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ON SPACES OF WEAK∗ TO WEAK CONTINUOUS

COMPACT OPERATORS

Ju Myung Kim

Abstract. This paper is concerned with the space Kw
∗ (X∗, Y ) of weak∗

to weak continuous compact operators from the dual space X∗ of a Ba-
nach space X to a Banach space Y . We show that if X∗ or Y ∗ has the
Radon-Nikodým property, C is a convex subset of Kw

∗ (X∗, Y ) with 0 ∈ C

and T is a bounded linear operator from X∗ into Y , then T ∈ C
τc if and

only if T ∈ {S ∈ C : ‖S‖ ≤ ‖T‖}
τc
, where τc is the topology of uniform

convergence on each compact subset of X, moreover, if T ∈ Kw
∗ (X∗, Y ),

here C need not to contain 0, then T ∈ C
τc if and only if T ∈ C in

the topology of the operator norm. Some properties of Kw
∗ (X∗, Y ) are

presented.

1. Introduction and the main result

Representations of dual spaces of operator spaces provide a useful tool to
study approximation properties of operators. Grothendieck [8] established a
representation of the dual space of L(X,Y ), the space of bounded linear op-
erators between Banach spaces X and Y , when endowed with the topology
τc of uniform convergence on each compact subset of X and the represen-
tation was applied to study the approximation property. A Banach space
X is said to have the approximation property (AP) if the identity opera-

tor idX ∈ F(X,X)
τc
, where F(X,X) is the space of finite rank operators

on X , and we say that X has the metric approximation property (MAP) if

idX ∈ {T ∈ F(X,X) : ‖T ‖ ≤ 1}
τc
. The AP is formally weaker than the MAP,

in fact Figiel and Johnson [6] showed that the AP is strictly weaker than the
MAP, more precisely, they constructed a separable Banach space having the
AP but failing to have the MAP. Grothendieck [8] applied the representation of
the dual space of (L(X,Y ), τc) to show that for separable dual spaces, the AP
and MAP are equivalent. But it is a long-standing famous problem whether
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the AP and MAP are equivalent for general dual spaces (cf. [2, Problem 3.8]).
The main purpose of the paper is to establish an approximation theorem in
Kw∗(X∗, Y ), the space of weak∗ to weak continuous compact operators from
X∗ to Y , using the bidual space of Kw∗(X∗, Y ) endowed with the topology of
the operator norm. The main result is originated from the following result of
Godefroy and Saphar [7].

Theorem 1.1 ([7, Theorem 1.5]). Suppose that X∗ or Y ∗∗ has the Radon-

Nikodým property. Let C be a convex subset of Kw∗(X∗, Y ∗) and let T ∈

L(X∗, Y ∗). Then T ∈ C
τc

if and only if for every ε > 0,

T ∈ {S ∈ C : ‖S‖ < ‖T ‖+ ε}
τc
.

Note that the above mentioned passage from the AP to the MAP for sep-
arable dual spaces easily follows from Theorem 1.1. Recently, Choi and Kim
[3] used a representation of the dual space of Kw∗(X∗, Y ), endowed with the
topology of the operator norm, to obtain the following.

Theorem 1.2 ([3, Theorem 2.3]). Suppose that X∗ or Y ∗ has the Radon-

Nikodým property. Let Y be a subspace of Kw∗(X∗, Y ) and let T ∈ L(X∗, Y ).

Then T ∈ Y
τc

if and only if T ∈ {S ∈ Y : ‖S‖ ≤ ‖T ‖}
τc
.

In this paper, we adjust arguments of Feder, Godefroy and Saphar ([5, The-
orem 1], [7, Theorem 1.5]) to extend Theorem 1.1:

Theorem 1.3. Suppose that X∗ or Y ∗ has the Radon-Nikodým property. Let

C be a convex subset of Kw∗(X∗, Y ) and let T ∈ L(X∗, Y ). Then T ∈ C
τc

if

and only if for every ε > 0, T ∈ {S ∈ C : ‖S‖ < ‖T ‖+ ε}
τc
.

The following corollary extends Theorem 1.2.

Corollary 1.4. Suppose that X∗ or Y ∗ has the Radon-Nikodým property. Let

C be a convex subset of Kw∗(X∗, Y ) with 0 ∈ C and let T ∈ L(X∗, Y ). Then

T ∈ C
τc

if and only if T ∈ {S ∈ C : ‖S‖ ≤ ‖T ‖}
τc
.

Proof. Suppose T ∈ C
τc
. Let K be a compact subset of X∗ and let ε > 0.

