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ON SPACES OF WEAK* TO WEAK CONTINUOUS
COMPACT OPERATORS

Ju MyunG Kim

ABSTRACT. This paper is concerned with the space Ky« (X*,Y) of weak*
to weak continuous compact operators from the dual space X* of a Ba-
nach space X to a Banach space Y. We show that if X* or Y* has the
Radon-Nikodym property, C is a convex subset of K« (X*,Y) with 0 € C
and T is a bounded linear operator from X* into Y, then 7' € C ¢ if and
only if T € {S€C:|S|| <|T|}°, where 7 is the topology of uniform
convergence on each compact subset of X, moreover, if T' € K= (X*,Y),
here C need not to contain 0, then T € C'° if and only if T € C in
the topology of the operator norm. Some properties of Iy« (X*,Y) are
presented.

1. Introduction and the main result

Representations of dual spaces of operator spaces provide a useful tool to
study approximation properties of operators. Grothendieck [8] established a
representation of the dual space of £(X,Y), the space of bounded linear op-
erators between Banach spaces X and Y, when endowed with the topology
7. of uniform convergence on each compact subset of X and the represen-
tation was applied to study the approximation property. A Banach space
X is said to have the approximation property (AP) if the identity opera-
tor idx € }“(X,X)TC, where F(X, X) is the space of finite rank operators
on X, and we say that X has the metric approximation property (MAP) if
idxy € {T € F(X,X): [T <1} °. The AP is formally weaker than the MAP,
in fact Figiel and Johnson [6] showed that the AP is strictly weaker than the
MAP, more precisely, they constructed a separable Banach space having the
AP but failing to have the MAP. Grothendieck [8] applied the representation of
the dual space of (L(X,Y), 7.) to show that for separable dual spaces, the AP
and MAP are equivalent. But it is a long-standing famous problem whether
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the AP and MAP are equivalent for general dual spaces (cf. [2, Problem 3.8]).
The main purpose of the paper is to establish an approximation theorem in
K+ (X*,Y), the space of weak* to weak continuous compact operators from
X* to Y, using the bidual space of K« (X*,Y) endowed with the topology of
the operator norm. The main result is originated from the following result of
Godefroy and Saphar [7].

Theorem 1.1 ([7, Theorem 1.5]). Suppose that X* or Y** has the Radon-
Nikodym property. Let C be a conver subset of Kuw«(X*,Y™*) and let T €
L(X*,Y*). Then T € C° if and only if for every e > 0,

Te{SecC:[S[<|T]+e}" .

Note that the above mentioned passage from the AP to the MAP for sep-
arable dual spaces easily follows from Theorem 1.1. Recently, Choi and Kim
[3] used a representation of the dual space of Iy (X*,Y), endowed with the
topology of the operator norm, to obtain the following.

Theorem 1.2 ([3, Theorem 2.3]). Suppose that X* or Y* has the Radon-
Nikodygm property. Let Y be a subspace of Ky« (X*,Y) and let T € L(X*,Y).
Then T €Y if and only if T € {Se€ Y :||S| <|T|} .

In this paper, we adjust arguments of Feder, Godefroy and Saphar ([5, The-
orem 1], [7, Theorem 1.5]) to extend Theorem 1.1:

Theorem 1.3. Suppose that X* or Y* has the Radon-Nikodym property. Let
C be a convex subset of Ky-(X*,Y) and let T € L(X*,Y). Then T € C° if
and only if for everye >0, T € {Se€C: S| < |T|+e} .

The following corollary extends Theorem 1.2.

Corollary 1.4. Suppose that X* or Y* has the Radon-Nikodym property. Let
C be a convex subset of Ky (X*,Y) with 0 € C and let T € L(X*,Y). Then

TeC" ifand only if Te{SeC:[[S[<|T[}".

