1
a for

all a = 1, . . . ,m.
The converse easily follows by a similar argument as in the proof of Lemma

3.12. □

Now we are ready to count how many totally projective C-lines passing
through two distinct points of PHn,1.
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Proposition 3.14. Let v1 and v2 be linearly independent vectors over H. If
⟨v1, v2⟩ = 0, then PSpanC{v1q1, v2q2} is a totally projective C-line for any non-
zero quaternions q1, q2 and thus the set of totally projective C-lines through
P(v1) and P(v2) is identified with the quotient space of S2 × S2 under the
following equivalence relation

(u1, u2) ∼ (−u1,−u2).

If ⟨v1, v2⟩ ̸= 0, any totally projective C-line through P(v1) and P(v2) can be
written as

PSpanC{v1q, v2⟨v2, v1⟩q}
for some q ∈ H∗ and thus the set of totally projective C-lines through P(v1) and
P(v2) is identified with RP2.

Proof. First suppose that ⟨v1, v2⟩ = 0. Then SpanC{v1q1, v2q2} is a totally
C-vector space for any q1, q2 ∈ H∗. Define a map from the set of all totally
projective C-lines through Pv1 and Pv2 into the quotient space of S2×S2 under
the following equivalence relation

(u1, u2) ∼ (−u1,−u2)

by mapping PSpanC{v1q1, v2q2} to [(q1iq
−1
1 , q2iq

−1
2 )]. Here note that S2 is

identified with {qiq−1 : q ∈ H∗} = {xi+yj+zk : x2+y2+z2 = 1}. By Lemma
3.12, it can be easily seen that this is well defined and moreover bijective.

We now suppose that ⟨v1, v2⟩ ≠ 0. According to Lemma 3.8, SpanC{v1q1,
v2q2} is a totally C-vector space if and only if

⟨v1q1, v2q2⟩ = q̄2⟨v1, v2⟩q1 ∈ C∗, i.e., q2 = ⟨v1, v2⟩q1z for some z ∈ C∗.

Applying Lemma 3.12,

PSpanC{v1q1, v2⟨v1, v2⟩q1z} = PSpanC{v1q1, v2⟨v1, v2⟩q1}
and furthermore,

PSpanC{v1q, v2⟨v1, v2⟩q} = PSpanC{v1p, v2⟨v1, v2⟩p}
if and only if qiq−1 = ±pip−1.

By mapping PSpanC{v1q, v2⟨v1, v2⟩q} to [qiq−1] = {qiq−1,−qiq−1}, there is
a one-to-one correspondence between the set of all totally projective C-lines
through P(v1) and P(v2), and {{±(xi+ yj + zk)} : x2 + y2 + z2 = 1}, which is
naturally identified with RP2. This completes the proof. □

One can see that each totally projective C-line through P(v1) and P(v2)
contains a totally projective R-line through P(v1) and P(v2). However, it may
be not unique. For example, consider a totally projective C-line PSpanC{e1, e2}
through P(e1) and P(e2) for n ≥ 3. Then since ⟨e1, e2⟩ = 0, it is easy to see
that PSpanR{e1, e2z} is a totally projective R-line contained in PSpanC{e1, e2}
for any z ∈ C∗. By Lemma 3.6,

PSpanR{e1, e2z} = PSpanR{e1, e2w} if and only if w−1z ∈ R∗.
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Therefore, the space of totally projective R-lines which are contained in the
totally projective C-line PSpanC{e1, e2} and pass through P(e1) and P(e2) is
identified with RP1. This can be generalized to the case of ⟨v1, v2⟩ = 0.

In the case of ⟨v1, v2⟩ ̸= 0, as seen in Proposition 3.14, a totally projective
C-line through P(v1) and P(v2) can be written as PSpanC{v1q, v2⟨v1, v2⟩q}.
Then it is not difficult to see that PSpanR{v1, v2⟨v1, v2⟩} is the unique totally
projective R-line through P(v1) and P(v2) which is contained in PSpanC{v1q,
v2⟨v1, v2⟩q} for all q ∈ H∗. If P(v1) and P(v2) are two distinct points in Hn

