• Title/Summary/Keyword: channel integration

Search Result 247, Processing Time 0.025 seconds

An Efficient 5-Input Exclusive-OR Circuit Based on Carbon Nanotube FETs

  • Zarhoun, Ronak;Moaiyeri, Mohammad Hossein;Farahani, Samira Shirinabadi;Navi, Keivan
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.89-98
    • /
    • 2014
  • The integration of digital circuits has a tight relation with the scaling down of silicon technology. The continuous scaling down of the feature size of CMOS devices enters the nanoscale, which results in such destructive effects as short channel effects. Consequently, efforts to replace silicon technology with efficient substitutes have been made. The carbon nanotube field-effect transistor (CNTFET) is one of the most promising replacements for this purpose because of its essential characteristics. Various digital CNTFET-based circuits, such as standard logic cells, have been designed and the results demonstrate improvements in the delay and energy consumption of these circuits. In this paper, a new CNTFET-based 5-input XOR gate based on a novel design method is proposed and simulated using the HSPICE tool based on the compact SPICE model for the CNTFET at the 32-nm technology node. The proposed method leads to improvements in performance and device count compared to the conventional CMOS-style design.

QUICK-LOOK TEST OF KOMPSAT-2 FOR IMAGE CHAIN VERIFICATION

  • Lee Eung-Shik;Jung Dae-Jun;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.509-511
    • /
    • 2005
  • KOMPSAT -2 equipped with an optical telescope(MSC) will be launched in this year. It can take images of the earth with push-broom scanning at altitude 685Km. Its resolution is 1m in panchromatic channel with a swath width of 15 km After the MSC is tested and the performance is measured at instrument level, it is installed on satellite. The image passes through the electro-optical system, compression and storage unit and fmally downlink sub-systems. This integration procedure necessitates the functional test of all subsystems participating in the image chain. The objective of functional test at satellite level(Quick Look test) is to check the functionality of image chain by real target image. Collimated moving image is input to the EOS in order to simulate the operational environments as if KOMPSAT -2 is being operated in orbit. The image chain from EOS to data downlink subsystem will be verified through Quick Look test. This paper explains the Quick Look test of KOMPSAT -2 and compares the taken images with collimated input ones.

  • PDF

A Study on Ubiquitous technology Convergence by Public Use of Physical Space and Function Unification of Physical Facilities (물리적 공간의 공용사용과 물리적 시설의 기능 통합에 의한 유비쿼터스 기술의 융합에 관한 연구)

  • Choi, Chang-Sun;Chin, Yong-Ohk
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.231-237
    • /
    • 2009
  • According to the enforcement of various laws for the ubiquitous city, the convergence technologies for the ubiquitous in the industry has been emerging. In this paper, we propose a method for the ubiquitous convergence technology by a functional integration of the public employment of the physical space and physical facilities, as the related laws are enforced and the city development plan is processed in the situation which constructs the ubiquitous and eco-city. We also present a scheme for the establishment to prepare the foundation of systematization, standardization, and information-oriented by providing an application example for the common-use-channel and unification IP pool based on the proposed method.

  • PDF

A PKI-based Secure Multiagent Engine (PKI 기반의 보안 다중 에이전트 엔진)

  • 장혜진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.319-324
    • /
    • 2002
  • The Integration of agent technology and security technology is needed to many application areas like electronic commerce. This paper suggests a model of extended multi-agent engine which supports privacy, integrity, authentication and non-repudiation on agent communication. Each agent which is developed with the agent engine is composed of agent engine layer and agent application layer. We describe and use the concepts self-to-self messages, secure communication channel, and distinction of KQML messages in agent application layer and messages in agent engine layer. The suggested agent engine provides an agent communication language which is extended to enable secure communication between agents without any modifications or restrictions to content layer and message layer of KQML. Also, in the model of our multi-agent engine, secure communication is expressed and processed transparently on the agent communication language.

  • PDF

Error Probability Expressions for Frame Synchronization Using Differential Correlation

  • Kim, Sang-Tae;Kim, Jae-Won;Shin, Dong-Joon;Chang, Dae-Ig;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.582-591
    • /
    • 2010
  • Probabilistic modeling and analysis of correlation metrics have been receiving considerable interest for a long period of time because they can be used to evaluate the performance of communication receivers, including satellite broadcasting receivers. Although differential correlators have a simple structure and practical importance over channels with severe frequency offsets, closedform expressions for the output distribution of differential correlators do not exist. In this paper, we present detection error probability expressions for frame synchronization using differential correlation, and demonstrate their accuracy over channel parameters of practical interest. The derived formulas are presented in terms of the Marcum Q-function, and do not involve numerical integration, unlike the formulas derived in some previous studies. We first determine the distributions and error probabilities for single-span differential correlation metric, and then extend the result to multispan differential correlation metric with certain approximations. The results can be used for the performance analysis of various detection strategies that utilize the differential correlation structure.

