ON SPACES OF WEAK* TO WEAK CONTINUOUS COMPACT OPERATORS

Ju Myung Kim

Abstract

This paper is concerned with the space $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ of weak ${ }^{*}$ to weak continuous compact operators from the dual space X^{*} of a Banach space X to a Banach space Y. We show that if X^{*} or Y^{*} has the Radon-Nikodým property, \mathcal{C} is a convex subset of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ with $0 \in \mathcal{C}$ and T is a bounded linear operator from X^{*} into Y, then $T \in \overline{\mathcal{C}}^{\tau_{c}}$ if and only if $T \in \overline{\{S \in \mathcal{C}:\|S\| \leq\|T\|\}}{ }^{\tau}$, where τ_{c} is the topology of uniform convergence on each compact subset of X, moreover, if $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$, here \mathcal{C} need not to contain 0 , then $T \in \overline{\mathcal{C}}^{\tau_{c}}$ if and only if $T \in \overline{\mathcal{C}}$ in the topology of the operator norm. Some properties of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ are presented.

1. Introduction and the main result

Representations of dual spaces of operator spaces provide a useful tool to study approximation properties of operators. Grothendieck [8] established a representation of the dual space of $\mathcal{L}(X, Y)$, the space of bounded linear operators between Banach spaces X and Y, when endowed with the topology τ_{c} of uniform convergence on each compact subset of X and the representation was applied to study the approximation property. A Banach space X is said to have the approximation property (AP) if the identity operator $i d_{X} \in \overline{\mathcal{F}}(X, X)^{\tau_{c}}$, where $\mathcal{F}(X, X)$ is the space of finite rank operators on X, and we say that X has the metric approximation property (MAP) if $i d_{X} \in \overline{\{T \in \mathcal{F}(X, X):\|T\| \leq 1\}}{ }^{\tau_{c}}$. The AP is formally weaker than the MAP, in fact Figiel and Johnson [6] showed that the AP is strictly weaker than the MAP, more precisely, they constructed a separable Banach space having the AP but failing to have the MAP. Grothendieck [8] applied the representation of the dual space of $\left(\mathcal{L}(X, Y), \tau_{c}\right)$ to show that for separable dual spaces, the AP and MAP are equivalent. But it is a long-standing famous problem whether

Received July 9, 2011; Revised November 19, 2011.
2010 Mathematics Subject Classification. Primary 47A05; Secondary 46B28.
Key words and phrases. weak* to weak continuous compact operator, dual of operator space, the topology of compact convergence, approximation properties.

The author was supported by the Korea Research Foundation Grant 2011-0025902 and BK21 Project funded by the Korean Government.
the AP and MAP are equivalent for general dual spaces (cf. [2, Problem 3.8]). The main purpose of the paper is to establish an approximation theorem in $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$, the space of weak* to weak continuous compact operators from X^{*} to Y, using the bidual space of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ endowed with the topology of the operator norm. The main result is originated from the following result of Godefroy and Saphar [7].

Theorem 1.1 ([7, Theorem 1.5]). Suppose that X^{*} or $Y^{* *}$ has the RadonNikodým property. Let \mathcal{C} be a convex subset of $\mathcal{K}_{w^{*}}\left(X^{*}, Y^{*}\right)$ and let $T \in$ $\mathcal{L}\left(X^{*}, Y^{*}\right)$. Then $T \in \overline{\mathcal{C}}^{\tau_{c}}$ if and only if for every $\varepsilon>0$,

$$
T \in{\overline{\{S \in \mathcal{C}}:\|S\|<\|T\|+\varepsilon\}^{\tau_{c}}}
$$

Note that the above mentioned passage from the AP to the MAP for separable dual spaces easily follows from Theorem 1.1. Recently, Choi and Kim [3] used a representation of the dual space of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$, endowed with the topology of the operator norm, to obtain the following.
Theorem 1.2 ([3, Theorem 2.3]). Suppose that X^{*} or Y^{*} has the RadonNikodým property. Let \mathcal{Y} be a subspace of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and let $T \in \mathcal{L}\left(X^{*}, Y\right)$. Then $T \in \overline{\mathcal{Y}}^{\tau_{c}}$ if and only if $T \in \overline{\{S \in \mathcal{Y}:\|S\| \leq\|T\|\}}{ }^{\tau_{c}}$.

In this paper, we adjust arguments of Feder, Godefroy and Saphar ([5, Theorem 1], [7, Theorem 1.5]) to extend Theorem 1.1:
Theorem 1.3. Suppose that X^{*} or Y^{*} has the Radon-Nikodým property. Let \mathcal{C} be a convex subset of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and let $T \in \mathcal{L}\left(X^{*}, Y\right)$. Then $T \in \overline{\mathcal{C}}^{\tau_{c}}$ if and only if for every $\varepsilon>0, T \in \overline{\{S \in \mathcal{C}:\|S\|<\|T\|+\varepsilon\}}{ }^{\tau_{c}}$.

The following corollary extends Theorem 1.2.
Corollary 1.4. Suppose that X^{*} or Y^{*} has the Radon-Nikodym property. Let \mathcal{C} be a convex subset of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ with $0 \in \mathcal{C}$ and let $T \in \mathcal{L}\left(X^{*}, Y\right)$. Then $T \in \overline{\mathcal{C}}^{\tau_{c}}$ if and only if $T \in \overline{\{S \in \mathcal{C}:\|S\| \leq\|T\|\}^{\tau_{c}}}$.
Proof. Suppose $T \in \overline{\mathcal{C}}^{\tau_{c}}$. Let K be a compact subset of X^{*} and let $\varepsilon>0$. Choose $\delta>0$ so that $(\delta /(\|T\|+\delta)) \sup _{x^{*} \in K}\left\|T x^{*}\right\|<\varepsilon / 2$. Then by Theorem 1.3 there exists an $S \in\{S \in \mathcal{C}:\|S\|<\|T\|+\delta\}$ such that $\sup _{x^{*} \in K}\left\|S x^{*}-T x^{*}\right\|<$ $\varepsilon / 2$. Consider $(\|T\| /(\|T\|+\delta)) S \in \mathcal{C}$ with $\|(\|T\| /(\|T\|+\delta)) S\|<\|T\|$. Then

$$
\begin{aligned}
& \sup _{x^{*} \in K}\left\|\frac{\|T\|}{\|T\|+\delta} S x^{*}-T x^{*}\right\| \\
\leq & \frac{\|T\|}{\|T\|+\delta} \sup _{x^{*} \in K}\left\|S x^{*}-T x^{*}\right\|+\frac{\delta}{\|T\|+\delta} \sup _{x^{*} \in K}\left\|T x^{*}\right\|<\varepsilon .
\end{aligned}
$$

Hence $T \in \overline{\{S \in \mathcal{C}:\|S\| \leq\|T\|\}^{\tau_{c}}}$.
We end the paper by a section collecting some results concerning the space $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. First we give a simple characterization of elements in $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$
[Proposition 3.1]. Then we describe $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ in general and look at the particular case when X^{*} is separable. We end the section by showing how one can simplify the proof of a factorization result for $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ from [1] and [14]. We use standard Banach space notation as can be found e.g. in [13].

