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Abstract. In this note we prove that if A and B∗ are subnormal operators and X
is a bounded linear operator such that AX − XB is a Hilbert-Schmidt operator, then
f(A)X −Xf(B) is also a Hilbert-Schmidt operator and

||f(A)X −Xf(B)||2 ≤ L ||AX −XB||2,

for f belonging to a certain class of functions. Furthermore, we investigate the similar
problem in the case that S, T are hyponormal operators and X ∈ L(H) is such that
SX −XT belongs to a norm ideal (J, || · ||J) and prove that f(S)X −Xf(T ) ∈ J and

||f(S)X −Xf(T )||J ≤ C ||SX −XT ||J ,

for f in a certain class of functions.

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space, and denote
by L(H) the algebra of all bounded linear operators on H and by C2(H) the Hilbert-
Schmidt class. For T ∈ L(H), σ(T ) denotes the spectrum of T, and for a compact
subset Σ ⊂ C, Lip (Σ) denotes the set of Lipschitz functions on Σ. Furthermore,
Rat(Σ) denotes the algebra of rational functions with poles off Σ, and R(Σ) denotes
the the closure of Rat(Σ) in the supremum norm over Σ.

For operators A,B ∈ L(H), the mapping ∆A,B(X) = AX − XB is called a
(generalized) derivation. If A,B are normal (subnormal or co-subnormal, hyponor-
mal or co-hyponormal) operators, then ∆A,B will be called a normal (subnormal,
hyponormal) derivation, respectively.

Next, we recall some theorems that involve normal derivations, and then we
extend some of these theorems to the case in which A,B∗ are subnormal operators
and to the case in which A = S, B = T are hyponormal operators.

In [7], a generalization of Fuglede-Putnam theorem for normal operators was
proved. For further results concerning normal derivations, the reader can see [8]
and [9].

Theorem A ([7]). If A, B ∈ L(H) are normal operators and X ∈ L(H) satisfies
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AX −XB ∈ C2(H), then A∗X −XB∗ ∈ C2(H) and

||AX −XB||2 = ||A∗X −XB∗||2.

In [3], Furuta extended the above result to subnormal operators.

Theorem B ([3]). If A, B∗ ∈ L(H) are subnormal operators and X ∈ L(H)
satisfies AX −XB ∈ C2(H), then A∗X −XB∗ ∈ C2(H) and

||AX −XB||2 ≥ ||A∗X −XB∗||2.

In his paper [4] Kittaneh proved the following theorem using a famous result of
Voiculescu [6] according to which every normal operator can be written as the sum
of a diagonal operator and a Hilbert-Schmidt operator of arbitrarily small Hilbert-
Schmidt norm.

Theorem C ([4]). Let A, B ∈ L(H) be normal operators and X ∈ L(H) such that
AX −XB ∈ C2(H), and let f ∈ Lip (σ(A) ∪ σ(B)). Then f(A)X −Xf(B) is also
a Hilbert-Schmidt operator and

||f(A)X −Xf(B)||2 ≤ L ||AX −XB||2,

where L is the Lipschitz constant of the function f.

2. Subnormal derivations

In this section we investigate the validity of this inequality in the case that
A, B∗ are subnormal operators, but with a drawback concerning the extent of the
class of functions in which f can run.

The following lemma is elementary and can be easily established making use
of the minimal normal extension of a subnormal operator. Its proof is left for the
reader.

Lemma 1. If S1, S2 ∈ L(H) are subnormal operators, then there exists a Hilbert
space K ⊃ H and normal operators N1, N2 ∈ L(K) that are extensions of S1, S2,
respectively, and σ(Ni) ⊆ σ(Si), i = 1, 2.

For a subnormal operator S ∈ L(H) and a function f ∈ R(σ(S)), one can
associate an operator f(S) ∈ L(H) as follows. Let rn ∈ Rat(σ(S)), n ∈ N, such
that

||f − rn||σ(S),∞ → 0, as n →∞,

and let NS ∈ L(K), where K ⊃ H, be the minimal normal extension of S. Since
σ(NS) ⊆ σ(S), we have

rn(NS) =
(

rn(S) S′12
0 S′22

)
,
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and rn(NS) → f(NS) in the operator norm of L(K). Therefore rn(S) converges
in the operator norm of L(H) to an operator that will be denoted by f(S). It is
obvious that this operator does not depend on the sequence {rn}. In a similar way,
for f ∈ R(σ(T )), one can define f(T ), when T ∗ ∈ L(H) is a subnormal operator.