Proof. Suppose T € C™. Let K be a compact subset of X* and let ¢ > 0.
Choose 0 > 0o that (§/(||T||+9)) sup,«cg [|T2*|| < €/2. Then by Theorem 1.3
there exists an S € {S € C : ||S|| < ||T'||+ 0} such that sup,.cx [|Sz* —Tz*|| <
/2. Consider (|T||/(IT]|+ )8 € C with [|(|T]|/(IT]|+ 6))S]| < |T]. Then

T
sup H 1T s e

< Il sup ||Sx* —Tz*|| + sup [|Ta"|| <e.
T+ seex 1T + 6 arex
Hence T € [S€C: S| < ITT} " O

We end the paper by a section collecting some results concerning the space
K+ (X*,Y). First we give a simple characterization of elements in Ky« (X*,Y))
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[Proposition 3.1]. Then we describe Ky« (X*,Y)* in general and look at the
particular case when X* is separable. We end the section by showing how one
can simplify the proof of a factorization result for I« (X*,Y) from [1] and
[14]. We use standard Banach space notation as can be found e.g. in [13].

2. A representation of the bidual space of K« (X*,Y) and a proof
of Theorem 1.3

Godefroy and Saphar [7, Proposition 1.1] established a representation of
K(X,Y)*™ under the assumption that X** or Y* has the RNP. In this section,
we adopt the factorization argument of Feder, Godefroy and Saphar [5, 7] to
represent K.+ (X*,Y)** under the assumption that X* or Y* has the RNP,
and then the representation will be a main tool of the proof of Theorem 1.3.

For Banach spaces Z and W we denote the projective and injective tensor
product by Z ®, W and Z ®. W, respectively (cf. see [15, Chapters 2 and 3]).
Recall that £(Z,W*) is isometrically isomorphic to (Z ®, W)* and that for a
net (Ty,) in L(Z,W*) and T € L(Z,W*)

To 5T it and only if > (Taza)(wn) — > (Tza)(wn)

for every (2,,) in Z and (wy,) in W with Y ||z, ||||wn] < 0o (see [15, p. 24]).
We now have:

Theorem 2.1. Suppose that X* or Y* has the Radon-Nikodym property. Then
there exists a w* to w* homeomorphic linear isometry ® from IC;*(X*,Y)UJ
(in (L(Y*, X*),w*)) onto K« (X*,Y)** such that

(K- (X7, Y)) = j(Ku+ (X7, Y)),
where K2 (X*Y) ={T":T € K+ (X*,Y)} and j : Ky« (X*,Y) = Ky (X,
Y)** is the natural isometry.

Proof. Suppose that X* has the Radon-Nikodym property. We define the map
ViY*Qr X* = Ky (X*,Y)* by

Vo(T) =Y yn(Ta;)

forv=7>%" yr®@a; € Y*®, X* Then V is well defined, linear and [|[V| < 1.
First we use the proof of [5, Theorem 1] to show that V' is a quotient map and so
V* is an isometry. Let the map i : Y — [°°(By~) be defined by i(y)(y*) = y*(v)
for every y* € By-. Then i is an isometry and so the map Jy : Ky« (X*,Y) —
K= (X*,1%°(By~)) defined by J1(T) = iT is an isometry. Since {*°(By~) has
the approximation property, K« (X*,1°°(By+)) is isometrically isomorphic to
X ®¢ 1°°(By~) by the isometry Js.

Ko (X*,Y) 2% Ko (X*,1°°(By+)) -2 X @, 1°(By+).
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Since {*°(By+)* has the approximation property and X* has the Radon-Niko-
dym property, [°°(By+)* ®, X* is isometrically isomorphic to (X ®.I°°(By=«))*
by the isometry Js (see [15, Theorem 5.33]).

I°(By+)* @r X* 25 (X @, 1°(By-))* "2 Kope (X7, V)"
Let J = (JaJ1)*J3. We show that the following diagram is commutative:

1°(By-)* @r X* ¢S Y* @, X*

T

Ko (X*,Y)*

Let p € 1®°(By+)*, 2* € X* and T € K+ (X*,Y). Then
J(p@a*)(T) = (JoJ1)" Js(u @ =™ )(T)

= Js(p®@x")(J2 1 (T))

= Ja(p @ ) (o (iT))

= p(iTz")

=i"(u)(T'z")

=V(@i*(p) @ 2")(T)

=V({i*®idx)(u®z*)(T).
It follows that the diagram is commutative. Now let ¢ € K« (X*,Y)*. Since
JaJp is an isometry, we see that there exists a u € [°°(By«)* ®, X* so that

J(u) = ¢ and |jul|r = ||¢||. Let v = i* ® idx+(u). Then by the above diagram
© = V(v) and we have

el < VIl @ ddx«(u)ll= < [li*[l[|idx-

ullx < [Jullx = llell-
Thus ||| = ||v|lx and so V is a quotient map.