2. A representation of the bidual space of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and a proof of Theorem 1.3

Godefroy and Saphar [7, Proposition 1.1] established a representation of $\mathcal{K}(X, Y)^{* *}$ under the assumption that $X^{* *}$ or Y^{*} has the RNP. In this section, we adopt the factorization argument of Feder, Godefroy and Saphar [5, 7] to represent $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}$ under the assumption that X^{*} or Y^{*} has the RNP, and then the representation will be a main tool of the proof of Theorem 1.3.

For Banach spaces Z and W we denote the projective and injective tensor product by $Z \otimes_{\pi} W$ and $Z \otimes_{\varepsilon} W$, respectively (cf. see [15, Chapters 2 and 3$]$). Recall that $\mathcal{L}\left(Z, W^{*}\right)$ is isometrically isomorphic to $\left(Z \otimes_{\pi} W\right)^{*}$ and that for a net $\left(T_{\alpha}\right)$ in $\mathcal{L}\left(Z, W^{*}\right)$ and $T \in \mathcal{L}\left(Z, W^{*}\right)$

$$
T_{\alpha} \xrightarrow{w^{*}} T \text { if and only if } \sum_{n}\left(T_{\alpha} z_{n}\right)\left(w_{n}\right) \longrightarrow \sum_{n}\left(T z_{n}\right)\left(w_{n}\right)
$$

for every $\left(z_{n}\right)$ in Z and $\left(w_{n}\right)$ in W with $\sum_{n}\left\|z_{n}\right\|\left\|w_{n}\right\|<\infty$ (see [15, p. 24]).
We now have:
Theorem 2.1. Suppose that X^{*} or Y^{*} has the Radon-Nikodým property. Then there exists a w^{*} to w^{*} homeomorphic linear isometry Φ from $\overline{\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)} w^{*}$ (in $\left.\left(\mathcal{L}\left(Y^{*}, X^{* *}\right), w^{*}\right)\right)$ onto $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}$ such that

$$
\Phi\left(\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)\right)=j\left(\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)\right)
$$

where $\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)=\left\{T^{*}: T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)\right\}$ and $j: \mathcal{K}_{w^{*}}\left(X^{*}, Y\right) \rightarrow \mathcal{K}_{w^{*}}\left(X^{*}\right.$, $Y)^{* *}$ is the natural isometry.

Proof. Suppose that X^{*} has the Radon-Nikodým property. We define the map $V: Y^{*} \otimes_{\pi} X^{*} \rightarrow \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ by

$$
V v(T)=\sum_{n} y_{n}^{*}\left(T x_{n}^{*}\right)
$$

for $v=\sum_{n} y_{n}^{*} \otimes x_{n}^{*} \in Y^{*} \otimes_{\pi} X^{*}$. Then V is well defined, linear and $\|V\| \leq 1$. First we use the proof of [5, Theorem 1] to show that V is a quotient map and so V^{*} is an isometry. Let the map $i: Y \rightarrow l^{\infty}\left(B_{Y^{*}}\right)$ be defined by $i(y)\left(y^{*}\right)=y^{*}(y)$ for every $y^{*} \in B_{Y^{*}}$. Then i is an isometry and so the map $J_{1}: \mathcal{K}_{w^{*}}\left(X^{*}, Y\right) \rightarrow$ $\mathcal{K}_{w^{*}}\left(X^{*}, l^{\infty}\left(B_{Y^{*}}\right)\right)$ defined by $J_{1}(T)=i T$ is an isometry. Since $l^{\infty}\left(B_{Y^{*}}\right)$ has the approximation property, $\mathcal{K}_{w^{*}}\left(X^{*}, l^{\infty}\left(B_{Y^{*}}\right)\right)$ is isometrically isomorphic to $X \otimes_{\varepsilon} l^{\infty}\left(B_{Y^{*}}\right)$ by the isometry J_{2}.

$$
\mathcal{K}_{w^{*}}\left(X^{*}, Y\right) \xrightarrow{J_{1}} \mathcal{K}_{w^{*}}\left(X^{*}, l^{\infty}\left(B_{Y^{*}}\right)\right) \xrightarrow{J_{2}} X \otimes_{\varepsilon} l^{\infty}\left(B_{Y^{*}}\right) .
$$

Since $l^{\infty}\left(B_{Y^{*}}\right)^{*}$ has the approximation property and X^{*} has the Radon-Nikodým property, $l^{\infty}\left(B_{Y^{*}}\right)^{*} \otimes_{\pi} X^{*}$ is isometrically isomorphic to $\left(X \otimes_{\varepsilon} l^{\infty}\left(B_{Y^{*}}\right)\right)^{*}$ by the isometry J_{3} (see [15, Theorem 5.33]).

$$
l^{\infty}\left(B_{Y^{*}}\right)^{*} \otimes_{\pi} X^{*} \xrightarrow{J_{3}}\left(X \otimes_{\varepsilon} l^{\infty}\left(B_{Y^{*}}\right)\right)^{*} \xrightarrow{\left(J_{2} J_{1}\right)^{*}} \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*} .
$$

Let $J=\left(J_{2} J_{1}\right)^{*} J_{3}$. We show that the following diagram is commutative:

Let $\mu \in l^{\infty}\left(B_{Y^{*}}\right)^{*}, x^{*} \in X^{*}$ and $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Then

$$
\begin{aligned}
J\left(\mu \otimes x^{*}\right)(T) & =\left(J_{2} J_{1}\right)^{*} J_{3}\left(\mu \otimes x^{*}\right)(T) \\
& =J_{3}\left(\mu \otimes x^{*}\right)\left(J_{2} J_{1}(T)\right) \\
& =J_{3}\left(\mu \otimes x^{*}\right)\left(J_{2}(i T)\right) \\
& =\mu\left(i T x^{*}\right) \\
& =i^{*}(\mu)\left(T x^{*}\right) \\
& =V\left(i^{*}(\mu) \otimes x^{*}\right)(T) \\
& =V\left(i^{*} \otimes i d_{X^{*}}\right)\left(\mu \otimes x^{*}\right)(T) .
\end{aligned}
$$

