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STONE TYPE THEOREMS

Bayram Ali̇ Ersoy, Ünsal Teki̇r, and Eda Yildiz

Abstract. Let R be a commutative ring with nonzero identity and M
be an R-module. In this paper, we first introduce the concept of S-

idempotent element of R. Then we give a relation between S-idempotents

of R and clopen sets of S-Zariski topology. After that we define S-pure
ideal which is a generalization of the notion of pure ideal. In fact, every

pure ideal is S-pure but the converse may not be true. Afterwards, we
show that there is a relation between S-pure ideals of R and closed sets

of S-Zariski topology that are stable under generalization.

1. Introduction

Throughout the paper, R denotes a commutative ring with identity, S de-
notes a multiplicatively closed subset (briefly, m.c.s.) of R and M denotes an
R-module. SpecS(R), SpecS(M), Z(R) denote the set of all S-prime ideals
of R, S-prime submodules of M , zero divisors of R, respectively. Consider
DS

a = {P ∈ SpecS(R) : sa ̸∈ P,∀s ∈ S}. We have DS
1 = SpecS(R) and

DS
a ∩ DS

b = DS
ab for all a, b ∈ R. By a basic result in general topology, there

exists a (unique) topology over SpecS(R) such that the collection of DS
a with

a ∈ R forms a basis for the opens. We call it the S-Zariski topology. Also each
DS

a is called a principal S-Zariski open. Now it can be seen that every closed
subset of SpecS(R) is of the form VS(I) = {P ∈ SpecS(R) : sI ⊆ P,∃s ∈ S},
where I is an ideal of R [18].

Now we will look at the relation between the topology on a module and
a topology on a ring. Suppose that R,R′ are two rings, S is a m.c.s. of
R′ and M,M ′ are R′-modules. If f : M ′ → M is an epimorphism, then
σ′ : SpecS(M) → SpecS(M

′) is defined by N 7→ f−1(N). If g : R′ → R
is an epimorphism with 0 ̸∈ g(S), then σ : Specg(S)(R) → SpecS(R

′) is de-

fined by P 7→ g−1(P ). The map φ : SpecS(M) → Specg(S)(R) is defined by
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φ(N) = g((N : M)). The map φ′ : SpecS(M
′) → SpecS(R

′) is defined by
φ′(N ′) = (N ′ : M ′). The diagram below gives the relations between mentioned
topological spaces:

SpecS(M) Specg(S)(R)

SpecS(M
′) SpecS(R

′)

φ

σ′ σ

φ′

Observe that the diagram above is commutative if g is an isomorphism.
Notice that φ and φ′ are not reversible since if (N : M) is an S-prime ideal,

N is not necessarily to be S-prime submodule.
The notion of prime ideal and its generalizations have a significant place in

Commutative Algebra and Algebraic Geometry. They are used to characterize
a large of variety of rings and they have some applications to other areas such
as General Topology. Recall from [4] that a proper ideal P of R is said to be a
prime ideal if ab ∈ P for some a, b ∈ R, then either a ∈ P or b ∈ P . For many
years, various authors constructed some topologies over algebraic structures
and they investigated the relations between the algebraic properties of given
algebraic structures (such as rings, modules, lattices and fuzzy structures) and
topological properties of these topologies. See, for example, [1, 3, 5, 7, 8, 10, 11,
13, 17, 18]. In [5], the author constructed a topology on Spec(M) which is the
set of all prime submodules of M . He proved some results that are known
for Spec(R). Also he defined absolutely flat R-module. In 1995, Chin-Pi Lu
investigated some properties of Spec(M). She gave a relation between Spec(M)
and Spec(S−1M) [9]. In [13], the author rediscovered independently the flat
topology on the prime spectrum which is the dual of the Zariski topology. He
also determined connected subsets of prime spectrum with respect to the both
Zariski and flat topologies. In 2020, same author showed the existence of a
correspondence between pure ideals of R and Zariski closed subsets of Spec(R)
that are stable under generalization [15]. He studied on the projectivity of a
finitely generated flat module over a commutative ring. He also obtained many
new results [14]. In 2019, the Hamed and Malek defined the notion of S-prime
ideal and investigated some properties of them [6]. A proper ideal P of R with
P ∩S = ∅ is called S-prime if ab ∈ P implies either sa ∈ P or sb ∈ P for some
s ∈ S. At about the same time, Sevim et al. introduced S-prime submodules.
Let N be a submodule of M such that (N : M) ∩ S = ∅. Then N is called an
S-prime submodule if there exists an s ∈ S such that am ∈ N for some a ∈ R,
m ∈ M implies that sa ∈ (N : M) or sm ∈ N [12]. They characterized some
classical modules such as simple modules, S-Noetherian modules, and torsion-
free modules. In [18], the authors constructed a topology on the set of S-prime
ideals of R that is a generalization of Zariski topology. They gave many results
related to this topology. Following year, Yildiz et al. constructed a topology