Now we use the proof of [7, Proposition 1.1]. Let the map W : ICpp (X*,Y) —
L(Y*, X**) be defined by W (T) = T*, let iy : £L(Y*, X**) = (Y* @ X*)* be
the isometry and let is : Y* @, X* — (Y* ®, X*)** be the natural isometry.

Y* ®r X* Icw* (X*,Y)*

Then for every v =3 yr @} € Y* @, X* and T € K= (X", Y),
W*ilia(v)(T) = iz(v)iaW(T) = i;W(T)(v)
=i (1) (v) = Y (Ty)(2h) = D yn(Tay) = (Vo)(D).

n
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Thus W*ijia = V. Now consider the following diagram:

Ko (X*,Y) s L(Y*, X*)

|

Kw* (X*, Y)** ? (Y* R X*)*

Let i3 : L(Y*, X**) — L(Y*, X**)** be the natural isometry. Then for every
T €Ky (X*,Y) and v € Y* @, X*,

i (i7" VI (T)) (v) =

Thus the above diagram is commutative and so il_lV* Jj(T) = T* for every
T € Ky« (X*,Y). Recall that, if the range of an adjoint operator is norm
closed, then the range is w* closed. Thus we have

TV (K (X, Y)) = VAR (X, 7)) = Ko (X510
We have shown that i7'V* @ I (X*, V)™ — ICfU*(X*,Y)w is a surjective
linear isometry. Put

= (i7' V) K (X5, YY) = Kye (X5, Y)*

Note that if an adjoint operator is an isomorphism, then the inverse of this
adjoint operator is w* to w* continuous on its range. Hence ® is a w* to w*
homeomorphic linear isometry and for every T € K« (X*,Y)

(T*) = (iy V)TN (T™) = (i 'V i V(T = §(T).

This completes the proof for the case that X * has the Radon-Nikodym property.

Now suppose that Y* has the Radon-Nikodym property. Define the map
P LY, X)) = L(X*, V™) by (T) = T*jx«. Then it is easy to check that
1 is a surjective linear isometry with the inverse ¥ ~!(R) = R*jy~. Let (T,) be
anetin L(Y*, X**)and T € L(Y*, X**) with T, M T. Letwv = Yo Th YL €
X*®-Y*. Since ). yr @z} € Y* @, X*,

D (Tayp)(@h) — Y (Tyn) ().

n
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Thus
D(To) (W) =Y (Taix-ap) ) = Y dx- (@) (Tayy)

=D (Tayn)(@) — Y (Tyn)(ah) = ¢(T)(v).

Hence 9 is w* to w* continuous and, similarly, so is /=1, Let S € Ky« (X*,Y)
and let 2* € X* and y* € Y*. Then S*(y*) = jx(«) for some z € X and so
we have

P(S*) (") (y") = S jx- (@) (y") = S (y")(2") = jx (z)(z")
= 2" (z) = 2" (jx'S*(y")) = (x"S™) " (@) (y").
Thus (S*) = (jx'S*)* € K&.(Y*, X). Similarly, for every U € Ky (Y*, X)
VY U*) = (jy 'U*)* € K5 (X*,Y). Therefore (K% (X*,Y)) = K. (Y*, X)

and so

* * *

(K- (X7 Y)" ) =Ko (X7Y)) =Ko-(Y*,X) .