Choose δ > 0 so that (δ/(‖T ‖+δ)) supx∗∈K ‖Tx∗‖ < ε/2. Then by Theorem 1.3
there exists an S ∈ {S ∈ C : ‖S‖ < ‖T ‖+ δ} such that supx∗∈K ‖Sx∗−Tx∗‖ <
ε/2. Consider (‖T ‖/(‖T ‖+ δ))S ∈ C with ‖(‖T ‖/(‖T ‖+ δ))S‖ < ‖T ‖. Then

sup
x∗∈K

∥∥∥
‖T ‖

‖T ‖+ δ
Sx∗ − Tx∗

∥∥∥

≤
‖T ‖

‖T ‖+ δ
sup
x∗∈K

‖Sx∗ − Tx∗‖+
δ

‖T ‖+ δ
sup
x∗∈K

‖Tx∗‖ < ε.

Hence T ∈ {S ∈ C : ‖S‖ ≤ ‖T ‖}
τc
. �

We end the paper by a section collecting some results concerning the space
Kw∗(X∗, Y ). First we give a simple characterization of elements in Kw∗(X∗, Y )



WEAK∗ TO WEAK CONTINUOUS COMPACT OPERATORS 163

[Proposition 3.1]. Then we describe Kw∗(X∗, Y )∗ in general and look at the
particular case when X∗ is separable. We end the section by showing how one
can simplify the proof of a factorization result for Kw∗(X∗, Y ) from [1] and
[14]. We use standard Banach space notation as can be found e.g. in [13].

2. A representation of the bidual space of Kw
∗(X∗, Y ) and a proof

of Theorem 1.3

Godefroy and Saphar [7, Proposition 1.1] established a representation of
K(X,Y )∗∗ under the assumption that X∗∗ or Y ∗ has the RNP. In this section,
we adopt the factorization argument of Feder, Godefroy and Saphar [5, 7] to
represent Kw∗(X∗, Y )∗∗ under the assumption that X∗ or Y ∗ has the RNP,
and then the representation will be a main tool of the proof of Theorem 1.3.

For Banach spaces Z and W we denote the projective and injective tensor
product by Z ⊗π W and Z ⊗εW , respectively (cf. see [15, Chapters 2 and 3]).
Recall that L(Z,W ∗) is isometrically isomorphic to (Z ⊗π W )∗ and that for a
net (Tα) in L(Z,W ∗) and T ∈ L(Z,W ∗)

Tα
w∗

−→ T if and only if
∑

n

(Tαzn)(wn) −→
∑

n

(Tzn)(wn)

for every (zn) in Z and (wn) in W with
∑

n ‖zn‖‖wn‖ <∞ (see [15, p. 24]).
We now have:

Theorem 2.1. Suppose that X∗ or Y ∗ has the Radon-Nikodým property. Then

there exists a w∗ to w∗ homeomorphic linear isometry Φ from K∗
w∗(X∗, Y )

w∗

(in (L(Y ∗, X∗∗), w∗)) onto Kw∗(X∗, Y )∗∗ such that

Φ(K∗
w∗(X∗, Y )) = j(Kw∗(X∗, Y )),

where K∗
w∗(X∗, Y ) = {T ∗ : T ∈ Kw∗(X∗, Y )} and j : Kw∗(X∗, Y ) → Kw∗(X∗,

Y )∗∗ is the natural isometry.

Proof. Suppose that X∗ has the Radon-Nikodým property. We define the map
V : Y ∗ ⊗π X

∗ → Kw∗(X∗, Y )∗ by

V v(T ) =
∑

n

y∗n(Tx
∗
n)

for v =
∑

n y
∗
n ⊗ x∗n ∈ Y ∗ ⊗π X

∗. Then V is well defined, linear and ‖V ‖ ≤ 1.
First we use the proof of [5, Theorem 1] to show that V is a quotient map and so
V ∗ is an isometry. Let the map i : Y → l∞(BY ∗) be defined by i(y)(y∗) = y∗(y)
for every y∗ ∈ BY ∗ . Then i is an isometry and so the map J1 : Kw∗(X∗, Y ) →
Kw∗(X∗, l∞(BY ∗)) defined by J1(T ) = iT is an isometry. Since l∞(BY ∗) has
the approximation property, Kw∗(X∗, l∞(BY ∗)) is isometrically isomorphic to
X ⊗ε l

∞(BY ∗) by the isometry J2.

Kw∗(X∗, Y )
J1−→ Kw∗(X∗, l∞(BY ∗))

J2−→ X ⊗ε l
∞(BY ∗).
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Since l∞(BY ∗)∗ has the approximation property and X∗ has the Radon-Niko-
dým property, l∞(BY ∗)∗⊗πX

∗ is isometrically isomorphic to (X⊗ε l
∞(BY ∗))∗

by the isometry J3 (see [15, Theorem 5.33]).

l∞(BY ∗)∗ ⊗π X
∗ J3−→ (X ⊗ε l

∞(BY ∗))∗
(J2J1)

∗

−→ Kw∗(X∗, Y )∗.