H ∪
∂Hn

H, then ⟨v1, v2⟩ ≠ 0 and thus any totally projective C-line through P(v1) and
P(v2) can be written as PSpanC{v1q, v2⟨v2, v1⟩q} for some q ∈ H∗. Futhermore
any PSpanC{v1q, v2⟨v2, v1⟩q} contains the projectivization of a vector with neg-
ative norm in Hn,1, as seen before. By Corollary 3.4, SpanC{v1q, v2⟨v2, v1⟩q} is
isomorphic to SpanC{e1, en+1} up to the action of Sp(n, 1) on Hn,1. Thus the
intersection of PSpanC{v1q, v2⟨v2, v1⟩q} and Hn

H is isometric to H1
C, which is a

complex geodesic in Hn
H.

Corollary 3.15. Given two distinct points in Hn
H∪∂Hn

H, there are RP2 totally
projective C-lines passing through them. Each totally projective C-line through
them has a unique totally projective R-line through them and furthermore its
intersection with Hn

H is isometric to the complex geodesic H1
C in Hn

H.

4. The quaternionic Hermitian triple product

In this section, we will characterize the totally real and complex subsets of
Hn,1 in terms of the quaternionic Hermitian triple product. For v1, v2, v3 ∈
Hn,1, their quaternionic Hermitian triple product is defined as

⟨v1, v2, v3⟩ = ⟨v2, v1⟩⟨v3, v2⟩⟨v1, v3⟩.
Let v′3 be the orthogonal projection of v3 onto SpanH{v1, v2}. Since v3 − v′3

is orthogonal to both v1 and v2, we have that ⟨v1, v3⟩ = ⟨v1, v′3⟩ and ⟨v3, v2⟩ =
⟨v′3, v2⟩. From these equalities, we easily get

⟨v1, v2, v′3⟩ = ⟨v2, v1⟩⟨v′3, v2⟩⟨v1, v′3⟩ = ⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩ = ⟨v1, v2, v3⟩.

Proposition 4.1. Let S be a nonempty subset of Hn,1. Suppose that ⟨u, v, w⟩ ≠
0 for every (u, v, w) ∈ S(3). Then the following are equivalent.

(i) There is an element u0 ∈ S such that ⟨u0, v, w⟩ ∈ R for every (u0, v, w)
∈ S(3).

(ii) ⟨u, v, w⟩ ∈ R for every (u, v, w) ∈ S(3).
(iii) There is a function λ : S → H∗ such that the R-linear span of {vλv | v ∈

S} is a totally R-vector subspace of Hn,1.

Proof. To prove that (i) =⇒ (iii), suppose that there is an element u0 ∈ S such
that ⟨u0, v, w⟩ ∈ R for every (u0, v, w) ∈ S(3). Set λv = ⟨u0, v⟩ for each v ̸= u0

and λu0 = 1. By the assumption that ⟨u, v, w⟩ ̸= 0 for every (u, v, w) ∈ S(3),
it follows that λv = ⟨u0, v⟩ ̸= 0 for all v ∈ S. We now claim that the R-linear
span of {vλv | v ∈ S} is a totally R-vector subspace of Hn,1. First, we can check
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that ⟨u0λu0
, vλv⟩ = ⟨v, u0⟩⟨u0, v⟩ = |⟨u0, v⟩|2 ∈ R for all v ̸= u0 and for any

v, w ̸= u0,

⟨vλv, wλw⟩ = ⟨w, u0⟩⟨v, w⟩⟨u0, v⟩ = ⟨u0, w, v⟩ ∈ R.

This means that the inner product of any two vectors of {vλv | v ∈ S} is a real
number, which implies (iii), i.e., the R-linear span of {vλv | v ∈ S} is a totally
R-vector subspace of Hn,1.

Next we will prove that (iii) =⇒ (ii). If the R-linear span of {vλv | v ∈
S} is a totally R-vector subspace of Hn,1, then ⟨uλu, vλv, wλw⟩ ∈ R for any
u, v, w ∈ S. From the following equality

⟨uλu, vλv, wλw⟩ = λ̄u⟨u, v, w⟩λu|λv|2|λw|2,

one can easily deduce that ⟨u, v, w⟩ ∈ R for any u, v, w ∈ S.
Since (ii) =⇒ (i) is obvious, this completes the proof. □

Before giving a complex version of Proposition 4.1, we need a maximal
abelian subfield of H. Let F be a maximal abelian subfield of H. Then it
is well known that F = R ⊕ qR for some non-real quaternion q ∈ H. Ev-
ery quaternion is conjugate to a complex number and thus there is a non-zero
quaternion p ∈ H∗ such that p̄qp ∈ C. Then p̄Fp = C. In other words, any
maximal abelian subfield of H is conjugate to C.