S-VERSIONS OF STONE TYPE THEOREMS 85

on the set of S-prime submodules that is a generalization of S-Zariski topology
on a ring [17].

In this paper, we first introduce the concepts of S-idempotent element of a
commutative ring R. Then we give a theorem that proves a correspondence
between S-idempotents of R and clopen sets of S-Zariski topology. After that
we define S-pure ideal which is a generalization of the notion of pure ideal. In
fact, every pure ideal is S-pure but the converse may not be true. Moreover,
we give some properties of this class of ideals. Afterwards we show that there
is a relation between S-pure ideals of R and closed sets of S-Zariski topology
that are stable under generalization.

2. S-versions of Stone type theorems

Definition 2.1. Let S be a multiplicative subset of R and f : R → R′ be
a ring map. An element a ∈ R′ is called S-idempotent (with respect to f) if
a2 = s · a = f(s)a for some s ∈ S. Observe that every idempotent element is
S-idempotent. But the following example shows that the converse may not be
true.

Example 2.2. Let R = Z6 and S = {1̄, 5̄}. Since 2̄2 = 5̄ · 2̄, 2̄ is an S-
idempotent element. But it is clear that 2̄ is not idempotent.

Definition 2.3. Let R be a ring. An ideal I of R is said to be an S-regular
ideal if I is generated by some S-idempotent elements. A proper ideal I of R
is called maximal S-regular if it is maximal among all S-regular ideals.

Note that every regular ideal is S-regular. The next example demonstrates
that the converse may not hold.

Example 2.4. Let R = Z6 and S = {1̄, 5̄}. Although (2̄) is an S-regular ideal
of Z6, it is not regular.

Definition 2.5. An element x ∈ R is called S-zero if sx = 0 for some s ∈ S.
Note that 0 is also an S-zero element.

Next we will give the S-version of [13, Theorem 3.19].

Theorem 2.6. Given a ring R, a m.c.s. S of R and an S-regular ideal I of R,
if I is a maximal S-regular ideal, then only S-idempotents of R/I are S-zero
elements. The converse is true when (I : s) = I for all s ∈ S.

Proof. Let I = (a1, a2, . . . , an), where siai = a2i for some si ∈ S for all i.
First note that by using Definition 2.1 for the canonical ring map R → R/I
we get the right expression of the theorem. Assume that I is a maximal S-
regular ideal of R and a+ I is S-idempotent in R/I. Then there exists s ∈ S
such that sa + I = s(a + I) = (a + I)(a + I) = a2 + I. Thus we have
sa − a2 ∈ I. There are two cases: I + (s − a) = R or I + (s − a) ̸= R.
Suppose I + (s − a) = R. Then 1 = r(s − a) + r1a1 + r2a2 + · · · + rnan
for some r, r1, . . . , rn ∈ R, where I = (a1, a2, . . . , an). This implies that a =
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r(s−a)a+r1a1a+r2a2a+ · · ·+rnana ∈ I. Hence a ∈ I implying a+I = 0+I.
Now assume that I + (s − a) ̸= R. Since sa − a2 ∈ I = (a1, a2, . . . , an),
we can write sa − a2 = r1a1 + r2a2 + · · · + rnan. This equality implies that
(sa − a2)

∏n
i=1(si − ai) = r1a1

∏n
i=1(si − ai) + · · · + rnan

∏n
i=1(si − ai) = 0.

