• Title/Summary/Keyword: bounded operator

Search Result 279, Processing Time 0.024 seconds

A Note on the Pettis Integral and the Bourgain Property

  • Lim, Jong Sul;Eun, Gwang Sik;Yoon, Ju Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.159-165
    • /
    • 1992
  • In 1986, R. Huff [3] showed that a Dunford integrable function is Pettis integrable if and only if T : $X^*{\rightarrow}L_1(\mu)$ is weakly compact operator and {$T(K(F,\varepsilon))|F{\subset}X$, F : finite and ${\varepsilon}$ > 0} = {0}. In this paper, we introduce the notion of Bourgain property of real valued functions formulated by J. Bourgain [2]. We show that the class of pettis integrable functions is linear space and if lis bounded function with Bourgain property, then T : $X^{**}{\rightarrow}L_1(\mu)$ by $T(x^{**})=x^{**}f$ is $weak^*$ - to - weak linear operator. Also, if operator T : $L_1(\mu){\rightarrow}X^*$ with Bourgain property, then we show that f is Pettis representable.

  • PDF

A Note on Subnormal and Hyponormal Derivations

  • Lauric, Vasile
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.281-286
    • /
    • 2008
  • In this note we prove that if A and $B^*$ are subnormal operators and is a bounded linear operator such that AX - XB is a Hilbert-Schmidt operator, then f(A)X - Xf(B) is also a Hilbert-Schmidt operator and $${\parallel}f(A)X\;-\;Xf(B){\parallel}_2\;\leq\;L{\parallel}AX\;-\;XB{\parallel}_2$$, for f belonging to a certain class of functions. Furthermore, we investigate the similar problem in the case that S, T are hyponormal operators and $X\;{\in}\;\cal{L}(\cal{H})$ is such that SX - XT belongs to a norm ideal (J, ${\parallel}\;{\cdot}\;{\parallel}_J$) and prove that f(S)X - Xf(T) $\in$ J and ${\parallel}f(S)X\;-\;Xf(T){\parallel}_J\;\leq\;C{\parallel}SX\;-\;XT{\parallel}_J$, for f in a certain class of functions.

A GENERALIZATION OF STONE'S THEOREM IN HILBERT $C^*$-MODULES

  • Amyari, Maryam;Chakoshi, Mahnaz
    • The Pure and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Stone's theorem states that "A bounded linear operator A is infinitesimal generator of a $C_0$-group of unitary operators on a Hilbert space H if and only if iA is self adjoint". In this paper we establish a generalization of Stone's theorem in the framework of Hilbert $C^*$-modules.

[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES

  • AL-QASSEM HUSSAIN MOHAMMED
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.405-434
    • /
    • 2005
  • We establish appropriate $L^p$ estimates for a class of maximal operators $S_{\Omega}^{(\gamma)}$ on the product space $R^n\;\times\;R^m\;when\;\Omega$ lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;=\;2$, we prove the $L^p\;(2\;{\le}\;P\;<\;\infty)\;boundedness\;of\;S_{\Omega}^{(\gamma)}\;whenever\;\Omega$ is a function in a certain block space $B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ (for some q > 1). Moreover, we show that the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is nearly optimal in the sense that the operator $S_{\Omega}^{(2)}$ may fail to be bounded on $L^2$ if the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is replaced by the weaker conditions $\Omega\;{\in}\;B_q^{(0,\varepsilon)}(S^{n-1}\;\times\;S^{m-1})\;for\;any\;-1\;<\;\varepsilon\;<\;0.$

CERTAIN MAXIMAL OPERATOR AND ITS WEAK TYPE $L^1$($R^n$)-ESTIMATE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.621-626
    • /
    • 2001
  • Let { $A_{>o}$ t= exp(M log t)} $_{t}$ be a dilation group where M is a real n$\times$n matrix whose eigenvalues has strictly positive real part, and let $\rho$be an $A_{t}$ -homogeneous distance function defined on ( $R^{n}$ ). Suppose that K is a function defined on ( $R^{n}$ ) such that /K(x)/$\leq$ (No Abstract.see full/text) for a decreasing function defined on (t) on R+ satisfying where wo(x)=│log│log (x)ll. For f$\in$ $L_{1}$ ( $R^{n}$ ), define f(x)=sup t>0 Kt*f(x)=t-v K(Al/tx) and v is the trace of M. Then we show that \ulcorner is a bounded operator of $L_{-{1}( $R^{n}$ ) into $L^1$,$\infty$( $R^{n}$).