Proposition 4.2. Let S be a subset of Hn,1 such that ⟨u, v, w⟩ ̸= 0 for all
(u, v, w) ∈ S(3). Then the following are equivalent:

(i) For some u0 ∈ S, there is a maximal abelian subfield F0 of H such that
⟨u, v, w⟩ ∈ F0 for every (u, v, w) ∈ S(3).

(ii) For each u ∈ S, there is a maximal abelian subfield Fu of H such that
⟨u, v, w⟩ ∈ Fu for every (u, v, w) ∈ S(3).

(iii) There is a function λ : S → H∗ such that the C-linear span of {vλv | v ∈
S} is a totally C-vector subspace of Hn,1.

Proof. We first prove that (i) =⇒ (iii). Suppose that for an element u0 ∈
S, there is a maximal abelian subfield F0 of H such that ⟨u0, v, w⟩ ∈ F0 for
every (u0, v, w) ∈ S(3). As mentioned above, there is a non-zero quaternion
p0 such that p̄0F0p0 = C. Set λu0

= p0 and λv = ⟨u0, v⟩p0 for each v ̸= u0.
Then by the same argument as in the proof of Proposition 4.1, we have that
⟨u0λu0

, vλv⟩ = p̄0⟨v, u0⟩⟨u0, v⟩p0 = |p0|2|⟨u0, v⟩|2 ∈ R and for any v, w ̸= u0,

⟨vλv, wλw⟩ = p̄0⟨w, u0⟩⟨v, w⟩⟨u0, v⟩p0 = p̄0⟨u0, w, v⟩p0 ∈ p̄0F0p0 = C.

Thus the C-linear span of {vλv | v ∈ S} is a totally C-vector subspace of Hn,1.
Next we prove that (iii) =⇒ (ii). Suppose that there is a function λ : S →

H∗ such that the C-linear span of {vλv | v ∈ S} is a totally C-vector subspace
of Hn,1. Then for any u, v, w ∈ S,

⟨uλu, vλv, wλw⟩ = λ̄u⟨u, v, w⟩λu|λv|2|λw|2 ∈ C,
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which is equivalent to ⟨u, v, w⟩ ∈ λuCλ̄u. For each u ∈ S, we set Fu = λuCλ̄u.
Then obviously, Fu is a maximal abelian subfield of H and ⟨u, v, w⟩ ∈ Fu for
every (u, v, w) ∈ S(3), which completes the proof for (iii) =⇒ (ii).

Lastly, (ii) =⇒ (i) is obvious. Therefore we can conclude that (i), (ii) and
(iii) are all equivalent. □

Propositions 4.1 and 4.2 provide a tool to give an answer to the question: Is
there a way to know whether a given set S in PHn,1 is totally real or complex?
More concretely, lift S ⊂ PHn,1 to a set S ⊂ Hn,1. Then fix an element u0 ∈ S
and investigate the reality or commutativity of the set {⟨u0, v, w⟩ | (u0, v, w) ∈
S(3)}. If {⟨u0, v, w⟩ | (u0, v, w) ∈ S(3)} is real (resp. commutative) and has no
the zero element, we can conclude that S is totally real (resp. complex). It is
worth pointing out that this conclusion does not depend on the choices of a
lift S of S and u0 ∈ S. This can be seen from Propositions 4.1(iii) and 4.2(iii),
which do not depend on the choice of a lift of S. Hence the following definition,
which is equivalent to Definition 1.2, makes sense.

Definition 4.3. We say that a subset S ⊂ PHn is totally real (resp. totally
commutative) with respect to the quaternionic Hermitian triple product if some
(hence any) lift S of S to Hn,1 satisfies the following property: For some (hence
any) u ∈ S, the associated set {⟨u, v, w⟩ | (u, v, w) ∈ S(3)} is real (resp. com-
mutative).