A Case Study on the Introduction of Electronic Finance Service (전자금융 서비스에 관한 농협 사례)

  • Kim, Byung-Gon
    • Proceedings of the Korea Database Society Conference
    • /
    • 2010.06a
    • /
    • pp.127-139
    • /
    • 2010
  • Until now, systems in financial companies have been constructed and operated based on great mainframe proved being stability. But it has had many disadvantages since they only implement maintenance adding and changing function. So they need construction of new systems(development of critical application, integration of various service channel, management of customer data). In spite of great construction costs and high risk, it is necessary that they construct e-financial system. Nowadays financial institutions must actively offer services to customers. In other words, the key of service is being moved from providers to customers. In oder to develop and sell new products in a timely manner, integrated management about appropriate and valid customer data is needed. And new system that covers expanded area of work is needed since the original parts of the area is being broken gradually. In this paper, we search construction processes of e-financial system of Nonghyup to respond to new financial environment flexibly and actively, concrete contents about innovation activities of e-financial system and the cases of service utilization. Also, we suggest the development direction of e- financial system for Nonghyup following day.

  • PDF

Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.93-105
    • /
    • 2010
  • Complementary metal-oxide-semiconductor (CMOS) technology scaling has been a main key for continuous progress in silicon-based semiconductor industry over the past three decades. However, as the technology scaling enters nanometer regime, CMOS devices are facing many serious problems such as increased leakage currents, difficulty on increase of on-current, large parameter variations, low reliability and yield, increase in manufacturing cost, and etc. To sustain the historical improvements, various innovations in CMOS materials and device structures have been researched and introduced. In parallel with those researches, various new nanoelectronic devices, so called "Beyond CMOS Devices," are actively being investigated and researched to supplement or possibly replace ultimately scaled conventional CMOS devices. While those nanoelectronic devices offer ultra-high density system integration, they are still in a premature stage having many critical issues such as high variations and deteriorated reliability. The practical realization of those promising technologies requires extensive researches from device to system architecture level. In this paper, the current researches and challenges on nanoelectronics are reviewed and critical tasks are summarized from device level to circuit design/CAD domain to better prepare for the forthcoming technologies.

A 2-Gbps Simultaneous Bidirectional Inductively-Coupled Link (동시 양방향 통신이 가능한 2-Gbps 인덕터 결합 링크)

  • Jeon, Minki;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.42-49
    • /
    • 2013
  • A simultaneous bidirectional inductively-coupled link is presented. In the conventional inductively-coupled link, data can be bidirectionally transmitted through channel, however not simultaneously. We propose simultaneous bidirectional link for higher data rate with effective echo cancellation technique. Each chip performs TX-mode and RX-mode simultaneously. Instead chip stacking for test, similar test enviroment is realized in a single chip that is fabricated in a $0.13-{\mu}m$ standard CMOS technology.

Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis (속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측)

  • Kim, D.K.;Kim, J.M.;Park, W.W.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.

Recent Research Progresses in 2D Nanomaterial-based Photodetectors (2D 나노소재기반 광 센서 소자의 최근 연구 동향)

  • Jang, Hye Yeon;Nam, Jae Hyeon;Cho, Byungjin
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.36-55
    • /
    • 2019
  • Atomically thin two-dimensional (2D) nanomaterials, including transition metal dichalcogenides (TMDs), graphene, boron nitride, and black phosphorus, have opened up new opportunities for the next generation optoelectronics owing to their unique properties such as high absorbance coefficient, high carrier mobility, tunable band gap, strong light-matter interaction, and flexibility. In this review, photodetectors based on 2D nanomaterials are classified with respect to critical element technology (e.g., active channel, contact, interface, and passivation). We discuss key ideas for improving the performance of the 2D photodetectors. In addition, figure-of-merits (responsivity, detectivity, response speed, and wavelength spectrum range) are compared to evaluate the performance of diverse 2D photodetectors. In order to achieve highly reliable 2D photodetectors, in-depth studies on material synthesis, device structure, and integration process are still essential. We hope that this review article is able to render the inspiration for the breakthrough of the 2D photodetector research field.