• Title/Summary/Keyword: boundary regularity

Search Result 40, Processing Time 0.024 seconds

LOCAL REGULARITY OF THE STEADY STATE NAVIER-STOKES EQUATIONS NEAR BOUNDARY IN FIVE DIMENSIONS

  • Kim, Jaewoo;Kim, Myeonghyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.557-569
    • /
    • 2009
  • We present a new regularity criterion for suitable weak solutions of the steady-state Navier-Stokes equations near boundary in dimension five. We show that suitable weak solutions are regular up to the boundary if the scaled $L^{\frac{5}{2}}$-norm of the solution is small near the boundary. Our result is also valid in the interior.

  • PDF

ON REGULARITY OF SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE POLYHARMONIC OPERATOR

  • Kozlov, Vladimir
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.871-884
    • /
    • 2000
  • Polyharmonic operator with Dirichlet boundary condition is considered in a n-dimensional cone. The regularity properties of weak solutions are studied. In particular, it is proved the Holder contionuity of solutions near the vertex of the cone for dimensions n=2m+3,2m+4, where 2m is the order of the polyharmonic operator.

  • PDF

LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY CONDITIONS

  • Bae, Hyeong-Ohk;Kang, Kyungkeun;Kim, Myeonghyeon
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.597-621
    • /
    • 2016
  • We present regularity conditions for suitable weak solutions of the Navier-Stokes equations with slip boundary data near the curved boundary. To be more precise, we prove that suitable weak solutions become regular in a neighborhood boundary points, provided the scaled mixed norm $L^{p,q}_{x,t}$ with 3/p + 2/q = 2, $1{\leq}q$ < ${\infty}$ is sufficiently small in the neighborhood.

BOUNDARY REGULARITY TO THE NAVIER-STOKES EQUATIONS

  • Bae, Hyeong-Ohk;Kim, Do-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1059-1070
    • /
    • 2000
  • Under the critical assumption that ▽u$\in$L(sub)loc(sup)${\alpha}$,${\beta}$, 3/${\alpha}$ + 2/${\beta}$ $\leq$ 2 with ${\alpha}$ $\geq$ 3/2, a boundary L(sup)$\infty$ estimate for the solution is derived if the pressure on the boundary is bounded. Here, our estimate is local.

  • PDF

Regularity of solutions to Helmholtz-type problems with absorbing boundary conditions in nonsmooth domains

  • Kim, Jinsoo;Dongwoo Sheen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.135-146
    • /
    • 1997
  • For the numerical simulation of wave phenomena either in unbounded domains that it is not feasible to compute solutions on the entire region, it is needed to truncate the original domains to manageable bounded domains whose geometries are simple but usually nonsmooth. On the artificial boundaries thus created, absorbing boundary conditions are taken so that the significant part of waves arriving at the artificial boundaries can be transmitted [5,10,11,16,17,26]$.

  • PDF

THE BOUNDARY HARNACK PRINCIPLE IN HÖLDER DOMAINS WITH A STRONG REGULARITY

  • Kim, Hyejin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1741-1751
    • /
    • 2016
  • We prove the boundary Harnack principle and the Carleson type estimate for ratios of solutions u/v of non-divergence second order elliptic equations $Lu=a_{ij}D_{ij}+b_iD_iu=0$ in a bounded domain ${\Omega}{\subset}R_n$. We assume that $b_i{\in}L^n({\Omega})$ and ${\Omega}$ is a $H{\ddot{o}}lder$ domain of order ${\alpha}{\in}$ (0, 1) satisfying a strong regularity condition.

THE SOBOLEV REGULARITY OF SOLUTIONS OF FIRST ORDER NONLINEAR EQUATIONS

  • Kang, Seongjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • In order to study the propagation of singularities for solutions to second order quasilinear strictly hyperbolic equations with boundary, we have to consider the regularity of solutions of first order nonlinear equations satisfied by a characteristic hyper-surface. In this paper, we study the regularity compositions of the form v(${\varphi}$(x), x) with v and ${\varphi}$ assumed to have limited Sobolev regularities and we use it to prove the regularity of solutions of the first order nonlinear equations.

GLOBAL REGULARITY OF SOLUTIONS TO QUASILINEAR CONORMAL DERIVATIVE PROBLEM WITH CONTROLLED GROWTH

  • Kim, Do-Yoon
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1273-1299
    • /
    • 2012
  • We prove the global regularity of weak solutions to a conormal derivative boundary value problem for quasilinear elliptic equations in divergence form on Lipschitz domains under the controlled growth conditions on the low order terms. The leading coefficients are in the class of BMO functions with small mean oscillations.