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We first prove (i). Suppose that S is totally real. Then
there is a lift S of S such that S is totally real. Clearly S is totally real with
respect to the quaternionic Hermitian triple product and so is S.

Conversely, suppose that S is totally real with respect to the quaternionic
Hermitian triple product. By Proposition 4.1, there exist a lift S of S and a
function λ : S → H∗ such that the R-linear span of {vλv | v ∈ S} is a totally
R-vector subspace of Hn,1. Noting that {vλv : v ∈ S} is also a lift of S to Hn,1,
it follows that S is totally real.

The proof of (ii) is similar and is left to the reader. □

Let Γ be a discrete subgroup of PSp(n, 1) acting on Hn
H. Then its limit set

ΛΓ is the unique minimal non-empty closed Γ-invariant subset of ∂Hn
H. More

concretely, ΛΓ is obtained by the intersection of ∂Hn
H and the closure of Γ · x

in Hn
H ∪ ∂Hn

H for some x ∈ Hn
H. Since no two null-vectors in Hn,1 can be

orthogonal, ⟨u, v, w⟩ ≠ 0 for all (u,v,w) ∈ Λ
(3)
Γ , where u, v and w are the lifts

of u,v and w to Hn,1, respectively. As an application of Propositions 4.1 and
4.2 to quaternionic hyperbolic space, we have the following corollary.

Proof of Corollary 1.4. Suppose that ΛΓ ⊂ ∂Hn
H is totally real with respect

to the quaternionic Hermitian triple product. By Theorem 1.3, ΛΓ is totally
real, which implies that a lift of ΛΓ spans a totally R-vector subspace V of



562 S. KIM

Hn,1. Since V is spanned by null vectors, it has a vector with negative norm.
Hence, by Corollary 3.4, V is isomorphic, up to the action of Sp(n, 1) on Hn,1,
to SpanR{e1, . . . , em, en+1} for some integer m ≤ n. This means that PV is
isometric to the real hyperbolic subspace Hm

R ⊂ Hn
H. Moreover it is obvious

that Γ leaves PV invariant since PV is the smallest totally projective R-subspace
of PHn,1 containing ΛΓ which is Γ-invariant. The converse is trivial.

A similar proof works for the totally commutative case with respect to the
quaternionic Hermitian triple product. □

5. Quaternionic hyperbolic triangle groups

Section 3.2 implies that given two distinct points of PHn,1, there always exist
both a totally projective R-line and a totally projective C-line passing through
them. However, for three distinct points of PHn,1, it turns out that there exists
a totally projective C-plane passing through them but there may not exist a
totally projective R-plane passing through them. Furthermore, for more than
three distinct points, there may be no totally projective C-subspace of PHn,1

passing through them. In this section we will prove these statements.
First of all, we prove that there always exists a totally projective C-plane

passing through given three distinct points of PHn,1.

Lemma 5.1. Let u, v and w be linearly independent vectors of Hn,1 over H.
Suppose that ⟨u, v, w⟩ ≠ 0. Then there are λu, λv, λw ∈ H∗ such that the C-
linear span of {uλu, vλv, wλw} is a totally complex vector subspace of Hn,1.

Proof. Every quaternion is conjugate to a complex number and thus there
exists a quaternion λu ∈ H∗ such that λ̄u⟨u,w, v⟩λu ∈ C. Set λv = ⟨u, v⟩λu

and λw = ⟨u,w⟩λu. Then

⟨uλu, vλv⟩ = λ̄u⟨v, u⟩⟨u, v⟩λu = |λu|2|⟨u, v⟩|2 ∈ R,
and, moreover,

⟨uλu, wλw⟩ = λ̄u⟨w, u⟩⟨u,w⟩λu = |λu|2|⟨u,w⟩|2 ∈ R.
Lastly, we get

⟨vλv, wλw⟩ = λ̄u⟨w, u⟩⟨v, w⟩⟨u, v⟩λu = λ̄u⟨u,w, v⟩λu ∈ C.
Therefore, by Proposition 4.2, the C-linear span of {uλu, vλv, wλw} is a totally
complex subspace of Hn,1. □

Example 5.2. We here give an example of three distinct points of PHn,1 which
are not contained in any totally real projective subspace of PHn,1. Let v1 =
e1 + ie2, v2 = e2 and v3 = e2 + en+1. Then by a straightforward computation,

⟨v1, v2, v3⟩ = 1− i.