Theorem 2. Let A, B∗ ∈ L(H) be subnormal operators and X ∈ L(H) such that
AX − XB ∈ C2(H), and let Σ = σ(A) ∪ σ(B) and f ∈ Lip (Σ) ∩ R(Σ). Then
f(A)X −Xf(B) is also a Hilbert-Schmidt operator and

||f(A)X −Xf(B)||2 ≤ L ||AX −XB||2,

where L is the Lipschitz constant of the function f.

Proof. For subnormal operators A, B∗ ∈ L(H), according to previous lemma, there
exists a Hilbert space K ⊃ H and there are some normal operators NA, NB∗ ∈ L(K)
such that relative to the decomposition of K = H⊕H⊥, we have

NA =
(

A A12

0 A22

)
, NB∗ =

(
B∗ B12

0 B22

)
,

and σ(NA) ⊆ σ(A), σ(NB∗) ⊆ σ(B∗).
If we put X̃ = X⊕0 on H⊕H⊥, then we have NA X̃−X̃ N∗

B∗ = (AX−XB)⊕0,
and therefore NA X̃ − X̃ N∗

B∗ ∈ C2(K).
For r ∈ Rat(Σ), where Σ = σ(A) ∪ σ(B), a simple calculation shows that

(1) r(NA) =
(

r(A) A′12
0 A′22

)
and r(N∗

B∗) =
(

r(B) 0
B′

21 B′
22

)
.

Thus, if f ∈ Lip (Σ) ∩ R(Σ), using a limiting argument, one can see that f(NA)
and f(N∗

B∗) have similar matrix representation as in (1), but with f replacing r.
According to Theorem C,

f(NA)X̃ − X̃f(N∗
B∗) ∈ C2(K)

and
||f(NA)X̃ − X̃f(N∗

B∗)||2 ≤ L ||NAX̃ − X̃N∗
B∗ ||2.

Since f(NA)X̃ − X̃f(N∗
B∗) = (f(A)X −Xf(B))⊕ 0, the proof is finished. �

Corollary 3. Let A, B∗ ∈ L(H) be subnormal operators and X ∈ L(H) such that
AX −XB ∈ C2(H), and let Σ = σ(A) ∪ σ(B) and f ∈ Lip (Σ) ∩R(Σ). Then

||f(A)∗X −Xf(B)∗||2 ≤ ||f(A)X −Xf(B)||2,

and thus
||f(A)∗X −Xf(B)∗||2 ≤ L||AX −XB||2,

where L is the Lipschitz constant of the function f.
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Proof. The first inequality is a consequence of Theorem B after observing that f(A)
and f(B)∗ are subnormal operators. The second inequality follows from Theorem
2. �

3. Hyponormal derivations

In this section we approach the same problem, but in the case in which A =
S, B = T are hyponormal operators and the Hilbert-Schmidt class replaced with
an arbitrary norm ideal.

For a hyponormal operator T ∈ L(H), the analytic functional calculus can be
extended to a class Aα(σ(T )) of “pseudo-analytic” functions on σ(T ) that satisfy a
certain growth condition at the boundary.

The extension of the analytic functional calculus for a hyponormal operator was
introduced by Dynkin (cf. [1], [2]) and it also can be found in [5].

We briefly review the definition and the main tools that are necessary. Let Σ
be a perfect compact set of the complex plane and let α be a positive non-integer
with k its integer part, [α]. The class Aα(Σ) is defined as the set of (k + 1)-tuples
of continuous functions on Σ, (f0, · · · , fk) : Σ → Ck+1 that are related by

fj(z) = fj(z0) +
fj+1(z0)

1!
(z − z0) + · · ·+ fk(z0)

(k − j)!
(z − z0)k−j + Rj(z0, z),

and

(2) |Rj(z0, z)| ≤ Cj |z − z0|α−j ,

for j = 0, · · · , k and z, z0 ∈ Σ. Since Σ is a perfect set,

fj(z) = lim
z→z0

fj−1(z)− fj−1(z0)
z − z0

, j = 0, · · · , k − 1,

and thus the (k + 1)-tuple depends only on f0. The space Aα(Σ) endowed with the
maximum of the smallest constants that satisfy (2) plus the supremum norm on Σ
of f0 becomes a unital Banach algebra and is a closed subalgebra of Lip (α, Σ), the
algebra of Lipschitz functions of order α.