Since Y* has the Radon-Nikodym property, we can find the map
UKL (VX)) = Ky (Y, X)™

in the first case. Define the map ¢ : Ky« (Y*, X) — Ky« (X*,Y) by ¢(T) =
j;lT*. Then we see that ¢ is a surjective linear isometry. Then ¢** is a w* to
w* homeomorphic isometry from Cppx (Y*, X)** onto K= (X*,Y)**. Put

*

=W K. (X, Y) — Koo (X*, V)™
Then @ is a w* to w* homeomorphic and surjective linear isometry, and
O (X*,Y)) =™ U (K. (Y, X))
= 0" (j(Kw- (Y, X)) = j(Ku- (X7, Y)). O

Remark 2.2. Suppose that X** or Y* has the Radon-Nikodym property. Let
i: K(X,Y) = Ky (Y*, X*) be the surjective linear isometry defined by i(T) =
T*. Then ** : K(X,Y)** — Ky (Y*, X*)™ is a w* to w* homeomorphic and

surjective isometry. We can find the map @ : ¥ . (Y*, X*)w = I (Y, X )™
in Theorem 2.1. Here note that KX .(Y*, X*) = {T* : T € K(X,Y)}. Hence

Ol K(X, V)™ — ICfU*(Y*,X*)w is a w* to w* homeomorphic isometry
and &~ 1" (j(K(X,Y))) = K. (Y*, X*). Consequently Theorem 2.1 extends
[7, Proposition 1.1].

To show Theorem 1.3 we need the following simple but useful lemma which
is contained in the proof of [7, Theorem 1.5]. For the sake of completeness we
provide the concrete proof.
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Lemma 2.3. Let C be a convex subset of a Banach space B and let ** € B**.
If x** € jB(C)w in B**, then for every e > 0,

*

<fa™+e}

™" € {jp(x) € j(C) : ||z
Moreover, if x** € jp(B) and z** € jB(C)w , then x** € jp(C) in the topology
of the norm.

Proof. Let € > 0 and let U be a convex w* closed neighborhood of z**. Then
UNjp(C) is not empty. Define the map ¢ : B** @ B** — B** by ¢(a1*,25*) =
x7* —x3*. Then ¢ is clearly linear and w* to w* continuous. Put V= UnNjp(C)
and W = {jp(z) € jp(B) : |z| < |z**|| +&/2}. Note that 2** € V" and
e eW"” by Goldstine’s theorem. Thus

* * * *

0=a" — 2™ =™, z*) e (V" x W' )=V xW" )V xW)"

Thus there exists a net (jB(xa) JB(Ya)) in VxW so that jp(2a)—jB(Ya) 250
in B** and s0 To — Yo — 0 in B. Define the map ¢ : B®&B — B by 1/1(301,302) =

21 — 3. Then ¥(2q,Ya) — 0 in B and so 0 € ¢(j5' (V) X jz (W)) =

J(jlgl(V) x j5*(W)) in the topology of the norm because 1/1(]51(‘/) xjgt(W))
is a convex set in B. Thus there exist jp(z1) € V and jp(z2) € W so that
|21 — 22l < /2. Then |z1|| < [Jz2|| + 21 — 22| < ||**|| + . We have
shown that jp(z1) € UN {jp(z) € jB( ) szl < JJ**|| + e}. Hence a** €
{is(@) € jp(0) : ol < =T +e}"

The remaining part follows from convexity of C' and that jp is w to w*
homeomorphic from B onto jg(B). O

Grothendieck [8] obtained that the dual space (L(X,Y), 7.)* consists of all
functionals f of the form f(T) = >, v:(Tx,), where (z,) in X, (y;;) in
Y*, and Y [|zn|||lysl] < oo. The summable weak operator topology (swo)
on L(X,Y) is the topology induced by (£(X,Y), 7.)* (see [4]). Then, for a net
(To) in L(X,Y) and T € L(X,Y), T =3 T if and only if 3" v (Tazn) —
>on yn(Tacn) for every (z,,) in X and (y;;) in Y* with ) ||z, ||||ly}] < oo, and
ETC = C™" for every convex subset C of £(X,Y) (cf. see [4, Proposition 3.6]).