Let J = (J2J1)
∗J3. We show that the following diagram is commutative:

l∞(BY ∗)∗ ⊗π X
∗

J ((RR
RR

RR
RR

RR
RR

R

i∗⊗idX∗ // Y ∗ ⊗π X
∗

Vwwooo
oo
oo
oo
oo
o

Kw∗(X∗, Y )∗

Let µ ∈ l∞(BY ∗)∗, x∗ ∈ X∗ and T ∈ Kw∗(X∗, Y ). Then

J(µ⊗ x∗)(T ) = (J2J1)
∗J3(µ⊗ x∗)(T )

= J3(µ⊗ x∗)(J2J1(T ))

= J3(µ⊗ x∗)(J2(iT ))

= µ(iTx∗)

= i∗(µ)(Tx∗)

= V (i∗(µ)⊗ x∗)(T )

= V (i∗ ⊗ idX∗)(µ⊗ x∗)(T ).

It follows that the diagram is commutative. Now let ϕ ∈ Kw∗(X∗, Y )∗. Since
J2J1 is an isometry, we see that there exists a u ∈ l∞(BY ∗)∗ ⊗π X

∗ so that
J(u) = ϕ and ‖u‖π = ‖ϕ‖. Let v = i∗ ⊗ idX∗(u). Then by the above diagram
ϕ = V (v) and we have

‖ϕ‖ ≤ ‖V ‖‖i∗ ⊗ idX∗(u)‖π ≤ ‖i∗‖‖idX∗‖‖u‖π ≤ ‖u‖π = ‖ϕ‖.

Thus ‖ϕ‖ = ‖v‖π and so V is a quotient map.
Now we use the proof of [7, Proposition 1.1]. Let the mapW : Kw∗(X∗, Y ) →

L(Y ∗, X∗∗) be defined by W (T ) = T ∗, let i1 : L(Y ∗, X∗∗) → (Y ∗ ⊗π X
∗)∗ be

the isometry and let i2 : Y ∗ ⊗π X
∗ → (Y ∗ ⊗π X

∗)∗∗ be the natural isometry.

Y ∗ ⊗π X
∗ V //

i2

��

Kw∗(X∗, Y )∗

(Y ∗ ⊗π X
∗)∗∗

i∗
1

// L(Y ∗, X∗∗)∗

W∗

OO

Then for every v =
∑

n y
∗
n ⊗ x∗n ∈ Y ∗ ⊗π X

∗ and T ∈ Kw∗(X∗, Y ),

W ∗i∗1i2(v)(T ) = i2(v)i1W (T ) = i1W (T )(v)

= i1(T
∗)(v) =

∑

n

(T ∗y∗n)(x
∗
n) =

∑

n

y∗n(Tx
∗
n) = (V v)(T ).
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Thus W ∗i∗1i2 = V . Now consider the following diagram:

Kw∗(X∗, Y )
W //

j

��

L(Y ∗, X∗∗)

Kw∗(X∗, Y )∗∗
V ∗

// (Y ∗ ⊗π X
∗)∗

i
−1

1

OO

Let i3 : L(Y ∗, X∗∗) → L(Y ∗, X∗∗)∗∗ be the natural isometry. Then for every
T ∈ Kw∗(X∗, Y ) and v ∈ Y ∗ ⊗π X

∗,

i1(i
−1
1 V ∗j(T ))(v) = (W ∗i∗1i2)

∗j(T )(v)

= (i∗1i2)
∗W ∗∗j(T )(v)

=W ∗∗j(T )i∗1i2(v)

= i∗1i2(v)i
−1
3 W ∗∗j(T )

= i∗1i2(v)(W (T ))

= i2(v)i1(W (T ))

= i1(W (T ))(v).

Thus the above diagram is commutative and so i−1
1 V ∗j(T ) = T ∗ for every

T ∈ Kw∗(X∗, Y ). Recall that, if the range of an adjoint operator is norm
closed, then the range is w∗ closed. Thus we have

i−1
1 V ∗(Kw∗(X∗, Y )∗∗) = i−1

1 V ∗(j(Kw∗(X∗, Y )))
w∗

= K∗
w∗(X∗, Y )

w∗

.

We have shown that i−1
1 V ∗ : Kw∗(X∗, Y )∗∗ → K∗

w∗(X∗, Y )
w∗

is a surjective
linear isometry. Put

Φ = (i−1
1 V ∗)−1 : K∗

w∗(X∗, Y )
w∗

→ Kw∗(X∗, Y )∗∗.

Note that if an adjoint operator is an isomorphism, then the inverse of this
adjoint operator is w∗ to w∗ continuous on its range. Hence Φ is a w∗ to w∗

homeomorphic linear isometry and for every T ∈ Kw∗(X∗, Y )

Φ(T ∗) = (i−1
1 V ∗)−1(T ∗) = (i−1

1 V ∗)−1i−1
1 V ∗j(T ) = j(T ).

This completes the proof for the case thatX∗ has the Radon-Nikodým property.
Now suppose that Y ∗ has the Radon-Nikodým property. Define the map

