• Title/Summary/Keyword: channel barrier

Search Result 214, Processing Time 0.024 seconds

Effects of Channel Electron In-Plane Velocity on the Capacitance-Voltage Curve of MOS Devices

  • Mao, Ling-Feng
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.68-72
    • /
    • 2010
  • The coupling between the transverse and longitudinal components of the channel electron motion in NMOS devices leads to a reduction in the barrier height. Therefore, this study theoretically investigates the effects of the in-plane velocity of channel electrons on the capacitance-voltage characteristics of nano NMOS devices under inversion bias. Numerical calculation via a self-consistent solution to the coupled Schrodinger equation and Poisson equation is used in the investigation. The results demonstrate that such a coupling largely affects capacitance-voltage characteristic when the in-plane velocity of channel electrons is high. The ballistic transport ensures a high in-plane momentum. It suggests that such a coupling should be considered in the quantum capacitance-voltage modeling in ballistic transport devices.

Electrical characteristics of GaAs MESFET according to the heat treatment of Ti/Au and Ti/Pd/Au schottky contacts (Ti/Au, Ti/Pd/Au 쇼트키 접촉의 열처리에 따른 GaAs MESFET의 전기적 특성)

  • 남춘우
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 1995
  • MESFETs of the Ti/Au and Ti/Pd/Au gate were fabricated on n-type GaAs. Interdiffusion at Schottky interfaces, Schottky contact properties, and MESFET characteristics with heat treatment were investigated. Ti of Ti/Au contact and Pd of Ti/Pd/Au contact acted as a barrier metal against interdiffusion of Au at >$220^{\circ}C$. Pd of Ti/Pd/Au contact acted as a barrier metal even at >$360^{\circ}C$, however, Ti of Ti/Au contact promoted interdiffusion of Au instead of role of barrier metal. As the heat treatment temperature increases, in the case of both contact, saturated drain current and pinch off voltage decreased, open channel resistance increased, and degree of parameter variation in Ti/Au gate was higher than in Ti/Pd/Au gate at >$360^{\circ}C$ Schottky barrier height of Ti/Au and Ti/Pd/Au contacts was 0.69eV and 0.68eV in the as-deposited state, respectively, and Fermi level was pinned in the vicinity of 1/2Eg. As the heat treatment temperature increases, barrier height of Ti/Pd/Au contact increased, however, decreased at >$360^{\circ}C$ in the case of Ti/Au contact. Ideality factor of Ti/Au contact was nearly constant regardless of heat treatment, however, increased at >$360^{\circ}C$ in the case of Ti/Au contact. From the results above, Ti/Pd/Au was stable gate metal than Ti/Au.

  • PDF

Implementation of Active Noise Barriers Using Multiple Channel LMS Algorithms (다중채널 LMS 알고리즘을 이용한 능동방음벽 구현)

  • 남현도;서성대
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.147-153
    • /
    • 2003
  • In this paper, implementation of active noise barriers(ANB) to attenuate exterior noise which is propagated through open windows is presented. The leaky multiple channel LMS algorithms are used for adaptive filters tc improve the convergence property, and a new type of the active noise barrier is proposed. The attenuation effects of conventional active noise control(ANC) systems using leaky multiple channel LMS algorithms and the proposed system are compared by experiments using a TMS320C33 digital signal processor. Noise attenuation levels at the points of error microphones are similar for both systems, but average noise attenuation effects of the proposed system for an entire space of an experimental enclosure are much better than conventional ANC systems.

Analysis of Subthreshold Characteristics for Double Gate MOSFET using Impact Factor based on Scaling Theory (스켈링이론에 가중치를 적용한 DGMOSFET의 문턱전압이하 특성 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2015-2020
    • /
    • 2012
  • The subthreshold characteristics has been analyzed to investigate the effect of two gate in Double Gate MOSFET using impact factor based on scaling theory. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. The potential distribution was used to investigate the short channel effects such as threshold voltage roll-off, subthreshold swings and drain induced barrier lowering by varying impact factor for scaling factor. The impact factor of 0.1~1.0 for channel length and 1.0~2.0 for channel thickness are used to fit structural feature of DGMOSFET. The simulation result showed that the subthreshold swings are mostly effected by impact factor but are nearly constant for scaling factors. And threshold voltage roll-off and drain induced barrier lowering are also effected by both impact factor and scaling factor.

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

Interface Trap Effects on the Output Characteristics of GaN Schottky Barrier MOSFET (GaN Schottky Barrier MOSFET의 출력 전류에 대한 계면 트랩의 영향)

  • Park, Byeong-Jun;Kim, Han-Sol;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.271-277
    • /
    • 2022
  • We analyzed the effects of the interface trap on the output characteristics of an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET based on the Nit distribution using TCAD simulation. As interface trap number density (Nit) increased, the threshold voltage increased while the drain current density decreased. Under Nit=5.0×1010 cm-2 condition, the threshold voltage was 3.2 V for VDS=1 V, and the drain current density reduced to 2.4 mA/mm relative to the non-trap condition. Regardless of the Nit distribution type, there was an increase in the subthreshold swing (SS) following an increase in Nit. Under U-shaped Nit distribution, it was confirmed that the SS varied depending on the gate voltage. The interface fixed charge (Qf) caused an shift in the threshold voltage and increased the off-state current collectively with the surface trap. In summary, GaN SB-MOSFET can be a building block for high power UV optoelectronic circuit provided the surface state is significantly reduced.