It follows that the diagram is commutative. Now let $\varphi \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$. Since $J_{2} J_{1}$ is an isometry, we see that there exists a $u \in l^{\infty}\left(B_{Y^{*}}\right)^{*} \otimes_{\pi} X^{*}$ so that $J(u)=\varphi$ and $\|u\|_{\pi}=\|\varphi\|$. Let $v=i^{*} \otimes i d_{X^{*}}(u)$. Then by the above diagram $\varphi=V(v)$ and we have

$$
\|\varphi\| \leq\|V\|\left\|i^{*} \otimes i d_{X^{*}}(u)\right\|_{\pi} \leq\left\|i^{*}\right\|\left\|i d_{X^{*}}\right\|\|u\|_{\pi} \leq\|u\|_{\pi}=\|\varphi\| .
$$

Thus $\|\varphi\|=\|v\|_{\pi}$ and so V is a quotient map.
Now we use the proof of [7, Proposition 1.1]. Let the map $W: \mathcal{K}_{w^{*}}\left(X^{*}, Y\right) \rightarrow$ $\mathcal{L}\left(Y^{*}, X^{* *}\right)$ be defined by $W(T)=T^{*}$, let $i_{1}: \mathcal{L}\left(Y^{*}, X^{* *}\right) \rightarrow\left(Y^{*} \otimes_{\pi} X^{*}\right)^{*}$ be the isometry and let $i_{2}: Y^{*} \otimes_{\pi} X^{*} \rightarrow\left(Y^{*} \otimes_{\pi} X^{*}\right)^{* *}$ be the natural isometry.

Then for every $v=\sum_{n} y_{n}^{*} \otimes x_{n}^{*} \in Y^{*} \otimes_{\pi} X^{*}$ and $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$,

$$
\begin{aligned}
W^{*} i_{1}^{*} i_{2}(v)(T) & =i_{2}(v) i_{1} W(T)=i_{1} W(T)(v) \\
& =i_{1}\left(T^{*}\right)(v)=\sum_{n}\left(T^{*} y_{n}^{*}\right)\left(x_{n}^{*}\right)=\sum_{n} y_{n}^{*}\left(T x_{n}^{*}\right)=(V v)(T) .
\end{aligned}
$$

Thus $W^{*} i_{1}^{*} i_{2}=V$. Now consider the following diagram:

Let $i_{3}: \mathcal{L}\left(Y^{*}, X^{* *}\right) \rightarrow \mathcal{L}\left(Y^{*}, X^{* *}\right)^{* *}$ be the natural isometry. Then for every $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and $v \in Y^{*} \otimes_{\pi} X^{*}$,

$$
\begin{aligned}
i_{1}\left(i_{1}^{-1} V^{*} j(T)\right)(v) & =\left(W^{*} i_{1}^{*} i_{2}\right)^{*} j(T)(v) \\
& =\left(i_{1}^{*} i_{2}\right)^{*} W^{* *} j(T)(v) \\
& =W^{* *} j(T) i_{1}^{*} i_{2}(v) \\
& =i_{1}^{*} i_{2}(v) i_{3}^{-1} W^{* *} j(T) \\
& =i_{1}^{*} i_{2}(v)(W(T)) \\
& =i_{2}(v) i_{1}(W(T)) \\
& =i_{1}(W(T))(v) .
\end{aligned}
$$

Thus the above diagram is commutative and so $i_{1}^{-1} V^{*} j(T)=T^{*}$ for every $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Recall that, if the range of an adjoint operator is norm closed, then the range is w^{*} closed. Thus we have

$$
i_{1}^{-1} V^{*}\left(\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}\right)={\overline{i_{1}^{-1} V^{*}\left(j\left(\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)\right)\right)}}^{w^{*}}={\overline{\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)}}^{w^{*}}
$$

We have shown that $i_{1}^{-1} V^{*}: \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *} \rightarrow \overline{\mathcal{K}}_{w^{*}}^{*}\left(X^{*}, Y\right) ~ ' ~ i s ~ a ~ s u r j e c t i v e ~$ linear isometry. Put

$$
\Phi=\left(i_{1}^{-1} V^{*}\right)^{-1}:{\overline{\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)}}^{w^{*}} \rightarrow \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}
$$

Note that if an adjoint operator is an isomorphism, then the inverse of this adjoint operator is w^{*} to w^{*} continuous on its range. Hence Φ is a w^{*} to w^{*} homeomorphic linear isometry and for every $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$

$$
\Phi\left(T^{*}\right)=\left(i_{1}^{-1} V^{*}\right)^{-1}\left(T^{*}\right)=\left(i_{1}^{-1} V^{*}\right)^{-1} i_{1}^{-1} V^{*} j(T)=j(T) .
$$

This completes the proof for the case that X^{*} has the Radon-Nikodým property.
Now suppose that Y^{*} has the Radon-Nikodým property. Define the map $\psi: \mathcal{L}\left(Y^{*}, X^{* *}\right) \rightarrow \mathcal{L}\left(X^{*}, Y^{* *}\right)$ by $\psi(T)=T^{*} j_{X^{*}}$. Then it is easy to check that ψ is a surjective linear isometry with the inverse $\psi^{-1}(R)=R^{*} j_{Y^{*}}$. Let $\left(T_{\alpha}\right)$ be a net in $\mathcal{L}\left(Y^{*}, X^{* *}\right)$ and $T \in \mathcal{L}\left(Y^{*}, X^{* *}\right)$ with $T_{\alpha} \xrightarrow{w^{*}} T$. Let $v=\sum_{n} x_{n}^{*} \otimes y_{n}^{*} \in$ $X^{*} \otimes_{\pi} Y^{*}$. Since $\sum_{n} y_{n}^{*} \otimes x_{n}^{*} \in Y^{*} \otimes_{\pi} X^{*}$,

$$
\sum_{n}\left(T_{\alpha} y_{n}^{*}\right)\left(x_{n}^{*}\right) \longrightarrow \sum_{n}\left(T y_{n}^{*}\right)\left(x_{n}^{*}\right) .
$$

Thus

$$
\begin{aligned}
\psi\left(T_{\alpha}\right)(v) & =\sum_{n}\left(T_{\alpha}^{*} j_{X^{*}} x_{n}^{*}\right)\left(y_{n}^{*}\right)=\sum_{n} j_{X^{*}}\left(x_{n}^{*}\right)\left(T_{\alpha} y_{n}^{*}\right) \\
& =\sum_{n}\left(T_{\alpha} y_{n}^{*}\right)\left(x_{n}^{*}\right) \longrightarrow \sum_{n}\left(T y_{n}^{*}\right)\left(x_{n}^{*}\right)=\psi(T)(v) .
\end{aligned}
$$