In fact,
∏n

i=1(si − ai) can be written as s′ − e, where s′ ∈ S and e is an
S-idempotent element of I such that s′e = e2. Then we have ((s′ − e)a)2 =
s′2a2 − 2s′ea2 + e2a2 = s′2sa − 2s′esa + sas′e = s′2sa − s′sea = s∗(s′ − e)a,
where s∗ = s′s ∈ S. This shows that (s′ − e)a is S-idempotent. Now since
s′a = ea+ (s′ − e)a, s′a ∈ I + ((s′ − e)a). Here I + ((s′ − e)a) is an S-regular
ideal. We know that I is a maximal S-regular ideal and I + ((s′ − e)a) ̸= R.
Hence I = I + ((s′ − e)a). In this case, we conclude s′a ∈ I and this gives
s′(a+I) = I = 0+I, which shows that a+I is S-zero. For the converse, assume
that only S-idempotents of R/I are S-zero elements and I ⊂ J for some S-
regular ideal J of R. Then we can find an S-idempotent element a ∈ J−I such
that sa = a2 for some s ∈ S. Thus (a+ I)2 = a2+ I = sa+ I = s(a+ I). Since
(I : s) = I, sa /∈ I and this shows a+ I is non-S-zero S-idempotent of R/I, a
contradiction. Therefore, I is maximal among all S-regular ideals of R. □

Proposition 2.7. Let R be a ring and S be a multiplicatively closed subset of
R. If a ∈ R is S-idempotent with sa = a2, then a

s is idempotent in S−1R. The
converse is also true when S ∩ Z(R) = ∅.

Proof. Assume that a is S-idempotent. Then sa = a2 for some s ∈ S. Then

we have (as )
2 = a2

s2 = sa
s2 = a

s , as needed. For the other direction, suppose that
a
s is idempotent in S−1R. Then (as )

2 = a
s . This implies that t(sa2 − as2) = 0

for some t ∈ S. As S ∩ Z(R) = ∅, we get sa = a2 which shows a is S-
idempotent. □

The following theorem gives a correspondence between idempotents of S−1R
and clopen sets of S-Zariski topology.

Definition 2.8 ([18]). Let I be an ideal of R. Then S-radical of I is defined
by

S
√
I = {a ∈ R : san ∈ I for some s ∈ S and n ∈ Z+},

where S is a m.c.s. of R.
In particular, S

√
0 is denoted by NS(R). An element of NS(R) is said to be

an S-nilpotent element.

Theorem 2.9 (Generalized Grothendieck Correspondence). Given a m.c.s. S
of a ring R with S ∩ Z(R) = ∅. Then there is a bijection ϕ from the set
of idempotents of S−1R onto the set of clopens of the S-prime spectrum of R
defined by a

s 7→ DS
a .

Proof. Given S-idempotent a in R with sa = a2 for some s ∈ S. Then
SpecS(R) = VS((a)) ∪ VS((s − a)). So, DS

a = VS((s − a)) and this shows

that DS
a is clopen in SpecS(R). Let a

s = a′

s′ . Then s′a = sa′, and this yields
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that VS(a) = VS(s
′a) = VS(sa

′) = VS(a
′). Thus DS

a = DS
a′ . Therefore, the

map is well defined. For injectivity, suppose DS
a = DS

b , where a and b are
S-idempotents in R with s1a = a2 and s2b = b2 for some s1, s2 ∈ S. This gives
S
√
(a) = S

√
(b) by Proposition [18]. Since a ∈ S

√
(a) = S

√
(b), s⋆a = s′an = br1

for some s⋆, s′ ∈ S, r1 ∈ R, n ∈ Z+. Multiplying (s2 − b) both sides, we obtain

s⋆s2a = s⋆ab. Also, since b ∈ S
√

(a), s⋆⋆b = s′′bm = ar2 for some s⋆⋆, s′′ ∈ S,
r2 ∈ R, m ∈ Z+. Similar argument shows that s⋆⋆s1b = s⋆⋆ab. Thus, we obtain
s2a = s1b. Then this gives a

s1
= b

s2
. Therefore, the map is injective. Now we

will show that the map is surjective. Suppose that K is clopen in SpecS(R).
Since K is closed and SpecS(R) is compact, K is compact. Then SpecS(R)−K
is also compact. So K =