Theorem D ([2]). Let Σ be a perfect compact set, f ∈ C(Σ), and α a positive
non-integer. The following are equivalent:

(a) f ∈ Aα(Σ);

(b) f has an extension F ∈ C1(C \Σ) with | ∂F (z)| ≤ C · dist(z,Σ)α−1, z /∈ Σ;

(c) There exists φ ∈ C0(C) such that

f(z) =
∫

φ(w)
w − z

dµ(w), z ∈ Σ,

and |φ(w)| ≤ C0 ·||f ||Aα(Σ) ·dist(w,Σ)α−1, w ∈ C, where µ is planar Lebesgue
measure and C0 is a constant that does not depend on f.
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If T ∈ L(H) is a hyponormal operator, then ||T || = ||T ||σ, where ||T ||σ denotes
the spectral radius of T, that is →

z∈σ(T )
sup|z|. It is well known that if z /∈ σ(T ), then

(z − T )−1 is also hyponormal and thus

(3) ||(z − T )−1|| = 1
dist(z, σ(T ))

.

Thus, for a hyponormal operator T whose spectrum σ(T ) is a perfect set and for a
function f ∈ Aα(σ(T )) with α > 2, one can associate an operator defined by∫

φ(w)(w − T )−1 dµ(w),

that will be denoted by f(T ). The above integral does not depend on φ, that is
the definition of f(T ) is not ambiguous, and the mapping φ 7→ f(T ) acting from
Aα(σ(T )) into L(H) is a continuous, unital morphism of Banach algebras, and which
extends the Riesz-Dunford calculus.

Let (J, || · ||J) be a norm ideal, that is, a proper two-sided ideal J of L(H)
with a norm || · ||J that satisfies: (J, || · ||J) is a Banach space and ||AXB||J ≤
||A|| ||B|| ||X||J , for all X ∈ J and any A, B ∈ L(H). In particular, the Shatten-
von Neumann p-classes, Cp(H), for p ≥ 1, are instances of norm ideals.

Theorem 4. Let (J, || · ||J) be a norm ideal, let S, T ∈ L(H) be hyponormal
operators for which both σ(S) and σ(T ) are perfect sets, let f belong to Aα(Σ) with
α > 3 and Σ = σ(S) ∪ σ(T ), and let X ∈ L(H) such that SX − XT ∈ J. Then
f(S)X −Xf(T ) ∈ J and

||f(S)X −Xf(T )||J ≤ C1 · ||f ||Aα(Σ) · ||SX −XT ||J ,

where C1 is a constant that depends on Σ but it does not depend on f.

Proof. For f ∈ Aα(Σ), according to Theorem D, there exists φ ∈ C0(C) such that

f(z) =
∫

φ(w)
w − z

dµ(w), z ∈ Σ,

and
|φ(w)| ≤ C0 · ||f ||Aα(Σ) · dist(w,Σ)α−1, w ∈ C.

Therefore

(4) f(S)X −Xf(T ) =
∫

φ(w)[(w − S)−1X −X(w − T )−1] dµ(w).

The domain of integration is supp(φ), which is a compact set that has in common
with Σ only possibly boundary points ofΣ. For w ∈ supp(φ) ∩ (C \ Σ),

(w − S)−1X −X(w − T )−1

= (w − S)−1[X(w − T )− (w − S)X](w − T )−1

= (w − S)−1[SX −XT ](w − T )−1 ∈ J,
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and, according to (3),

||(w − S)−1X −X(w − T )−1||J
≤ dist(w, σ(S))−1 · dist(w, σ(T ))−1 · ||SX −XT ||J
≤ C ′ · dist(w,Σ)−2 · ||SX −XT ||J ,

where C ′ is a constant that depends on Σ. Therefore the integrant in (4) belongs
to the norm ideal J and

||φ(w)(w−S)−1X−X(w−T )−1||J ≤ C0 ·C ′ · ||f ||Aα(Σ) ·dist(w,Σ)α−3||SX−XT ||J ,

for w ∈ supp(φ)∩ (C \Σ). After integration one obtains the desired conclusion of
the theorem. �
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