Hence ψ is w^{*} to w^{*} continuous and, similarly, so is ψ^{-1}. Let $S \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and let $x^{*} \in X^{*}$ and $y^{*} \in Y^{*}$. Then $S^{*}\left(y^{*}\right)=j_{X}(x)$ for some $x \in X$ and so we have

$$
\begin{aligned}
\psi\left(S^{*}\right)\left(x^{*}\right)\left(y^{*}\right) & =S^{* *} j_{X^{*}}\left(x^{*}\right)\left(y^{*}\right)=S^{*}\left(y^{*}\right)\left(x^{*}\right)=j_{X}(x)\left(x^{*}\right) \\
& =x^{*}(x)=x^{*}\left(j_{X}^{-1} S^{*}\left(y^{*}\right)\right)=\left(j_{X}^{-1} S^{*}\right)^{*}\left(x^{*}\right)\left(y^{*}\right)
\end{aligned}
$$

Thus $\psi\left(S^{*}\right)=\left(j_{X}^{-1} S^{*}\right)^{*} \in \mathcal{K}_{w^{*}}^{*}\left(Y^{*}, X\right)$. Similarly, for every $U \in \mathcal{K}_{w^{*}}\left(Y^{*}, X\right)$ $\psi^{-1}\left(U^{*}\right)=\left(j_{Y}^{-1} U^{*}\right)^{*} \in \mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)$. Therefore $\psi\left(\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)\right)=\mathcal{K}_{w^{*}}^{*}\left(Y^{*}, X\right)$ and so

$$
\psi\left({\overline{\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)}}^{w^{*}}\right)={\overline{\psi\left(\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)\right)}}^{w^{*}}={\overline{\mathcal{K}_{w^{*}}^{*}\left(Y^{*}, X\right)}}^{w^{*}} .
$$

Since Y^{*} has the Radon-Nikodým property, we can find the map

$$
\Psi:{\overline{\mathcal{K}_{w^{*}}^{*}\left(Y^{*}, X\right)}}^{w^{*}} \rightarrow \mathcal{K}_{w^{*}}\left(Y^{*}, X\right)^{* *}
$$

in the first case. Define the map $\phi: \mathcal{K}_{w^{*}}\left(Y^{*}, X\right) \rightarrow \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ by $\phi(T)=$ $j_{Y}^{-1} T^{*}$. Then we see that ϕ is a surjective linear isometry. Then $\phi^{* *}$ is a w^{*} to w^{*} homeomorphic isometry from $\mathcal{K}_{w^{*}}\left(Y^{*}, X\right)^{* *}$ onto $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}$. Put

$$
\Phi=\phi^{* *} \Psi \psi:{\overline{\mathcal{K}} w^{*}\left(X^{*}, Y\right)}^{w^{*}} \longrightarrow \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}
$$

Then Φ is a w^{*} to w^{*} homeomorphic and surjective linear isometry, and

$$
\begin{aligned}
\Phi\left(\mathcal{K}_{w^{*}}^{*}\left(X^{*}, Y\right)\right) & =\phi^{* *} \Psi\left(\mathcal{K}_{w^{*}}^{*}\left(Y^{*}, X\right)\right) \\
& =\phi^{* *}\left(j\left(\mathcal{K}_{w^{*}}\left(Y^{*}, X\right)\right)\right)=j\left(\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)\right) .
\end{aligned}
$$

Remark 2.2. Suppose that $X^{* *}$ or Y^{*} has the Radon-Nikodým property. Let $i: \mathcal{K}(X, Y) \rightarrow \mathcal{K}_{w^{*}}\left(Y^{*}, X^{*}\right)$ be the surjective linear isometry defined by $i(T)=$ T^{*}. Then $i^{* *}: \mathcal{K}(X, Y)^{* *} \rightarrow \mathcal{K}_{w^{*}}\left(Y^{*}, X^{*}\right)^{* *}$ is a w^{*} to w^{*} homeomorphic and surjective isometry. We can find the map $\Phi: \overline{\mathcal{K}}_{w^{*}}^{*}\left(Y^{*}, X^{*}\right) ~ w i * \mathcal{K}_{w^{*}}\left(Y^{*}, X^{*}\right)^{* *}$ in Theorem 2.1. Here note that $\mathcal{K}_{w^{*}}^{*}\left(Y^{*}, X^{*}\right)=\left\{T^{* *}: T \in \mathcal{K}(X, Y)\right\}$. Hence $\Phi^{-1} i^{* *}: \mathcal{K}(X, Y)^{* *} \rightarrow \overline{\mathcal{K}}_{w^{*}\left(Y^{*}, X^{*}\right)}{ }^{w^{*}}$ is a w^{*} to w^{*} homeomorphic isometry and $\Phi^{-1} i^{* *}(j(\mathcal{K}(X, Y)))=\mathcal{K}_{w^{*}}^{*}\left(Y^{*}, X^{*}\right)$. Consequently Theorem 2.1 extends [7, Proposition 1.1].

To show Theorem 1.3 we need the following simple but useful lemma which is contained in the proof of [7, Theorem 1.5]. For the sake of completeness we provide the concrete proof.

Lemma 2.3. Let C be a convex subset of a Banach space B and let $x^{* *} \in B^{* *}$. If $x^{* *} \in{\overline{j_{B}(C)}}^{w^{*}}$ in $B^{* *}$, then for every $\varepsilon>0$,

$$
x^{* *} \in{\overline{\left\{j_{B}(x) \in j_{B}(C):\|x\|<\left\|x^{* *}\right\|+\varepsilon\right\}}}^{w^{*}} .
$$

Moreover, if $x^{* *} \in j_{B}(B)$ and $x^{* *} \in{\overline{j_{B}(C)}}^{w^{*}}$, then $x^{* *} \in \overline{j_{B}(C)}$ in the topology of the norm.