ψ : L(Y ∗, X∗∗) → L(X∗, Y ∗∗) by ψ(T ) = T ∗jX∗ . Then it is easy to check that
ψ is a surjective linear isometry with the inverse ψ−1(R) = R∗jY ∗ . Let (Tα) be

a net in L(Y ∗, X∗∗) and T ∈ L(Y ∗, X∗∗) with Tα
w∗

−→ T . Let v =
∑

n x
∗
n⊗y

∗
n ∈

X∗ ⊗π Y
∗. Since

∑
n y

∗
n ⊗ x∗n ∈ Y ∗ ⊗π X

∗,
∑

n

(Tαy
∗
n)(x

∗
n) −→

∑

n

(Ty∗n)(x
∗
n).
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Thus

ψ(Tα)(v) =
∑

n

(T ∗
αjX∗x∗n)(y

∗
n) =

∑

n

jX∗(x∗n)(Tαy
∗
n)

=
∑

n

(Tαy
∗
n)(x

∗
n) −→

∑

n

(Ty∗n)(x
∗
n) = ψ(T )(v).

Hence ψ is w∗ to w∗ continuous and, similarly, so is ψ−1. Let S ∈ Kw∗(X∗, Y )
and let x∗ ∈ X∗ and y∗ ∈ Y ∗. Then S∗(y∗) = jX(x) for some x ∈ X and so
we have

ψ(S∗)(x∗)(y∗) = S∗∗jX∗(x∗)(y∗) = S∗(y∗)(x∗) = jX(x)(x∗)

= x∗(x) = x∗(j−1
X S∗(y∗)) = (j−1

X S∗)∗(x∗)(y∗).

Thus ψ(S∗) = (j−1
X S∗)∗ ∈ K∗

w∗(Y ∗, X). Similarly, for every U ∈ Kw∗(Y ∗, X)

ψ−1(U∗) = (j−1
Y U∗)∗ ∈ K∗

w∗(X∗, Y ). Therefore ψ(K∗
w∗(X∗, Y )) = K∗

w∗(Y ∗, X)
and so

ψ(K∗
w∗(X∗, Y )

w∗

) = ψ(K∗
w∗(X∗, Y ))

w∗

= K∗
w∗(Y ∗, X)

w∗

.

Since Y ∗ has the Radon-Nikodým property, we can find the map

Ψ : K∗
w∗(Y ∗, X)

w∗

→ Kw∗(Y ∗, X)∗∗

in the first case. Define the map φ : Kw∗(Y ∗, X) → Kw∗(X∗, Y ) by φ(T ) =
j−1
Y T ∗. Then we see that φ is a surjective linear isometry. Then φ∗∗ is a w∗ to
w∗ homeomorphic isometry from Kw∗(Y ∗, X)∗∗ onto Kw∗(X∗, Y )∗∗. Put

Φ = φ∗∗Ψψ : K∗
w∗(X∗, Y )

w∗

−→ Kw∗(X∗, Y )∗∗.

Then Φ is a w∗ to w∗ homeomorphic and surjective linear isometry, and

Φ(K∗
w∗(X∗, Y )) = φ∗∗Ψ(K∗

w∗(Y ∗, X))

= φ∗∗(j(Kw∗(Y ∗, X))) = j(Kw∗(X∗, Y )).
�

Remark 2.2. Suppose that X∗∗ or Y ∗ has the Radon-Nikodým property. Let
i : K(X,Y ) → Kw∗(Y ∗, X∗) be the surjective linear isometry defined by i(T ) =
T ∗. Then i∗∗ : K(X,Y )∗∗ → Kw∗(Y ∗, X∗)∗∗ is a w∗ to w∗ homeomorphic and

surjective isometry. We can find the map Φ : K∗
w∗(Y ∗, X∗)

w∗

→ Kw∗(Y ∗, X∗)∗∗

in Theorem 2.1. Here note that K∗
w∗(Y ∗, X∗) = {T ∗∗ : T ∈ K(X,Y )}. Hence

Φ−1i∗∗ : K(X,Y )∗∗ → K∗
w∗(Y ∗, X∗)

w∗

is a w∗ to w∗ homeomorphic isometry
and Φ−1i∗∗(j(K(X,Y ))) = K∗

w∗(Y ∗, X∗). Consequently Theorem 2.1 extends
[7, Proposition 1.1].

To show Theorem 1.3 we need the following simple but useful lemma which
is contained in the proof of [7, Theorem 1.5]. For the sake of completeness we
provide the concrete proof.
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Lemma 2.3. Let C be a convex subset of a Banach space B and let x∗∗ ∈ B∗∗.

If x∗∗ ∈ jB(C)
w∗

in B∗∗, then for every ε > 0,

x∗∗ ∈ {jB(x) ∈ jB(C) : ‖x‖ < ‖x∗∗‖+ ε}
w∗

.

Moreover, if x∗∗ ∈ jB(B) and x∗∗ ∈ jB(C)
w∗

, then x∗∗ ∈ jB(C) in the topology

of the norm.