⋃n
i=1 D

S
ai

and SpecS(R) − K =
⋃m

j=1 D
S
bj

for some

open sets DS
ai

and DS
bj

in SpecS(R). Here DS
ai

∩ DS
bj

= ∅ for all i, j. Thus

we have DS
aibj

= DS
ai

∩ DS
bj

= ∅. This implies that aibj ∈ NS(R) for all i, j

by [18, Proposition 6]. Note that NS(R) = N(R) since S ∩ Z(R) = ∅. Now,
consider I = (a1, a2, . . . , an) and J = (b1, b2, . . . , bm). Then, (IJ)t = 0, where t
is large enough. Moreover, VS(I

t) = VS(I) = SpecS(R)−DS
I =

⋃m
j=1 D

S
bj

and

VS(J
t) = VS(J) = SpecS(R)−DS

J =
⋃n

i=1 D
S
ai

and these give that SpecS(R) =
VS(I

t)∪VS(J
t). Hence, we get VS(I

t+J t) = ∅ showing (It+J t)∩S ̸= ∅. Then
a+ b = s for some s ∈ S, where a ∈ It and b ∈ J t. As ab ∈ ItJ t = (IJ)t = 0,
we have

(1) sa− a2 = a(s− a) = ab = 0.

Thus, a is S-idempotent and ϕ(as ) = DS
a =

⋃n
i=1 D

S
ai

= K, as desired. □

Let R be a ring and S be a multiplicatively subset of R. The set of all
idempotent elements of S−1R is defined by B(S−1R) = {a

s ∈ S−1R : (as )
2 = a

s

where a ∈ R, s ∈ S}. Define an operation +S as a
s +S

b
t = a

s + b
t −

2ab
st . Recall

from [16] that (B(S−1R),+S , ·) is a ring. Moreover, if S∩Z(R) = ∅, then note
that a

s is idempotent if and only if sa = a2.
In the next theorem we will give the S-version of [16, Theorem 3.1].

Theorem 2.10. Given a ring R and a m.c.s. S of R with S ∩ Z(R) = ∅.
Then the ring map ϕ : B(S−1R) → Clop(SpecS(R)) defined by a

s 7→ DS
a is an

isomorphism.

Proof. This map is bijective from Generalized Grothendieck Correspondence.
Now, we will show that the map is a morphism. Here ϕ(as +S

b
t ) = ϕ( ta+sb−2ab

st )

= DS
ta+sb−2ab and ϕ(as · b

t ) = ϕ(abst ) = DS
ab. In fact, we have ϕ(as

b
t ) = DS

ab =

DS
a ∩ DS

b = ϕ(as ) ∩ ϕ( bt ), where a, b ∈ R, s, t ∈ S. We only need to show

that ϕ(as +S
b
t ) = ϕ(as )△ϕ( bt ), where △ denotes the symmetric difference,

that is, A△B = (A ∪ B) − (A ∩ B). Take P ∈ ϕ(as +S
b
t ) = DS

ta+sb−2ab.

Then s′(ta + sb − 2ab) ̸∈ P for all s′ ∈ S. Now assume that P ̸∈ DS
a and

P ̸∈ DS
b . This gives s1a ∈ P and s2b ∈ P for some s1, s2 ∈ S. It implies

that s′(ta + sb − 2ab) ∈ P , where s′ = s1s2, a contradiction. So P ∈ DS
a or
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P ∈ DS
b giving P ∈ DS

a ∪DS
b . Also, since a

s ,
b
t are idempotents in S−1R and

S ∩Z(R) = ∅, we have sa = a2 and tb = b2. By using this fact, we can obtain
that st(ta + sb − 2ab) = (ta + sb − 2ab)2. Then (ta + sb − 2ab)(st − (ta +
sb − 2ab)) ∈ P . As P is an S-prime ideal, we have s′(ta + sb − 2ab) ∈ P or
s′(st− (ta+ sb− 2ab)) ∈ P for some s′ ∈ S. But former case is not possible by
the assumption. Thus we must have s′(st − (ta + sb − 2ab)) ∈ P . This gives
s′stab = ab(s′st− s′ta− s′sb+2s′ab) ∈ P . Put s∗ = s′st and we get s∗ab ∈ P .
Hence P ̸∈ DS

ab which implies P ∈ DS
a△DS

b = ϕ(as )△ϕ( bt ). For the reverse

inclusion, take P ∈ (DS
a∪DS

b )−DS
ab. Suppose that P ̸∈ ϕ(as+S

b
t ) = DS

ta+sb−2ab.