Proof. Let $\varepsilon>0$ and let U be a convex w^{*} closed neighborhood of $x^{* *}$. Then $U \cap j_{B}(C)$ is not empty. Define the map $\psi: B^{* *} \oplus B^{* *} \rightarrow B^{* *}$ by $\psi\left(x_{1}^{* *}, x_{2}^{* *}\right)=$ $x_{1}^{* *}-x_{2}^{* *}$. Then ψ is clearly linear and w^{*} to w^{*} continuous. Put $V=U \cap j_{B}(C)$ and $W=\left\{j_{B}(x) \in j_{B}(B):\|x\|<\left\|x^{* *}\right\|+\varepsilon / 2\right\}$. Note that $x^{* *} \in \bar{V}^{w^{*}}$ and $x^{* *} \in \bar{W}^{w^{*}}$ by Goldstine's theorem. Thus
$0=x^{* *}-x^{* *}=\psi\left(x^{* *}, x^{* *}\right) \in \psi\left(\bar{V}^{w^{*}} \times \bar{W}^{w^{*}}\right)=\psi\left(\overline{V \times W}^{w^{*}}\right) \subset \overline{\psi(V \times W)}^{w^{*}}$.
Thus there exists a net $\left(j_{B}\left(x_{\alpha}\right), j_{B}\left(y_{\alpha}\right)\right)$ in $V \times W \underset{\sim}{\text { so }}$ that $j_{B}\left(x_{\alpha}\right)-j_{B}\left(y_{\alpha}\right) \xrightarrow{w^{*}} 0$ in $B^{* *}$ and so $x_{\alpha}-y_{\alpha} \xrightarrow{w} 0$ in B. Define the map $\widetilde{\psi}: B \oplus B \rightarrow B$ by $\widetilde{\psi}\left(x_{1}, x_{2}\right)=$ $\underline{x_{1}-x_{2} \text {. Then } \widetilde{\psi}\left(x_{\alpha}, y_{\alpha}\right) \xrightarrow{w} 0 \text { in } B \text { and so } 0 \in{\widetilde{\psi}\left(j_{B}^{-1}(V) \times j_{B}^{-1}(W)\right)}^{w}=}$ $\overline{\widetilde{\psi}}\left(j_{B}^{-1}(V) \times j_{B}^{-1}(W)\right)$ in the topology of the norm because $\widetilde{\psi}\left(j_{B}^{-1}(V) \times j_{B}^{-1}(W)\right)$ is a convex set in B. Thus there exist $j_{B}\left(x_{1}\right) \in V$ and $j_{B}\left(x_{2}\right) \in W$ so that $\left\|x_{1}-x_{2}\right\|<\varepsilon / 2$. Then $\left\|x_{1}\right\| \leq\left\|x_{2}\right\|+\left\|x_{1}-x_{2}\right\|<\left\|x^{* *}\right\|+\varepsilon$. We have shown that $j_{B}\left(x_{1}\right) \in U \cap\left\{j_{B}(x) \in j_{B}(C):\|x\|<\left\|x^{* *}\right\|+\varepsilon\right\}$. Hence $x^{* *} \in$ $\overline{\left\{j_{B}(x) \in j_{B}(C):\|x\|<\left\|x^{* *}\right\|+\varepsilon\right\}^{w}}{ }^{{ }^{*}}$.

The remaining part follows from convexity of C and that j_{B} is w to w^{*} homeomorphic from B onto $j_{B}(B)$.

Grothendieck [8] obtained that the dual space $\left(\mathcal{L}(X, Y), \tau_{c}\right)^{*}$ consists of all functionals f of the form $f(T)=\sum_{n} y_{n}^{*}\left(T x_{n}\right)$, where $\left(x_{n}\right)$ in $X,\left(y_{n}^{*}\right)$ in Y^{*}, and $\sum_{n}\left\|x_{n}\right\|\left\|y_{n}^{*}\right\|<\infty$. The summable weak operator topology (swo) on $\mathcal{L}(X, Y)$ is the topology induced by $\left(\mathcal{L}(X, Y), \tau_{c}\right)^{*}$ (see [4]). Then, for a net $\left(T_{\alpha}\right)$ in $\mathcal{L}(X, Y)$ and $T \in \mathcal{L}(X, Y), T_{\alpha} \xrightarrow{\text { swo }} T$ if and only if $\sum_{n} y_{n}^{*}\left(T_{\alpha} x_{n}\right) \longrightarrow$ $\sum_{n} y_{n}^{*}\left(T x_{n}\right)$ for every $\left(x_{n}\right)$ in X and $\left(y_{n}^{*}\right)$ in Y^{*} with $\sum_{n}\left\|x_{n}\right\|\left\|y_{n}^{*}\right\|<\infty$, and $\overline{\mathcal{C}}^{\tau_{c}}=\overline{\mathcal{C}}^{\text {swo }}$ for every convex subset \mathcal{C} of $\mathcal{L}(X, Y)$ (cf. see [4, Proposition 3.6]). We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose $T \in \overline{\mathcal{C}}^{\tau_{c}}$ and let $\varepsilon>0$. By the above note there exists a net $\left(T_{\alpha}\right)$ in \mathcal{C} such that

$$
\sum_{n}\left(T_{\alpha}^{*} y_{n}^{*}\right)\left(x_{n}^{*}\right)=\sum_{n} y_{n}^{*}\left(T_{\alpha} x_{n}^{*}\right) \longrightarrow \sum_{n} y_{n}^{*}\left(T x_{n}^{*}\right)=\sum_{n}\left(T^{*} y_{n}^{*}\right)\left(x_{n}^{*}\right)
$$

for every $\left(x_{n}^{*}\right)$ in X^{*} and $\left(y_{n}^{*}\right)$ in Y^{*} with $\sum_{n}\left\|x_{n}^{*}\right\|\left\|y_{n}^{*}\right\|<\infty$. Thus $T^{*} \in$ ${\overline{\left\{S^{*}: S \in \mathcal{C}\right\}}}^{w^{*}}$ in $\mathcal{L}\left(Y^{*}, X^{* *}\right)$. Let $\Phi: \overline{\mathcal{K}}_{w^{*}}^{*}\left(X^{*}, Y\right) ~ w i o \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}$ be the
map in Theorem 2.1. Then $\Phi\left(T^{*}\right) \in{\overline{\Phi\left(\left\{S^{*}: S \in \mathcal{C}\right\}\right)}}^{w^{*}}$ in $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}$ and $\Phi\left(\left\{S^{*}: S \in \mathcal{C}\right\}\right) \subset j\left(\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)\right)$. Now by Lemma 2.3,

$$
\Phi\left(T^{*}\right) \in{\overline{\left\{\Phi\left(S^{*}\right) \in \Phi\left(\left\{S^{*}: S \in \mathcal{C}\right\}\right):\|S\|<\left\|\Phi\left(T^{*}\right)\right\|+\varepsilon\right\}}}^{w^{*}}
$$

Thus there exists a net $\left(S_{\beta}\right)$ in \mathcal{C} so that $\Phi\left(S_{\beta}^{*}\right) \xrightarrow{w^{*}} \Phi\left(T^{*}\right)$ and $\left\|S_{\beta}\right\|<\|T\|+\varepsilon$ for every β. Then $S_{\beta}^{*} \xrightarrow{w^{*}} T^{*}$ in $\mathcal{L}\left(Y^{*}, X^{* *}\right)$, which is equivalent to $S_{\beta} \xrightarrow{s w o} T$ in $\mathcal{L}\left(X^{*}, Y\right)$. Hence, by the above note,

$$
T \in \overline{\{S \in \mathcal{C}}:\|S\|<\|T\|+\varepsilon\}^{\text {swo }}=\overline{\{S \in \mathcal{C}:\|S\|<\|T\|+\varepsilon\}}^{\tau_{c}}
$$

Corollary 2.4. Suppose that X^{*} or Y^{*} has the Radon-Nikodým property. Let \mathcal{C} be a convex subset of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and let $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Then $T \in \overline{\mathcal{C}}^{\tau_{c}}$ if and only if $T \in \overline{\mathcal{C}}$ in the topology of the operator norm.
Proof. If $T \in \overline{\mathcal{C}}^{\tau}$, then by the proof of Theorem 1.3, $\Phi\left(T^{*}\right) \in \overline{\Phi\left(\left\{S^{*}: S \in \mathcal{C}\right\}\right)}{ }^{w^{*}}$ in $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{* *}, \Phi\left(\left\{S^{*}: S \in \mathcal{C}\right\}\right) \subset j\left(\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)\right)$ and $\Phi\left(T^{*}\right) \in j\left(\mathcal{K}_{w^{*}}\left(X^{*}\right.\right.$, $Y)$). By Lemma $2.3 \Phi\left(T^{*}\right) \in \overline{\Phi\left(\left\{S^{*}: S \in \mathcal{C}\right\}\right)}$. Hence $T \in \overline{\mathcal{C}}$.