Proof. Let ε > 0 and let U be a convex w∗ closed neighborhood of x∗∗. Then
U ∩jB(C) is not empty. Define the map ψ : B∗∗⊕B∗∗ → B∗∗ by ψ(x∗∗1 , x

∗∗
2 ) =

x∗∗1 −x∗∗2 . Then ψ is clearly linear and w∗ to w∗ continuous. Put V = U∩jB(C)

and W = {jB(x) ∈ jB(B) : ‖x‖ < ‖x∗∗‖ + ε/2}. Note that x∗∗ ∈ V
w∗

and

x∗∗ ∈W
w∗

by Goldstine’s theorem. Thus

0 = x∗∗ − x∗∗ = ψ(x∗∗, x∗∗) ∈ ψ(V
w∗

×W
w∗

) = ψ(V ×W
w∗

) ⊂ ψ(V ×W )
w∗

.

Thus there exists a net (jB(xα), jB(yα)) in V ×W so that jB(xα)−jB(yα)
w∗

−→ 0

in B∗∗ and so xα−yα
w

−→ 0 in B. Define the map ψ̃ : B⊕B → B by ψ̃(x1, x2) =

x1 − x2. Then ψ̃(xα, yα)
w

−→ 0 in B and so 0 ∈ ψ̃(j−1
B (V )× j−1

B (W ))
w

=

ψ̃(j−1
B (V )× j−1

B (W )) in the topology of the norm because ψ̃(j−1
B (V )×j−1

B (W ))
is a convex set in B. Thus there exist jB(x1) ∈ V and jB(x2) ∈ W so that
‖x1 − x2‖ < ε/2. Then ‖x1‖ ≤ ‖x2‖ + ‖x1 − x2‖ < ‖x∗∗‖ + ε. We have
shown that jB(x1) ∈ U ∩ {jB(x) ∈ jB(C) : ‖x‖ < ‖x∗∗‖ + ε}. Hence x∗∗ ∈

{jB(x) ∈ jB(C) : ‖x‖ < ‖x∗∗‖+ ε}
w∗

.
The remaining part follows from convexity of C and that jB is w to w∗

homeomorphic from B onto jB(B). �

Grothendieck [8] obtained that the dual space (L(X,Y ), τc)
∗ consists of all

functionals f of the form f(T ) =
∑

n y
∗
n(Txn), where (xn) in X , (y∗n) in

Y ∗, and
∑

n ‖xn‖‖y
∗
n‖ < ∞. The summable weak operator topology (swo)

on L(X,Y ) is the topology induced by (L(X,Y ), τc)
∗ (see [4]). Then, for a net

(Tα) in L(X,Y ) and T ∈ L(X,Y ), Tα
swo

−→ T if and only if
∑

n y
∗
n(Tαxn) −→∑

n y
∗
n(Txn) for every (xn) in X and (y∗n) in Y

∗ with
∑

n ‖xn‖‖y
∗
n‖ <∞, and

C
τc

= C
swo

for every convex subset C of L(X,Y ) (cf. see [4, Proposition 3.6]).
We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose T ∈ C
τc

and let ε > 0. By the above note there
exists a net (Tα) in C such that

∑

n

(T ∗
αy

∗
n)(x

∗
n) =

∑

n

y∗n(Tαx
∗
n) −→

∑

n

y∗n(Tx
∗
n) =

∑

n

(T ∗y∗n)(x
∗
n)

for every (x∗n) in X∗ and (y∗n) in Y ∗ with
∑

n ‖x
∗
n‖‖y

∗
n‖ < ∞. Thus T ∗ ∈

{S∗ : S ∈ C}
w∗

in L(Y ∗, X∗∗). Let Φ : K∗
w∗(X∗, Y )

w∗

→ Kw∗(X∗, Y )∗∗ be the
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map in Theorem 2.1. Then Φ(T ∗) ∈ Φ({S∗ : S ∈ C})
w∗

in Kw∗(X∗, Y )∗∗ and
Φ({S∗ : S ∈ C}) ⊂ j(Kw∗(X∗, Y )). Now by Lemma 2.3,

Φ(T ∗) ∈ {Φ(S∗) ∈ Φ({S∗ : S ∈ C}) : ‖S‖ < ‖Φ(T ∗)‖+ ε}
w∗

.

Thus there exists a net (Sβ) in C so that Φ(S∗
β)

w∗

−→ Φ(T ∗) and ‖Sβ‖ < ‖T ‖+ε

for every β. Then S∗
β

w∗

−→ T ∗ in L(Y ∗, X∗∗), which is equivalent to Sβ
swo

−→ T

in L(X∗, Y ). Hence, by the above note,

T ∈ {S ∈ C : ‖S‖ < ‖T ‖+ ε}
swo

= {S ∈ C : ‖S‖ < ‖T ‖+ ε}
τc
. �

Corollary 2.4. Suppose that X∗ or Y ∗ has the Radon-Nikodým property. Let

C be a convex subset of Kw∗(X∗, Y ) and let T ∈ Kw∗(X∗, Y ). Then T ∈ C
τc

if

and only if T ∈ C in the topology of the operator norm.