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose T € C™ and let £ > 0. By the above note there
exists a net (Ty,) in C such that

D (Thya)an) =Y yn(Taxh) — D yn(Tarn) = Y (Tyn)(@)

n n n n

for every (z}) in X* and (y;;) in Y* with > |z} |[lv}]] < co. Thus T* €

n

{S*:9eC} inL(Y*, X™). Let ®: Ki. (X*,Y)  — Ky (X*,Y)™ be the
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map in Theorem 2.1. Then ®(T*) € ¢({S*: S € C})w in Ky (X*,Y)** and
D({S*: S5 €C}) Cj(Ky(X*Y)). Now by Lemma 2.3,

O(T*) e {O(S*) € ({S*: S eC}): |S[< [®(TH]+e} .
Thus there exists a net (Sg) in C so that ®(5%) N ®(T*) and ||Sg|| < || T +¢

for every 3. Then Sj T in L(Y*, X**), which is equivalent to Sz =% T
in L(X*,Y). Hence, by the above note,

Te{SeC:[SI<[Tl+e} " ={SeC:SI<IT]+e}" O

Corollary 2.4. Suppose that X* or Y* has the Radon-Nikodym property. Let
C be a convex subset of Ky+(X*,Y) and let T' € Ky (X*,Y). Then T € cif
and only if T € C in the topology of the operator norm.

s

Proof. IfT € T, then by the proof of Theorem 1.3, ®(T*) € ®({S* : S € C})
in K- (X*,Y)*™, &({S* : S € C}) C j(Kuw=(X*,Y)) and ®(T™) € j(Ku= (X",
Y)). By Lemma 2.3 ®(T*) € ®({S*: S € C}). Hence T € C. O

3. Some properties of ICpp (X*,Y)

The operator T' = Y, @y, @ y, with Y [|z,||||yn]] < co from X* to YV is a
simple example of a w* to w continuous compact operator because the operator
is a limit of w* to w continuous finite rank operators and the space Ky (X*,Y)
is closed in the topology of the operator norm. A Banach space X is reflexive if
and only if the space K(X*,Y) of compact operators and C,«(X*,Y) are the
same. Indeed, if X is nonreflexive, then there exists an ;" € X** so that z§* is
not a w* continuous linear functional. Then the operator z§*(-)y € K(X*,Y)
for every y € Y but z5*(1)y & Ky« (X*,Y). Also K(X,Y) is isometrically
isomorphic to K« (X**,Y) by the map T « j;lT**.

The bw* topology is strictly stronger than the w* topology (cf. see [13,
Corollary 2.7.7]). But for T' € L(X*,Y), T is w* to w continuous if and only if
T is bw* to w continuous. Indeed, if T is bw* to w continuous, then for every

net (x}) in X* and z* € X* with z, LChgm
(T7y")zg, =y (Tag) — y*(Te") = (T7y")z"
for every y* € Y*, which shows T*y* € (X* bw*)*. Since (X*, bw*)* =
(X*,w*)* (see [13, Theorem 2.7.8]), T*(Y*) C jx(X). Hence T is w* to w
continuous because T is w* to w continuous if and only if T*(Y*) C jx(X).
We now establish some criteria of w* to w continuous compact operators.

Proposition 3.1. For T € L(X*,Y) the following assertions are equivalent.

(a) T is bw* to norm continuous.
(b) T is w* to w continuous compact.
(¢) T is bw* to w continuous compact.
(d) Txx " Ta* whenever x¥, = * in Bx-.
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Proof. From the above note we only need to show (a)=(c)=(d)=-(a).
(a)=(c) Let (z7,) be a net in Bx~. Then there exists a subnet (27) of (z7,)

and z* € Bx« so that zj b 2% because the bw* and w* topology are the

same on By~ (see [13, Theorem 2.7.2]) and Bx~ is w* compact. Thus by the
assumption (a)

T:cz T Ty,
which shows that T'(Bx+) is norm compact in Y. Hence T is bw* to w contin-
uous compact.