3-Dimensional Numerical Analysis of Deep Depletion Buried Channel MOSFETs and CCDs

  • Kim Man-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.396-405
    • /
    • 2006
  • The visual analysis of buried channel (Be) devices such as buried channel MOSFETs and CCDs (Charge Coupled Devices) is investigated to give better understanding and insight for their electrical behaviours using a 3-dimensional (3-D) numerical simulation. This paper clearly demonstrates the capability of the numerical simulation of 'EVEREST' for characterising the analysis of a depletion mode MOSFET and BC CCD, which is a simulation software package of the semiconductor device. The inverse threshold and punch-through voltages obtained from the simulations showed an excellent agreement with those from the measurement involving errors of within approximately 1.8% and 6%, respectively, leading to the channel implanted doping profile of only approximately $4{\sim}5%$ error. For simulation of a buried channel CCD an advanced adaptive discretising technique was used to provide more accurate analysis for the potential barrier height between two channels and depletion depth of a deep depletion CCD, thereby reducing the CPU running time and computer storage requirements. The simulated result for the depletion depth also showed good agreement with the measurement. Thus, the results obtained from this simulation can be employed as the input data of a circuit simulator.

Dual-Gate Surface Channel 0.1${\mu}{\textrm}{m}$ CMOSFETs

  • Kwon, Hyouk-Man;Lee, Yeong-Taek;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.261-266
    • /
    • 1998
  • This paper describes the fabrication and characterization of dual-polysilicon gated surface channel 0.1$\mu\textrm{m}$ CMOSFETs using BF2 and arsenic as channel dopants. We have used and LDD structure and 40${\AA}$ gate oxide as an insulator. To suppress short channel effects down to 0.1$\mu\textrm{m}$ channel length, shallow source/drain extensions implemented by low energy implantation and SSR(Super Steep Retrograde) channel structure were used. The threshold voltages of fabricated CMOSFETs are 0.6V. The maximum transconductance of nMOSFET is 315${\mu}$S/$\mu\textrm{m}$, and that of pMOSFET is 156 ${\mu}$S/$\mu\textrm{m}$. The drain saturation current of 418 ${\mu}$A/$\mu\textrm{m}$, 187${\mu}$A/$\mu\textrm{m}$ are obtained. Subthreshold swing is 85mV/dec and 88mV/dec, respectively. DIBL(Drain Induced Barrier Lowering) is below 100mV. In the device with 2000${\AA}$ thick gate polysilicon, depletion in polysilicon near the gate oxide results in an increase of equivalent gate oxide thickness and degradation of device characteristics. The gate delay time is measured to be 336psec at operation voltage of 2V.

  • PDF

The Electrical Properties of GaN Individual Nanorod Devices by Wet-etching of the Nanorod Surface and Annealing Treatment (표면 습식 식각 및 열처리에 따른 GaN 단일 나노로드 소자의 전기적 특성변화)

  • Ji, Hyun-Jin;Choi, Jae-Wan;Kim, Gyu-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-155
    • /
    • 2011
  • Even though nano-scale materials were very advantageous for various applications, there are still problems to be solved such as the stabilization of surface state and realization of low contact resistances between a semiconducting nanowire and electrodes in nano-electronics. It is well known that the effects of contacts barrier between nano-channel and metal electrodes were dominant in carrier transportation in individual nano-electronics. In this report, it was investigated the electrical properties of GaN nanorod devices after chemical etching and rapid thermal annealing for making good contacts. After KOH wet-etching of the contact area the devices showed better electrical performance compared with non-treated GaN individual devices but still didn't have linear voltage-current characteristics. The shape of voltage-current properties of GaN devices were improved remarkably after rapid thermal annealing as showing Ohmic behaviors with further bigger conductivities. Even though chemical etching of the nanorod surfaces could cause scattering of carriers, in here it was shown that the most important and dominant factor in carrier transport of nano-electronics was realization of low contact barrier between nano-channel and metal electrodes surely.

Electrical spin injection and detection in epitaxially grown Fe/GaAs (001) hybrid structure (에피성장된 Fe/GaAs (001) 적층구조에서의 스핀 주입 및 검출)

  • Lee, Tae-Hwan;Koo, Hyun-Cheol;Kim, Kyung-Ho;Kim, Hyung-Jun;Han, Suk-Hee;Lim, Sang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.357-357
    • /
    • 2008
  • Spin injection experiment is conducted in epitaxially grown Fe/GaAs hybrid structure. For the formation of Schottky tunnel barrier between Fe and GaAs layers, highly n-doped GaAs layers are grown after n-doped channel layer. A non-local measurement, a voltage measurement probes do not contain a charge current path, is used for detecting only the chemical potential differences by the spin transport. As a result, the dips that are nicely matched with antiparallel region are obtained.

  • PDF