3. Some properties of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$

The operator $T=\sum_{n} x_{n} \otimes y_{n}$ with $\sum_{n}\left\|x_{n}\right\|\left\|y_{n}\right\|<\infty$ from X^{*} to Y is a simple example of a w^{*} to w continuous compact operator because the operator is a limit of w^{*} to w continuous finite rank operators and the space $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ is closed in the topology of the operator norm. A Banach space X is reflexive if and only if the space $\mathcal{K}\left(X^{*}, Y\right)$ of compact operators and $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ are the same. Indeed, if X is nonreflexive, then there exists an $x_{0}^{* *} \in X^{* *}$ so that $x_{0}^{* *}$ is not a w^{*} continuous linear functional. Then the operator $x_{0}^{* *}(\cdot) y \in \mathcal{K}\left(X^{*}, Y\right)$ for every $y \in Y$ but $x_{0}^{* *}(\cdot) y \notin \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Also $\mathcal{K}(X, Y)$ is isometrically isomorphic to $\mathcal{K}_{w^{*}}\left(X^{* *}, Y\right)$ by the map $T \leftrightarrow j_{Y}^{-1} T^{* *}$.

The $b w^{*}$ topology is strictly stronger than the w^{*} topology (cf. see [13, Corollary 2.7.7]). But for $T \in \mathcal{L}\left(X^{*}, Y\right), T$ is w^{*} to w continuous if and only if T is $b w^{*}$ to w continuous. Indeed, if T is $b w^{*}$ to w continuous, then for every net $\left(x_{\alpha}^{*}\right)$ in X^{*} and $x^{*} \in X^{*}$ with $x_{\alpha}^{*} \xrightarrow{b w^{*}} x^{*}$

$$
\left(T^{*} y^{*}\right) x_{\alpha}^{*}=y^{*}\left(T x_{\alpha}^{*}\right) \longrightarrow y^{*}\left(T x^{*}\right)=\left(T^{*} y^{*}\right) x^{*}
$$

for every $y^{*} \in Y^{*}$, which shows $T^{*} y^{*} \in\left(X^{*}, b w^{*}\right)^{*}$. Since $\left(X^{*}, b w^{*}\right)^{*}=$ $\left(X^{*}, w^{*}\right)^{*}\left(\right.$ see $[13$, Theorem 2.7.8] $), T^{*}\left(Y^{*}\right) \subset j_{X}(X)$. Hence T is w^{*} to w continuous because T is w^{*} to w continuous if and only if $T^{*}\left(Y^{*}\right) \subset j_{X}(X)$.

We now establish some criteria of w^{*} to w continuous compact operators.
Proposition 3.1. For $T \in \mathcal{L}\left(X^{*}, Y\right)$ the following assertions are equivalent.
(a) T is bw w^{*} to norm continuous.
(b) T is w^{*} to w continuous compact.
(c) T is $b w^{*}$ to w continuous compact.
(d) $T x_{\alpha}^{*} \xrightarrow{\text { norm }} T x^{*}$ whenever $x_{\alpha}^{*} \xrightarrow{w^{*}} x^{*}$ in $B_{X^{*}}$.

Proof. From the above note we only need to show $(\mathrm{a}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{a})$.
$(\mathrm{a}) \Rightarrow(\mathrm{c})$ Let $\left(x_{\alpha}^{*}\right)$ be a net in $B_{X^{*}}$. Then there exists a subnet $\left(x_{\beta}^{*}\right)$ of $\left(x_{\alpha}^{*}\right)$ and $x^{*} \in B_{X^{*}}$ so that $x_{\beta}^{*} \xrightarrow{b w^{*}} x^{*}$ because the $b w^{*}$ and w^{*} topology are the same on $B_{X^{*}}$ (see [13, Theorem 2.7.2]) and $B_{X^{*}}$ is w^{*} compact. Thus by the assumption (a)

$$
T x_{\beta}^{*} \xrightarrow{\text { norm }} T x^{*},
$$

which shows that $T\left(B_{X^{*}}\right)$ is norm compact in Y. Hence T is $b w^{*}$ to w continuous compact.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$ Let $\left(x_{\alpha}^{*}\right)$ be a net in $B_{X^{*}}$ and $x^{*} \in B_{X^{*}}$ with $x_{\alpha}^{*} \xrightarrow{w^{*}} x^{*}$. Then
 $\overline{T\left(B_{X^{*}}\right)}$ in Y is norm compact, the norm and w topology are the same on $\overline{T\left(B_{X^{*}}\right)}$. Hence

$$
T x_{\alpha}^{*} \xrightarrow{\text { norm }} T x^{*} .
$$

$(\mathrm{d}) \Rightarrow(\mathrm{a})$ If $T x_{\alpha}^{*} \xrightarrow{\text { norm }} T x^{*}$ whenever $x_{\alpha}^{*} \xrightarrow{w^{*}} x^{*}$ in $B_{X^{*}}$, then $T x_{\alpha}^{*} \xrightarrow{\text { norm }} T x^{*}$ whenever $t>0$ and $x_{\alpha}^{*} \xrightarrow{w^{*}} x^{*}$ in $t B_{X^{*}}$. Therefore T is w^{*} to norm continuous with respect to the relative w^{*} topology of $t B_{X^{*}}$ whenever $t>0$. Let V be a norm open set in Y. Then for every $t>0, T^{-1}(V) \cap t B_{X^{*}}$ is a relatively w^{*} open set in $t B_{X^{*}}$. By [13, Corollary 2.7.4] $T^{-1}(V)$ is a $b w^{*}$ open set in X^{*}. Hence T is $b w^{*}$ to norm continuous.