(¢)=>(d) Let (z}) be a net in By~ and z* € Bx- with 2 ™% 2*. Then

bw* . .
zf ™% o and so Tx¥, % Tx* by the assumption (c). Since the norm closure

T(Bx~) in Y is norm compact, the norm and w topology are the same on

T(Bx~). Hence

norm

Tal, — Ta*.
(d)=(a) If Tz} "5 Ta* whenever z, “— x* in Bx-, then Tz} "% Ta*

whenever ¢t > 0 and z, Y 2% in tB x+. Therefore T' is w* to norm continuous
with respect to the relative w* topology of tBx+ whenever t > 0. Let V be a
norm open set in Y. Then for every ¢t > 0, T~1(V) NtBx~ is a relatively w*
open set in tBx«. By [13, Corollary 2.7.4] T=*(V) is a bw* open set in X*.
Hence T is bw* to norm continuous. (I

Now we summarize some results for the space Ky (X*,Y). First, we com-
ment on the dual space of K+ (X*,Y) (see P. Harmand, D. Werner and W.
Werner [9, pp. 265, 266]). We say that a linear functional ¢ on K« (X*,Y)
is an integral linear functional if there exists a regular Borel measure p on
Bx+ x By+«, where Bx+ and By~ are equipped with the w* topology, so that

o(T) = / y* (Ta™)dp
Bxx X By

for all T € K\ (X*,Y). We denote the space of integral linear functionals on
Kuw+(X*,Y) by Z,,» and define the norm on Z,,~ by

lplls = inf{lu] : s vepresents }.

Let C'(Bx~ x By~ ) be the Banach space of scalar valued continuous functions
on Bx+ X By-. Our first application of Proposition 3.1 is for the proof of the
following well-known and very useful observation.

Lemma 3.2. K« (X*,Y) is isometrically isomorphic to a subspace of C(Bx+ %X

By+).

Proof. We consider the map A : Ky« (X*,Y) — C(Bx» x By~) defined by
AT (", y") = y*(Ta").

From Proposition 3.1(d), it is easy to check that A(T) € C(Bx- x By~) for all

T € Ky (X*,Y) and A is a linear isometry. Hence the conclusion follows. [



170 JU MYUNG KIM

We are now ready to represent the dual space of Iy« (X*,Y).
Theorem 3.3. K« (X*,Y)* is isometrically isomorphic to Ty« .

Proof. Tt ¢ € Ky« (X*,Y)*, then by Lemma 3.2, Hahn-Banach extension and
Riesz representation theorem, there exists a regular Borel measure p on Bx« X
By« such that

w(T):/B ., y* (Tx*)du

for all T € Ky (X*,Y) and ||¢|| = ||| and so ||¢]] > ||||1. Also for every
such representation v of v, we see ||¢|| < ||v||. Hence ||| = ||¢||;. Since for
every ¢ € T~ clearly ¢ € Ky« (X*,Y)*, the conclusion follows. (]

Remark 3.4. Under the assumption that X* or Y* has the Radon-Nikodym
property, elements of Ky« (X*,Y)* can be represented by a series form, more
precisely, for every ¢ € K« (X*,Y)* and & > 0 there exist (z2) in X* and (y)
in Y* with >, [z |||yl < l¢ll + & such that o(T) = >, yi(Txz) for all T €
K+ (X*,Y). Indeed, if X* or Y* has the Radon-Nikodym property, then the
map V : Y* @, X* = Ky« (X*,Y)*, in the proof of Theorem 2.1, is a quotient
map. Thus for every ¢ € Ky« (X*,Y)* there exists v =) yr®x) € Y @, X*
with ||v|lz = ||¢]| such that o(T) = >, y:(Tz}) for all T € K, (X*Y).
Another proof of this was presented in [3, Theorem 1.2].

We need the following lemma to obtain a more concrete representation of
K+ (X*,Y)* than the one in Remark 3.4 when X* is separable.

Lemma 3.5 ([12, Lemma 1l.e.16]). Let X be a separable Banach space and
e > 0. Then there exists a sequence (f;)52, of functions on Bx so that x =

>oiey fi(x), for every x € Bx, each fi(x) is of the form 372, xg, ;(x)zi;,
where {E; 152, are disjoint Borel subsets of Bx, {;;}52, C Bx and

Y fillo < 1+e with || filloo = sup|lfi(2)]| = sup [l ]

i=1 J
We now have:

Corollary 3.6. Suppose that X* is separable. If ¢ € Ky« (X*,Y)*, then for
€ > 0 there exist sequences (] ;) in X* and (y; ;) in Y* with Y772, sup; ||z} ;]| <
L+e and 3752, lyf 1l < llell for every i so that

o(T) =Y i ;(Ta;)

i=1 j=1
for every T € Ky (X*,Y).