Proof. If T ∈ C
τ
, then by the proof of Theorem 1.3, Φ(T ∗) ∈ Φ({S∗ : S ∈ C})

w∗

in Kw∗(X∗, Y )∗∗, Φ({S∗ : S ∈ C}) ⊂ j(Kw∗(X∗, Y )) and Φ(T ∗) ∈ j(Kw∗(X∗,

Y )). By Lemma 2.3 Φ(T ∗) ∈ Φ({S∗ : S ∈ C}). Hence T ∈ C. �

3. Some properties of Kw
∗(X∗, Y )

The operator T =
∑

n xn ⊗ yn with
∑

n ‖xn‖‖yn‖ < ∞ from X∗ to Y is a
simple example of a w∗ to w continuous compact operator because the operator
is a limit of w∗ to w continuous finite rank operators and the space Kw∗(X∗, Y )
is closed in the topology of the operator norm. A Banach space X is reflexive if
and only if the space K(X∗, Y ) of compact operators and Kw∗(X∗, Y ) are the
same. Indeed, if X is nonreflexive, then there exists an x∗∗0 ∈ X∗∗ so that x∗∗0 is
not a w∗ continuous linear functional. Then the operator x∗∗0 (·)y ∈ K(X∗, Y )
for every y ∈ Y but x∗∗0 (·)y 6∈ Kw∗(X∗, Y ). Also K(X,Y ) is isometrically
isomorphic to Kw∗(X∗∗, Y ) by the map T ↔ j−1

Y T ∗∗.
The bw∗ topology is strictly stronger than the w∗ topology (cf. see [13,

Corollary 2.7.7]). But for T ∈ L(X∗, Y ), T is w∗ to w continuous if and only if
T is bw∗ to w continuous. Indeed, if T is bw∗ to w continuous, then for every

net (x∗α) in X
∗ and x∗ ∈ X∗ with x∗α

bw∗

−→ x∗

(T ∗y∗)x∗α = y∗(Tx∗α) −→ y∗(Tx∗) = (T ∗y∗)x∗

for every y∗ ∈ Y ∗, which shows T ∗y∗ ∈ (X∗, bw∗)∗. Since (X∗, bw∗)∗ =
(X∗, w∗)∗ (see [13, Theorem 2.7.8]), T ∗(Y ∗) ⊂ jX(X). Hence T is w∗ to w
continuous because T is w∗ to w continuous if and only if T ∗(Y ∗) ⊂ jX(X).

We now establish some criteria of w∗ to w continuous compact operators.

Proposition 3.1. For T ∈ L(X∗, Y ) the following assertions are equivalent.

(a) T is bw∗ to norm continuous.

(b) T is w∗ to w continuous compact.

(c) T is bw∗ to w continuous compact.

(d) Tx∗α
norm
−→ Tx∗ whenever x∗α

w∗

−→ x∗ in BX∗ .
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Proof. From the above note we only need to show (a)⇒(c)⇒(d)⇒(a).
(a)⇒(c) Let (x∗α) be a net in BX∗ . Then there exists a subnet (x∗β) of (x

∗
α)

and x∗ ∈ BX∗ so that x∗β
bw∗

−→ x∗ because the bw∗ and w∗ topology are the

same on BX∗ (see [13, Theorem 2.7.2]) and BX∗ is w∗ compact. Thus by the
assumption (a)

Tx∗β
norm
−→ Tx∗,

which shows that T (BX∗) is norm compact in Y . Hence T is bw∗ to w contin-
uous compact.

(c)⇒(d) Let (x∗α) be a net in BX∗ and x∗ ∈ BX∗ with x∗α
w∗

−→ x∗. Then

x∗α
bw∗

−→ x∗ and so Tx∗α
w

−→ Tx∗ by the assumption (c). Since the norm closure

T (BX∗) in Y is norm compact, the norm and w topology are the same on

T (BX∗). Hence

Tx∗α
norm
−→ Tx∗.

(d)⇒(a) If Tx∗α
norm
−→ Tx∗ whenever x∗α

w∗

−→ x∗ in BX∗ , then Tx∗α
norm
−→ Tx∗

whenever t > 0 and x∗α
w∗

−→ x∗ in tBX∗ . Therefore T is w∗ to norm continuous
with respect to the relative w∗ topology of tBX∗ whenever t > 0. Let V be a
norm open set in Y . Then for every t > 0, T−1(V ) ∩ tBX∗ is a relatively w∗

open set in tBX∗ . By [13, Corollary 2.7.4] T−1(V ) is a bw∗ open set in X∗.
Hence T is bw∗ to norm continuous. �

Now we summarize some results for the space Kw∗(X∗, Y ). First, we com-
ment on the dual space of Kw∗(X∗, Y ) (see P. Harmand, D. Werner and W.
Werner [9, pp. 265, 266]). We say that a linear functional ϕ on Kw∗(X∗, Y )
is an integral linear functional if there exists a regular Borel measure µ on
BX∗ ×BY ∗ , where BX∗ and BY ∗ are equipped with the w∗ topology, so that

ϕ(T ) =

∫

BX∗×BY ∗

y∗(Tx∗)dµ

for all T ∈ Kw∗(X∗, Y ). We denote the space of integral linear functionals on
Kw∗(X∗, Y ) by Iw∗ and define the norm on Iw∗ by

‖ϕ‖I = inf{‖µ‖ : µ represents ϕ}.