Now we summarize some results for the space $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. First, we comment on the dual space of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ (see P. Harmand, D. Werner and W. Werner $[9$, pp. 265,266$]$). We say that a linear functional φ on $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ is an integral linear functional if there exists a regular Borel measure μ on $B_{X^{*}} \times B_{Y^{*}}$, where $B_{X^{*}}$ and $B_{Y^{*}}$ are equipped with the w^{*} topology, so that

$$
\varphi(T)=\int_{B_{X^{*} \times B_{Y^{*}}}} y^{*}\left(T x^{*}\right) d \mu
$$

for all $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. We denote the space of integral linear functionals on $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ by $\mathcal{I}_{w^{*}}$ and define the norm on $\mathcal{I}_{w^{*}}$ by

$$
\|\varphi\|_{I}=\inf \{\|\mu\|: \mu \text { represents } \varphi\}
$$

Let $C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ be the Banach space of scalar valued continuous functions on $B_{X^{*}} \times B_{Y^{*}}$. Our first application of Proposition 3.1 is for the proof of the following well-known and very useful observation.

Lemma 3.2. $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ is isometrically isomorphic to a subspace of $C\left(B_{X^{*}} \times\right.$ $\left.B_{Y^{*}}\right)$.
Proof. We consider the map $\Lambda: \mathcal{K}_{w^{*}}\left(X^{*}, Y\right) \rightarrow C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ defined by

$$
\Lambda(T)\left(x^{*}, y^{*}\right)=y^{*}\left(T x^{*}\right)
$$

From Proposition 3.1(d), it is easy to check that $\Lambda(T) \in C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ for all $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and Λ is a linear isometry. Hence the conclusion follows.

We are now ready to represent the dual space of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$.
Theorem 3.3. $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ is isometrically isomorphic to $\mathcal{I}_{w^{*}}$.
Proof. If $\psi \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$, then by Lemma 3.2, Hahn-Banach extension and Riesz representation theorem, there exists a regular Borel measure μ on $B_{X^{*}} \times$ $B_{Y^{*}}$ such that

$$
\psi(T)=\int_{B_{X^{*} \times B_{Y^{*}}}} y^{*}\left(T x^{*}\right) d \mu
$$

for all $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and $\|\psi\|=\|\mu\|$ and so $\|\psi\| \geq\|\psi\|_{I}$. Also for every such representation ν of ψ, we see $\|\psi\| \leq\|\nu\|$. Hence $\|\psi\|=\|\psi\|_{I}$. Since for every $\varphi \in \mathcal{I}_{w^{*}}$ clearly $\varphi \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$, the conclusion follows.
Remark 3.4. Under the assumption that X^{*} or Y^{*} has the Radon-Nikodym property, elements of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ can be represented by a series form, more precisely, for every $\varphi \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ and $\varepsilon>0$ there exist $\left(x_{n}^{*}\right)$ in X^{*} and (y_{n}^{*}) in Y^{*} with $\sum_{n}\left\|x_{n}^{*}\right\|\left\|y_{n}^{*}\right\|<\|\varphi\|+\varepsilon$ such that $\varphi(T)=\sum_{n} y_{n}^{*}\left(T x_{n}^{*}\right)$ for all $T \in$ $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Indeed, if X^{*} or Y^{*} has the Radon-Nikodym property, then the map $V: Y^{*} \otimes_{\pi} X^{*} \rightarrow \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$, in the proof of Theorem 2.1, is a quotient map. Thus for every $\varphi \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ there exists $v=\sum_{n} y_{n}^{*} \otimes x_{n}^{*} \in Y^{*} \otimes_{\pi} X^{*}$ with $\|v\|_{\pi}=\|\varphi\|$ such that $\varphi(T)=\sum_{n} y_{n}^{*}\left(T x_{n}^{*}\right)$ for all $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Another proof of this was presented in [3, Theorem 1.2].

We need the following lemma to obtain a more concrete representation of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ than the one in Remark 3.4 when X^{*} is separable.
Lemma 3.5 ([12, Lemma 1.e.16]). Let X be a separable Banach space and $\varepsilon>0$. Then there exists a sequence $\left(f_{i}\right)_{i=1}^{\infty}$ of functions on B_{X} so that $x=$ $\sum_{i=1}^{\infty} f_{i}(x)$, for every $x \in B_{X}$, each $f_{i}(x)$ is of the form $\sum_{j=1}^{\infty} \chi_{E_{i, j}}(x) x_{i, j}$, where $\left\{E_{i, j}\right\}_{j=1}^{\infty}$ are disjoint Borel subsets of $B_{X},\left\{x_{i, j}\right\}_{j=1}^{\infty} \subset B_{X}$ and

$$
\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\infty}<1+\varepsilon \text { with }\left\|f_{i}\right\|_{\infty}=\sup _{x}\left\|f_{i}(x)\right\|=\sup _{j}\left\|x_{i, j}\right\|
$$

We now have:
Corollary 3.6. Suppose that X^{*} is separable. If $\varphi \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$, then for $\varepsilon>0$ there exist sequences $\left(x_{i, j}^{*}\right)$ in X^{*} and $\left(y_{i, j}^{*}\right)$ in Y^{*} with $\sum_{i=1}^{\infty} \sup _{j}\left\|x_{i, j}^{*}\right\|<$ $1+\varepsilon$ and $\sum_{j=1}^{\infty}\left\|y_{i, j}^{*}\right\| \leq\|\varphi\|$ for every i so that

$$
\varphi(T)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} y_{i, j}^{*}\left(T x_{i, j}^{*}\right)
$$

for every $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$.
Proof. Let $\varphi \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)^{*}$ and let $\varepsilon>0$. Then by Theorem 3.3 there exists a regular Borel measure μ on $B_{X^{*}} \times B_{Y^{*}}$ with $\|\varphi\|=\|\mu\|$ so that

$$
\varphi(T)=\int_{B_{X^{*} \times B_{Y^{*}}}} y^{*}\left(T x^{*}\right) d \mu
$$

for every $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Then by Lemma 3.5, for every $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$,

$$
\begin{aligned}
\varphi(T) & =\int_{B_{X^{*} \times B_{Y^{*}}}} y^{*} T\left(\sum_{i=1}^{\infty} f_{i}\left(x^{*}\right)\right) d \mu \\
& =\sum_{i=1}^{\infty} \int_{B_{X^{*} \times B_{Y^{*}}}} y^{*} T\left(\sum_{j=1}^{\infty} \chi_{E_{i, j}}\left(x^{*}\right) x_{i, j}^{*}\right) d \mu \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \int_{E_{i, j} \times B_{Y^{*}}} y^{*}\left(T x_{i, j}^{*}\right) d \mu \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} y_{i, j}^{*}\left(T x_{i, j}^{*}\right)
\end{aligned}
$$

where $y_{i, j}^{*}$ is the functional on Y defined by $y_{i, j}^{*}(y)=\int_{E_{i, j} \times B_{Y^{*}}} y^{*}(y) d \mu$. Since for every i, j, and $y \in B_{Y}\left|y_{i, j}^{*}(y)\right| \leq \int_{E_{i, j} \times B_{Y^{*}}}\left|y^{*}(y)\right| d|\mu| \leq|\mu|\left(E_{i, j} \times\right.$ $\left.B_{Y^{*}}\right),\left\|y_{i, j}^{*}\right\| \leq|\mu|\left(E_{i, j} \times B_{Y^{*}}\right)$ for every i and j. Hence for every i, we have $\sum_{j=1}^{\infty}\left\|y_{i, j}^{*}\right\| \leq\|\mu\|=\|\varphi\|$ and $\sum_{i=1}^{\infty} \sup _{j}\left\|x_{i, j}^{*}\right\|<1+\varepsilon$.