Then we can find an s′ ∈ S providing s′(ta + sb − 2ab) ∈ P . As P ̸∈ DS
ab,

we can find an s′′ ∈ S such that s′′ab ∈ P . This gives s′s′′ab ∈ P and so
s′s′′(ta + sb − ab) ∈ P . As s′s′′sta = s′s′′a(ta + sb − ab) ∈ P , where sa = a2,
we obtain P ̸∈ DS

a . Similarly, s′s′′stb = s′s′′b(ta + sb − ab) ∈ P , where
tb = b2, we get P ̸∈ DS

b . This contradicts with the assumption and so it means

P ∈ ϕ(as +S
b
t ) = DS

ta+sb−2ab, as required. □

3. S-pure ideals

Definition 3.1. Let R be a commutative ring with 1 and S be a multiplica-
tively closed subset of R. An ideal I of R is called S-pure if for all a ∈ I there
exist b ∈ I and s ∈ S such that sa = ab.

Proposition 3.2. Given a ring R and a m.c.s. S of R with S ∩ Z(R) = ∅.
Then an ideal I of R is S-pure if and only if Ann(as ) + S−1I = S−1R for all
a
s ∈ S−1I.

Proof. Assume that I is an S-pure ideal of R. Then for all a ∈ I there exist
b ∈ I and t ∈ S such that ta = ab. This gives a

s = ta
ts = ab

ts . Then
a
s (

1
1 −

b
t ) = 0.

Thus 1
1 −

b
t ∈ Ann(as ). Since

1
1 −

b
t +

b
t = 1

1 ∈ Ann(as )+S−1I, we conclude that

Ann(as ) + S−1I = S−1R. For the other direction, assume Ann(as ) + S−1I =

S−1R for all a
s ∈ S−1I. Then r

t +
b
s′ = 1

1 , where
r
t ∈ Ann(as ) and

b
s′ ∈ S−1I.

Multiplying each side by a
s , we obtain

ab
ss′ =

a
s . So we can find u ∈ S such that

u(sab− ss′a) = 0. Since S ∩ Z(R) = ∅, we get ab = s′a, as desired. □

Note that every pure ideal is S-pure but the converse is not true in general.

Example 3.3. Let R = Z, S = Z− 2Z. Take I = 3Z. Here Ann(as ) +S−1I =

S−1R and so I is an S-pure ideal. Now choose a = 3. Then Ann(3) + 3Z ̸= Z.
Thus I is not a pure ideal.

Corollary 3.4. Let R be a ring, S be a multiplicatively subset of R and I be
an ideal of R. Then I is S-pure if and only if S−1I is pure.

Definition 3.5. Let R be a commutative ring with 1 and S be a multiplica-
tively closed subset of R with S∩Z(R) = ∅. An ideal I of R is strongly S-pure
if and only if Ann(as ) +

a
sS

−1R = S−1R for all a
s ∈ S−1I.
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Recall from [2] that a multiplicatively closed subset S of R is said to satisfy
the maximal multiple condition if there exists s ∈ S such that s′ divides s for
all s′ ∈ S. Then such an s ∈ S is denoted by s̃.

Lemma 3.6. Given a m.c.s. S of a ring R satisfying maximal multiple con-
dition by s̃ and S ∩ Z(R) = ∅, and an ideal I of R with (I : s̃) = I. Then
S−1I = (a1

s1
, a2

s2
, . . . , an

sn
) if and only if I = (a1, a2, . . . , an).