Let C(BX∗×BY ∗) be the Banach space of scalar valued continuous functions
on BX∗ × BY ∗ . Our first application of Proposition 3.1 is for the proof of the
following well-known and very useful observation.

Lemma 3.2. Kw∗(X∗, Y ) is isometrically isomorphic to a subspace of C(BX∗×
BY ∗).

Proof. We consider the map Λ : Kw∗(X∗, Y ) → C(BX∗ ×BY ∗) defined by

Λ(T )(x∗, y∗) = y∗(Tx∗).

From Proposition 3.1(d), it is easy to check that Λ(T ) ∈ C(BX∗ ×BY ∗) for all
T ∈ Kw∗(X∗, Y ) and Λ is a linear isometry. Hence the conclusion follows. �
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We are now ready to represent the dual space of Kw∗(X∗, Y ).

Theorem 3.3. Kw∗(X∗, Y )∗ is isometrically isomorphic to Iw∗.

Proof. If ψ ∈ Kw∗(X∗, Y )∗, then by Lemma 3.2, Hahn-Banach extension and
Riesz representation theorem, there exists a regular Borel measure µ on BX∗ ×
BY ∗ such that

ψ(T ) =

∫

BX∗×BY ∗

y∗(Tx∗)dµ

for all T ∈ Kw∗(X∗, Y ) and ‖ψ‖ = ‖µ‖ and so ‖ψ‖ ≥ ‖ψ‖I . Also for every
such representation ν of ψ, we see ‖ψ‖ ≤ ‖ν‖. Hence ‖ψ‖ = ‖ψ‖I . Since for
every ϕ ∈ Iw∗ clearly ϕ ∈ Kw∗(X∗, Y )∗, the conclusion follows. �

Remark 3.4. Under the assumption that X∗ or Y ∗ has the Radon-Nikodym
property, elements of Kw∗(X∗, Y )∗ can be represented by a series form, more
precisely, for every ϕ ∈ Kw∗(X∗, Y )∗ and ε > 0 there exist (x∗n) in X

∗ and (y∗n)
in Y ∗ with

∑
n ‖x

∗
n‖‖y

∗
n‖ < ‖ϕ‖+ ε such that ϕ(T ) =

∑
n y

∗
n(Tx

∗
n) for all T ∈

Kw∗(X∗, Y ). Indeed, if X∗ or Y ∗ has the Radon-Nikodym property, then the
map V : Y ∗ ⊗π X

∗ → Kw∗(X∗, Y )∗, in the proof of Theorem 2.1, is a quotient
map. Thus for every ϕ ∈ Kw∗(X∗, Y )∗ there exists v =

∑
n y

∗
n⊗x

∗
n ∈ Y ∗⊗πX

∗

with ‖v‖π = ‖ϕ‖ such that ϕ(T ) =
∑

n y
∗
n(Tx

∗
n) for all T ∈ Kw∗(X∗, Y ).

Another proof of this was presented in [3, Theorem 1.2].

We need the following lemma to obtain a more concrete representation of
Kw∗(X∗, Y )∗ than the one in Remark 3.4 when X∗ is separable.

Lemma 3.5 ([12, Lemma 1.e.16]). Let X be a separable Banach space and

ε > 0. Then there exists a sequence (fi)
∞
i=1 of functions on BX so that x =∑∞

i=1 fi(x), for every x ∈ BX , each fi(x) is of the form
∑∞

j=1 χEi,j
(x)xi,j ,

where {Ei,j}
∞
j=1 are disjoint Borel subsets of BX , {xi,j}

∞
j=1 ⊂ BX and

∞∑

i=1

‖fi‖∞ < 1 + ε with ‖fi‖∞ = sup
x

‖fi(x)‖ = sup
j

‖xi,j‖.

We now have:

Corollary 3.6. Suppose that X∗ is separable. If ϕ ∈ Kw∗(X∗, Y )∗, then for

ε > 0 there exist sequences (x∗i,j) in X
∗ and (y∗i,j) in Y

∗ with
∑∞

i=1 supj ‖x
∗
i,j‖ <

1 + ε and
∑∞

j=1 ‖y
∗
i,j‖ ≤ ‖ϕ‖ for every i so that

ϕ(T ) =

∞∑

i=1

∞∑

j=1

y∗i,j(Tx
∗
i,j)

for every T ∈ Kw∗(X∗, Y ).