  • PDF

NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES

  • Fatehi, Mahsa;Shaabani, Mahmood Haji
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.599-612
    • /
    • 2017
  • If ${\psi}$ is analytic on the open unit disk $\mathbb{D}$ and ${\varphi}$ is an analytic self-map of $\mathbb{D}$, the weighted composition operator $C_{{\psi},{\varphi}}$ is defined by $C_{{\psi},{\varphi}}f(z)={\psi}(z)f({\varphi}(z))$, when f is analytic on $\mathbb{D}$. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2({\beta})$, we prove that if $C_{{\psi},{\varphi}}$ is cohyponormal on $H^2({\beta})$, then ${\psi}$ never vanishes on $\mathbb{D}$ and ${\varphi}$ is univalent, when ${\psi}{\not\equiv}0$ and ${\varphi}$ is not a constant function. Moreover, for ${\psi}=K_a$, where |a| < 1, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{{\psi},{\varphi}}$. After that, for ${\varphi}$ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{{\psi},{\varphi}}$, when ${\psi}{\not\equiv}0$ and ${\psi}$ is analytic on $\bar{\mathbb{D}}$. Finally, we find all normal weighted composition operators which are bounded below.

POSITIVE INTERPOLATION PROBLEMS IN ALG𝓛

  • KANG, JOO HO;KIM, KI SOOK
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.379-389
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for $i=1,2,{\cdots},n$. In this article, we obtained the following : Let ${\mathcal{H}}$ be a Hilbert space and let ${\mathcal{L}}$ be a commutative subspace lattice on ${\mathcal{H}}$. Let X and Y be operators acting on ${\mathcal{H}}$. Then the following statements are equivalent. (1) There exists an operator A in $Alg{\mathcal{L}}$ such that AX = Y, A is positive and every E in ${\mathcal{L}}$ reduces A. (2) sup ${\frac{{\parallel}{\sum}^n_{i=1}\;E_iY\;f_i{\parallel}}{{\parallel}{\sum}^n_{i=1}\;E_iX\;f_i{\parallel}}}:n{\in}{\mathbb{N}},\;E_i{\in}{\mathcal{L}}$ and $f_i{\in}{\mathcal{H}}<{\infty}$ and <${\sum}^n_{i=1}\;E_iY\;f_i$, ${\sum}^n_{i=1}\;E_iX\;f_i>\;{\geq}0$, $n{\in}{\mathbb{N}}$, $E_i{\in}{\mathcal{L}}$ and $f_i{\in}H$.

  • PDF

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

ON SPACES OF WEAK* TO WEAK CONTINUOUS COMPACT OPERATORS

  • Kim, Ju Myung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.161-173
    • /
    • 2013
  • This paper is concerned with the space $\mathcal{K}_{w^*}(X^*,Y)$ of $weak^*$ to weak continuous compact operators from the dual space $X^*$ of a Banach space X to a Banach space Y. We show that if $X^*$ or $Y^*$ has the Radon-Nikod$\acute{y}$m property, $\mathcal{C}$ is a convex subset of $\mathcal{K}_{w^*}(X^*,Y)$ with $0{\in}\mathcal{C}$ and T is a bounded linear operator from $X^*$ into Y, then $T{\in}\bar{\mathcal{C}}^{{\tau}_{\mathcal{c}}}$ if and only if $T{\in}\bar{\{S{\in}\mathcal{C}:{\parallel}S{\parallel}{\leq}{\parallel}T{\parallel}\}}^{{\tau}_{\mathcal{c}}}$, where ${\tau}_{\mathcal{c}}$ is the topology of uniform convergence on each compact subset of X, moreover, if $T{\in}\mathcal{K}_{w^*}(X^*, Y)$, here $\mathcal{C}$ need not to contain 0, then $T{\in}\bar{\mathcal{C}}^{{\tau}_{\mathcal{c}}}$ if and only if $T{\in}\bar{\mathcal{C}}$ in the topology of the operator norm. Some properties of $\mathcal{K}_{w^*}(X^*,Y)$ are presented.

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.