Proof. One can easily see that if I = (a1, a2, . . . , an), then S−1I = (a1

s1
, a2

s2
, . . .,

an

sn
). On the other hand, assume that S−1I = (a1

s1
, a2

s2
). Let a ∈ I. Then

a
s̃ ∈ S−1I. So there exist r1

t1
, r2
t2

∈ S−1R such that a
s̃ = r1

t1
a1

s1
+ r2

t2
a2

s2
. This

gives a
1 = s̃r1a1

t1s1
+ s̃r2a2

t2s2
. Since S satisfies the maximal multiple condition

by s̃, we get s̃ = k1t1s1 and s̃ = k2t2s2 for some k1, k2. Hence we obtain
a = (k1r1)a1 + (k2r2)a2. Moreover, as (I : s̃) = I, a1, a2 ∈ I. Therefore
I = (a1, a2). By applying induction on the number of elements of the generator,
the proof is completed. □

Proposition 3.7. Let S be a multiplicatively closed subset of ring R satisfying
maximal multiple condition by s̃. Then every strongly S-pure ideal I with (I :
s̃) = I is S-regular.

Proof. Assume that I is a strongly S-pure ideal with (I : s̃) = I. Let a ∈ I.
Then a

s ∈ S−1I. So Ann(as ) +
a
sS

−1R = S−1R. Then we can write b
v + r

t = 1
1

for some b
v ∈ Ann(as ) and

r
t ∈ a

sS
−1R. Then 0 = r

t
b
v = r

t (
1
1 − r

t ). This shows

that r
t is idempotent. Since b

v + r
t = 1

1 and b
v ∈ Ann(as ), we obtain a

s
r
t = a

s .

Thus a
sS

−1R = r
tS

−1R and so a
sS

−1R is a regular ideal. Hence S−1I is a

regular ideal satisfying S−1I =
∑

a
s∈S−1I

a
sS

−1R. This gives I =
∑

a∈IaR by

Lemma 3.6, where a is S-idempotent. Therefore, I is an S-regular ideal, as
needed. □

Proposition 3.8. If I is an S-pure ideal, then for each finite subset {a1, a2,
. . . , an} of I there exist b ∈ I and s ∈ S such that ai(s− b) = 0.

Proof. Consider the subset {a, a′} of I. Since I is S-pure, there exist x, x′ ∈ I
and s, s′ ∈ S such that sa = ax and s′a′ = a′x′. Choose b = s′x + sx′ − xx′.
Then we obtain ab = ss′a and a′b = s′sa′. By choosing s⋆ = ss′, we are done.
By applying induction on n, we can get the result. □

Proposition 3.9. Let I be an ideal of R and S
√
I be S-pure. Then S−1I =

S−1 S
√
I.

Proof. As I ⊆ S
√
I, S−1I ⊆ S−1 S

√
I. For the other inclusion, choose a

s ∈
S−1 S

√
I. Then there exists u ∈ S such that ua ∈ S

√
I . Since S

√
I is S-pure, we

can find b ∈ S
√
I such that t(ua) = (ua)b for some t ∈ S, where s′bn ∈ I for

some s′ ∈ S and n ∈ Z+. Then s′tnua = s′tuabn−1 = s′uabn. As s′bn ∈ I, we
obtain s⋆a ∈ I, where s⋆ = s′tnu. This gives s⋆a

s⋆s = a
s ∈ S−1I, as needed. □
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Recall that a ring R is called S-reduced if NS(R) = 0, that is, there is no
nonzero S-nilpotent element of R.

Proposition 3.10. Given an S-pure ideal I of an S-reduced ring R. Then
S−1I = S−1 S

√
I.

Proof. One can easily see that S−1I ⊆ S−1 S
√
I. Now pick a

s ∈ S−1 S
√
I. Then

ua ∈ S
√
I for some u ∈ S. So we can find an s′ ∈ S providing s′(ua)n ∈ I for

some n ∈ Z+. As I is S-pure, ts′(ua)n = s′(ua)nb for some b ∈ I and t ∈ S.
This gives s′(ua)n(t − b) = 0. As s′(ua)n(t − b)n = 0 and R is S-reduced, we
obtain uta = uab ∈ I. So we get uta ∈ I which gives a

s = uta
uts ∈ S−1I. □

Proposition 3.11. Let I, J be S-pure ideals of R satisfying (I : s) = I,

(J : s) = J for all s ∈ S and S
√
I = S

√
J . Then I = J .