Proof. Let ¢ € Ky« (X*,Y)* and let € > 0. Then by Theorem 3.3 there exists
a regular Borel measure p on By« X By with |¢]| = ||| so that

o(T) = / y*(Tz")dp
Bx* X By
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for every T € K« (X*,Y). Then by Lemma 3.5, for every T € K« (X*,Y),
o) = | v (Y fia))du
Bx* X By * =1

y (D xe, ()i ) dp
j=1

e
—

Bxx X By

/ y* (T} ;)dp
Ei,j X By *

yij(Txi ),

i=1

-
Il

=
M8

@
Il
i

<
Il

j=1

“
M8

@
Il
i

J

Il
—

where y ; is the functional on Y defined by y; ;(y) = I By y*(y)dp. Since
’ ? % *

for every i, j, and y € By Wy, < [y 5, 0 @ldl < ll(Bey x

By~), llyf ;|| < [pl(Ei; x By~) for every i and j. Hence for every i, we have

Sz il < llwll = llell and 377%, sup; [l ;|| < 1+e. O

Next we present a variant of a result of Kalton [10]. Recall the weak operator
topology (wo) on L(X,Y). For anet (T,) in £L(X,Y)and T € L(X,Y) T, =%
T if and only if y*(Thx) — y*(Tx) for every x € X and y* € Y*. The
following are the ICpp« (X*,Y") versions of [10, Theorem 1] and [10, Corollary 3],
respectively.

Proposition 3.7. Let A be a subset of Ky« (X*,Y). Then A is wo compact if
and only if A is weakly compact.

Corollary 3.8. Let (T,,) be a sequence in Ky« (X*,Y) and T € K= (X*,Y).

weak

Then Ty, —2 T if and only if T, = T.

Finally we consider a factorization of elements in Ky« (X*,Y).

Lemma 3.9 ([11, Lemma 1.1 and Theorem 2.2]). If T € K(X,Y), then there
erist a separable reflexive Banach space Z with T(Bx)/||T|| € Bz C By,
S e K(X,Z), and the inclusion map J € K(Z,Y) such that || J|| =1, T = JS,
and || S| = [|IT]-

The following theorem is essentially contained in Aron, Lindstrom, Ruess,
Ryan [1], and Mikkor, Oja [14]. But we use Proposition 3.1 to slightly simplify
the existing proof.

Proposition 3.10. If T € Ky (X*,Y), then there exist a separable reflexive
Banach space Z, R € Ky (X*, Z**) with ||R|| = |T||, U € Ku~(Z**,Y) with
IU|l =1 such that T = UR.

Proof. Let T € Ku+(X*,Y). Then by Lemma 3.9, there exist a separable

reflexive Banach space Z with T'(Bx~)/||T|| € Bz C By, S € K(X*,Z), and
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the inclusion map J € K(Z,Y) such that ||J|| =1, T = JS, and ||S|| = ||T|-
Let R = jzS € K(X*,Z**) and U = Jj,;' € K(Z**,Y). Then ||R| = ||T|,

|U|| =1, and T = UR. If (z%,) in By~ and 2* € Bx- with 27, > 2*, then by
Proposition 3.1(d)

T, |—>|'”Y Tz*.

Since (Tz%/||T])) and Tz*/||T|| in T(Bx~)/|IT||, by [11, Lemma 2.1(ii)]
T /| TN = Ta*/|IT].

Consequently Tz, 12 72+ and so Sxl, 112 gp* because Se* = Ta* for all
x* € X* (see [11, Theorem 2.2]). Therefore

Rz}, = jz Sz, ”'”—Z*)* jzSz" = Rx™.

(03

Hence R € Ky« (X*,Z**) by Proposition 3.1(d). Since Z is reflexive, U €
Ko (Z¥%,Y). O
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