Proof. Let ϕ ∈ Kw∗(X∗, Y )∗ and let ε > 0. Then by Theorem 3.3 there exists
a regular Borel measure µ on BX∗ ×BY ∗ with ‖ϕ‖ = ‖µ‖ so that

ϕ(T ) =

∫

BX∗×BY ∗

y∗(Tx∗)dµ
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for every T ∈ Kw∗(X∗, Y ). Then by Lemma 3.5, for every T ∈ Kw∗(X∗, Y ),

ϕ(T ) =

∫

BX∗×BY ∗

y∗T
( ∞∑

i=1

fi(x
∗)
)
dµ

=

∞∑

i=1

∫

BX∗×BY ∗

y∗T
( ∞∑

j=1

χEi,j
(x∗)x∗i,j

)
dµ

=

∞∑

i=1

∞∑

j=1

∫

Ei,j×BY ∗

y∗(Tx∗i,j)dµ

=

∞∑

i=1

∞∑

j=1

y∗i,j(Tx
∗
i,j),

where y∗i,j is the functional on Y defined by y∗i,j(y) =
∫
Ei,j×BY ∗

y∗(y)dµ. Since

for every i, j, and y ∈ BY |y∗i,j(y)| ≤
∫
Ei,j×BY ∗

|y∗(y)|d|µ| ≤ |µ|(Ei,j ×

BY ∗), ‖y∗i,j‖ ≤ |µ|(Ei,j × BY ∗) for every i and j. Hence for every i, we have∑∞
j=1 ‖y

∗
i,j‖ ≤ ‖µ‖ = ‖ϕ‖ and

∑∞
i=1 supj ‖x

∗
i,j‖ < 1 + ε. �

Next we present a variant of a result of Kalton [10]. Recall the weak operator

topology (wo) on L(X,Y ). For a net (Tα) in L(X,Y ) and T ∈ L(X,Y ) Tα
wo

−→
T if and only if y∗(Tαx) −→ y∗(Tx) for every x ∈ X and y∗ ∈ Y ∗. The
following are the Kw∗(X∗, Y ) versions of [10, Theorem 1] and [10, Corollary 3],
respectively.

Proposition 3.7. Let A be a subset of Kw∗(X∗, Y ). Then A is wo compact if

and only if A is weakly compact.

Corollary 3.8. Let (Tn) be a sequence in Kw∗(X∗, Y ) and T ∈ Kw∗(X∗, Y ).

Then Tn
wo
−→ T if and only if Tn

weak
−→ T .

Finally we consider a factorization of elements in Kw∗(X∗, Y ).

Lemma 3.9 ([11, Lemma 1.1 and Theorem 2.2]). If T ∈ K(X,Y ), then there

exist a separable reflexive Banach space Z with T (BX)/‖T ‖ ⊂ BZ ⊂ BY ,

S ∈ K(X,Z), and the inclusion map J ∈ K(Z, Y ) such that ‖J‖ = 1, T = JS,
and ‖S‖ = ‖T ‖.

The following theorem is essentially contained in Aron, Lindström, Ruess,
Ryan [1], and Mikkor, Oja [14]. But we use Proposition 3.1 to slightly simplify
the existing proof.

Proposition 3.10. If T ∈ Kw∗(X∗, Y ), then there exist a separable reflexive

Banach space Z, R ∈ Kw∗(X∗, Z∗∗) with ‖R‖ = ‖T ‖, U ∈ Kw∗(Z∗∗, Y ) with

‖U‖ = 1 such that T = UR.

Proof. Let T ∈ Kw∗(X∗, Y ). Then by Lemma 3.9, there exist a separable

reflexive Banach space Z with T (BX∗)/‖T ‖ ⊂ BZ ⊂ BY , S ∈ K(X∗, Z), and
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the inclusion map J ∈ K(Z, Y ) such that ‖J‖ = 1, T = JS, and ‖S‖ = ‖T ‖.
Let R = jZS ∈ K(X∗, Z∗∗) and U = Jj−1

Z ∈ K(Z∗∗, Y ). Then ‖R‖ = ‖T ‖,

‖U‖ = 1, and T = UR. If (x∗α) in BX∗ and x∗ ∈ BX∗ with x∗α
w∗

−→ x∗, then by
Proposition 3.1(d)

Tx∗α
‖·‖Y

−→ Tx∗.

Since (Tx∗α/‖T ‖) and Tx
∗/‖T ‖ in T (BX∗)/‖T ‖, by [11, Lemma 2.1(ii)]

Tx∗α/‖T ‖
‖·‖Z
−→ Tx∗/‖T ‖.

Consequently Tx∗α
‖·‖Z

−→ Tx∗ and so Sx∗α
‖·‖Z

−→ Sx∗ because Sx∗ = Tx∗ for all
x∗ ∈ X∗ (see [11, Theorem 2.2]). Therefore

Rx∗α = jZSx
∗
α

‖·‖Z∗∗

−→ jZSx
∗ = Rx∗.

Hence R ∈ Kw∗(X∗, Z∗∗) by Proposition 3.1(d). Since Z is reflexive, U ∈
Kw∗(Z∗∗, Y ). �
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