Proof. Let a ∈ I. Then sa = ab for some s ∈ S and for some b ∈ I. Since
b ∈ I ⊆ S

√
I = S

√
J , s′bn ∈ J for some s′ ∈ S and n ∈ Z+. Then s′sabn−1 =

s′abn. It implies that s′sna = s′abn. Put s′sn = t. Then ta = as′bn ∈ J . Thus
a ∈ (J : t) = J . Similar argument shows that J ⊆ I, as desired. □

Corollary 3.12. Let I, J be S-pure ideals of R satisfying S
√
I = S

√
J . Then

S−1I = S−1J .

Lemma 3.13. Let R be a ring, I be any ideal and P be an S-prime ideal of
R. Then, S−1I ⊆ S−1P if and only if P ∈ VS(I).

Proof. Assume that S−1I ⊆ S−1P . Then for all a ∈ I, a
s ∈ S−1P . This means

that there exists t ∈ S such that ta ∈ P for all a ∈ I by [12, Lemma 2.16].
Hence tI ⊆ P which gives P ∈ VS(I), as desired. On the other hand, suppose
P ∈ VS(I) and take a

s′ ∈ S−1I. Then ua ∈ I for some u ∈ S and there exists

s ∈ S such that sI ⊆ P . This gives sua ∈ sI ⊆ P . Hence a
s′ = sua

sus′ ∈ S−1P ,
as needed. □

Definition 3.14. A subset E of SpecS(R) is called stable under generalization
if Q ∈ E and P is an S-prime ideal of R with P ⊂ Q implies P ∈ E.

The following theorem is the S-version of [15, Theorem 3.12].

Theorem 3.15. Given a m.c.s. S of R, the map ϕ : I 7→ VS(I) is an injection
from the set of S-pure ideals with (I : s) = I for all s ∈ S to the set of closed
subsets of the S-prime spectrum of R which are stable under generalization.

Proof. Assume that I is an S-pure ideal of R with (I : s) = I for all s ∈ S.
Then we have to show VS(I) is stable under generalization. Let Q and P be
two S-prime ideals such that Q ⊆ P . Suppose P ∈ VS(I). Then sI ⊆ P for
some s ∈ S. Now assume that Q ̸∈ VS(I) implying sI ̸⊆ Q for all s ∈ S. It
indicates that there exists a ∈ I such that sa ̸∈ Q for all s ∈ S. This gives
a
s′ = sa

ss′ ̸∈ S−1Q for all s′ ∈ S. Choose r
t ∈ Ann( a

s′ ). Then r
t
a
s′ = 0 ∈ S−1Q.

Then we can find u ∈ S providing ura ∈ Q. Since Q is an S-prime ideal and



S-VERSIONS OF STONE TYPE THEOREMS 91

sa ̸∈ Q for all s ∈ S, we get s′′r ∈ Q for some s′′ ∈ S. It gives s′′r
s′′t = r

t ∈ S−1Q

and so Ann( a
s′ ) ⊆ S−1Q. By using this fact and Lemma 3.13, we have

(2) Ann(
a

s′
) + S−1I ⊆ S−1Q+ S−1I ⊆ S−1Q+ S−1P ⊆ S−1P

It contradicts with Ann( a
s′ ) + S−1I = S−1R. Thus, Q ∈ VS(I), that is, VS(I)

is stable under generalization and this map is well defined. For injectivity,
assume that ϕ(I) = ϕ(J). Let I ̸⊆ J . If we assume S−1I ⊆ S−1J , then for all
a ∈ I we have a

s ∈ S−1I ⊆ S−1J . So ua ∈ J for some u ∈ S and this implies

a ∈ (J : u) = J , a contradiction. Thus S−1I ̸⊆ S−1J . Then there exists
a
s ∈ S−1I such that a

s ̸∈ S−1J . This means Ann(as )+S−1J ̸= S−1R. Thus we

can find a prime ideal P of R with P∩S = ∅ such that Ann(as )+S−1J ⊆ S−1P .

Since S−1J ⊆ S−1P , we have J ⊆ P and thus P ∈ VS(J) = VS(I). Then
we have S−1I ⊆ S−1P by Lemma 3.13. Hence Ann(as ) + S−1I ⊆ S−1P , a

contradiction. Because I is S-pure ideal and so Ann(as )+S−1I = S−1R. Then
we conclude that I ⊆ J . Similar argument shows J ⊆ I. Therefore, we obtain
I = J , as desired. □
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