This implies that ⟨v1λ1, v2λ2, v3λ3⟩ can not be real for any non-zero quaternions
λ1, λ2 and λ3. According to Proposition 4.1, this means that P(v1), P(v2) and
P(v3) can not be contained in any totally real projective subspace of PHn,1.
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Example 5.3. We now give an example of four distinct points of PHn,1 which
are not contained in any totally real and complex projective subspace of PHn,1.
Let v1 = e1 + ie2, v2 = e2 + e3, v3 = e2 + ken+1 and v4 = je3 + en+1 for n ≥ 3.
Then,

⟨v1, v2, v3⟩ = 1− j, ⟨v1, v2, v4⟩ = −k.

Note that ⟨v1, v2, v3⟩ and ⟨v1, v2, v4⟩ do not commute and hence by Proposition
4.2, the four distinct points P(v1),P(v2),P(v3),P(v4) can not be contained in
any totally complex projective subspace of PHn,1.

As an application of Lemma 5.1, we study quaternionic hyperbolic triangle
groups in H2

H. Given two distinct points u,v ∈ H2
H ∪ ∂H2

H, there is a unique
quaternionic projective line L spanned by u,v. There is a unique vector c ∈
H2,1 up to scaling by non-zero quaternions such that the line L is the projection
of a 2-dimensional quaternionic subspace {z ∈ H2,1 | ⟨z, c⟩ = 0}. The vector
c is called the polar vector of the quaternionic projective line L. Indeed, the
polar vector c is determined by two equations ⟨c, u⟩ = 0 and ⟨c, v⟩ = 0, where
u, v ∈ H2,1 are lifts of u,v, respectively. Then the quaternionic inversion τL in
L is defined by

τL(z) = P
(
−z + c · 2⟨c, c⟩−1⟨z, c⟩

)
.

Then it is easy to check that τL is an isometry of H2
H of order 2 and fixes L

pointwise.
For three distinct points u,v,w ∈ H2

H ∪ ∂H2
H, there are three quaternionic

projective lines L1,L2,L3 passing through two points of them and three quater-
nionic inversions τ1, τ2, τ3 associated to L1,L2,L3. The group generated by
τ1, τ2, τ3 is called a quaternionic hyperbolic triangle group in H2

H.
As seen before, every quaternionic hyperbolic triangle group is determined

by three distinct points u,v,w ∈ H2
H ∪ ∂H2

H. By Lemma 5.1, there are lifts
u, v, w ∈ H2,1 of u,v,w, respectively, such that SpanC{u, v, w} is totally com-
plex. Let c1 ∈ H2,1 be the polar vector of the quaternionic projective line L1

through u and v. Then ⟨c1, u⟩ = 0 and ⟨c1, v⟩ = 0. Since {u, v, w} is a basis of
H2,1, we can write c1 = u · q1+v · q2+w · q3 for some quaternions q1, q2, q3 ∈ H.
Applying ⟨c1, u⟩ = 0 and ⟨c1, v⟩ = 0, we have the following two equations:

⟨u, u⟩ · q1 + ⟨v, u⟩ · q2 + ⟨w, u⟩ · q3 = 0,

⟨u, v⟩ · q1 + ⟨v, v⟩ · q2 + ⟨w, v⟩ · q3 = 0.

All the coefficients in these two equations are complex numbers and thus there
are complex number solutions q1, q2, q3. This means that c1 ∈ SpanC{u, v, w}
and τ1 leaves PSpanC{u, v, w} invariant. Similarly, one can prove that the
other quaternionic inversions τ1 and τ2 also leave PSpanC{u, v, w} invariant.
Therefore, the quaternionic hyperbolic triangle group generated by τ1, τ2, τ3
leaves the totally C-subspace PSpanC{u, v, w} of PH2,1 invariant. Furthermore,
the intersection of PSpanC{u, v, w} and H2

H is isometric to H2
C, which implies

that every quaternionic hyperbolic triangle group in PSp(2, 1) is conjugate to
a subgroup of PU(2, 1). Therefore, we get Theorem 1.5.
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