Next we present a variant of a result of Kalton [10]. Recall the weak operator topology (wo) on $\mathcal{L}(X, Y)$. For a net $\left(T_{\alpha}\right)$ in $\mathcal{L}(X, Y)$ and $T \in \mathcal{L}(X, Y) T_{\alpha} \xrightarrow{\text { wo }}$ T if and only if $y^{*}\left(T_{\alpha} x\right) \longrightarrow y^{*}(T x)$ for every $x \in X$ and $y^{*} \in Y^{*}$. The following are the $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ versions of [10, Theorem 1] and [10, Corollary 3], respectively.
Proposition 3.7. Let \mathcal{A} be a subset of $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Then \mathcal{A} is wo compact if and only if \mathcal{A} is weakly compact.
Corollary 3.8. Let $\left(T_{n}\right)$ be a sequence in $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$ and $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Then $T_{n} \xrightarrow{w o} T$ if and only if $T_{n} \xrightarrow{\text { weak }} T$.

Finally we consider a factorization of elements in $\mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$.
Lemma 3.9 ([11, Lemma 1.1 and Theorem 2.2]). If $T \in \mathcal{K}(X, Y)$, then there exist a separable reflexive Banach space Z with $\overline{T\left(B_{X}\right)} /\|T\| \subset B_{Z} \subset B_{Y}$, $S \in \mathcal{K}(X, Z)$, and the inclusion map $J \in \mathcal{K}(Z, Y)$ such that $\|J\|=1, T=J S$, and $\|S\|=\|T\|$.

The following theorem is essentially contained in Aron, Lindström, Ruess, Ryan [1], and Mikkor, Oja [14]. But we use Proposition 3.1 to slightly simplify the existing proof.

Proposition 3.10. If $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$, then there exist a separable reflexive Banach space $Z, R \in \mathcal{K}_{w^{*}}\left(X^{*}, Z^{* *}\right)$ with $\|R\|=\|T\|, U \in \mathcal{K}_{w^{*}}\left(Z^{* *}, Y\right)$ with $\|U\|=1$ such that $T=U R$.
Proof. Let $T \in \mathcal{K}_{w^{*}}\left(X^{*}, Y\right)$. Then by Lemma 3.9, there exist a separable reflexive Banach space Z with $\overline{T\left(B_{X^{*}}\right)} /\|T\| \subset B_{Z} \subset B_{Y}, S \in \mathcal{K}\left(X^{*}, Z\right)$, and
the inclusion map $J \in \mathcal{K}(Z, Y)$ such that $\|J\|=1, T=J S$, and $\|S\|=\|T\|$. Let $R=j_{Z} S \in \mathcal{K}\left(X^{*}, Z^{* *}\right)$ and $U=J j_{Z}^{-1} \in \mathcal{K}\left(Z^{* *}, Y\right)$. Then $\|R\|=\|T\|$, $\|U\|=1$, and $T=U R$. If $\left(x_{\alpha}^{*}\right)$ in $B_{X^{*}}$ and $x^{*} \in B_{X^{*}}$ with $x_{\alpha}^{*} \xrightarrow{w^{*}} x^{*}$, then by Proposition 3.1(d)

$$
T x_{\alpha}^{*} \xrightarrow{\|\cdot\|_{Y}} T x^{*} .
$$

Since $\left(T x_{\alpha}^{*} /\|T\|\right)$ and $T x^{*} /\|T\|$ in $\overline{T\left(B_{X^{*}}\right)} /\|T\|$, by [11, Lemma 2.1(ii)]

$$
T x_{\alpha}^{*} /\|T\| \xrightarrow{\|\cdot\|_{z}} T x^{*} /\|T\| .
$$

Consequently $T x_{\alpha}^{*} \xrightarrow{\|\cdot\|_{z}} T x^{*}$ and so $S x_{\alpha}^{*} \xrightarrow{\|\cdot\|_{z}} S x^{*}$ because $S x^{*}=T x^{*}$ for all $x^{*} \in X^{*}$ (see [11, Theorem 2.2]). Therefore

$$
R x_{\alpha}^{*}=j_{Z} S x_{\alpha}^{*} \xrightarrow{\|\cdot\|_{Z}^{* *}} j_{Z} S x^{*}=R x^{*}
$$

Hence $R \in \mathcal{K}_{w^{*}}\left(X^{*}, Z^{* *}\right)$ by Proposition 3.1(d). Since Z is reflexive, $U \in$ $\mathcal{K}_{w^{*}}\left(Z^{* *}, Y\right)$.

Acknowledgment. The author would like to express a sincere gratitude to the referee for valuable comments.

References

[1] R. Aron, M. Lindström, W. M. Ruess, and R. Ryan, Uniform factorization for compact sets of operators, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1119-1125.
[2] P. G. Casazza, Approximation properties, Handbook of the geometry of Banach spaces, Vol. I, 271-316, North-Holland, Amsterdam, 2001.
[3] C. Choi and J. M. Kim, Hahn-Banach theorem for the compact convergence topology and applications to approximation properties, Houston J. Math. 37 (2011), 1157-1164.
[4] , Locally convex vector topologies on $\mathcal{B}(X, Y)$, J. Korean Math. Soc. 45 (2008), no. 6, 1677-1703.
[5] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), no. 1, 38-49.
[6] T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197-200.
[7] G. Godefroy and P. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), no. 4, 672-695.
[8] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 1955 (1955), no. 16, 140 pp.
[9] P. Harmand, D. Werner, and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics, 1547. Springer-Verlag, Berlin, 1993.
[10] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-978.
[11] Å. Lima, O. Nygaard, and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325-348.
[12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin, 1977.
[13] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
[14] K. Mikkor and E. Oja, Uniform factorization for compact sets of weakly compact operators, Studia Math. 174 (2006), no. 1, 85-97.
[15] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002.

Department of Mathematical Sciences
Seoul National University
Seoul 151-742, Korea
E-mail address: kjm21@kaist.ac.kr

