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THE SOBOLEV REGULARITY OF SOLUTIONS OF
FIRST ORDER NONLINEAR EQUATIONS

Seongjoo Kang*

Abstract. In order to study the propagation of singularities for
solutions to second order quasilinear strictly hyperbolic equations
with boundary, we have to consider the regularity of solutions of
first order nonlinear equations satisfied by a characteristic hyper-
surface. In this paper, we study the regularity compositions of the
form v(ϕ(x), x) with v and ϕ assumed to have limited Sobolev reg-
ularities and we use it to prove the regularity of solutions of the
first order nonlinear equations.

1. Introduction

Let u(t, x
1
, x′) ∈ Hs

loc(R ×Rn
+), where Rn

+ = {(x
1
, x′) : x

1
> 0}, be

a solution of the quasilinear equation

(1.1) P2(t, x, u, Du,D)u = f(t, x, u, Du),

where

(1.2) P2(t, x, u, Du, D) ≡ (∂2
t
−

n∑

(i,j) 6=(0,0)

i,j=0

aij(t, x, u, Du)∂xi
∂xj

)

be strictly hyperbolic with respect to {t = constant}. Suppose that
a characteristic hypersurface for P2 is given by {t = ϕ(x

1
, x′)}, where

x′ = (x
2
, · · · , xn) ∈ Rn−1. Then ϕ satisfies the first order nonlinear

equation
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1 + 2(a01 +
n∑

j=2

a0jϕxj
) = a11(ϕx1

)2 + 2
n∑

j=2

a1jϕx1
ϕxj

+
n∑

j=2

ajj(ϕxj
)2 +

n∑

i,j=2

aijϕxi
ϕxj

.(1.3)

with coefficients evaluated at t = ϕ(x
1
, x′). In order to consider conor-

mal regularity of solutions u of the quasilinear equation P2u = f(Du),
where f is in the Sobolev space with suitable regularity, we have to study
the regularity of ϕ(x

1
, x′) satisfying the equation (1.3).

In this paper, we first examine the regularity of functions of the form
a(Du(ϕ(x

1
, x′), x

1
, x′)). Then prove the regularity of solution ϕ(x

1
, x′)

satisfying the first order nonlinear equation (1.3) and the regularity of
solution ψ(x

1
, x′) satisfying the first order nonlinear equation ψx

1
=

F
1
D̃ψ + F

2
ψ + F

3
, where F

1
is in the space Hs−1

loc (Rn
+)) and F

2
, F

3
are

in the space Hs−2
loc (Rn

+)), s > n
2 + 2.

2. Regularity of solutions of first order nonlinear equations

Before we prove the regularity of functions, we need the following
well-known lemmas to prove the regularity of solutions of a first order
nonlinear equation.

Schauder’s lemma. If u, v ∈ Hs(Rn) and s > n
2 , then uv ∈ Hs(Rn)

and ‖uv‖
Hs ≤ C‖u‖

Hs‖v‖Hs .

Gagliardo-Nirenberg inequalities. Let 1 ≤ q, r ≤ ∞, and let
m be an integer ≥ 2. If u ∈ Lq(Rn) and Dαu ∈ Lr(Rn) when |α| = m,

then Dαu ∈ Lp(α)(Rn) for |α| ≤ m, if

m/p(α) = (m− |α|)/q + |α|/r;

moreover, if ‖ · ‖s denotes the Ls norm, then

sup
|α|=j

‖Dαu‖p(α) ≤ 4|α|(m−|α|)
(

sup
|α|=m

‖Dαu‖r

)|α|/m‖u‖(m−|α|)/m
q .

Throughout this paper we treat the case in which the regularity in-
dices s and s′ are integers; analogous results hold in the general case.
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Lemma 2.1. Let 0 ≤ s′ ≤ s and suppose that w ∈ L∞(Rn)∩Hs(Rn).
Then for |α| = s′, it follows that Dαw ∈ L2p(Rn) and

‖Dαw‖
L2p ≤ C(‖w‖

L∞ )1−
1
p (‖w‖

Hs )
1
p ,

where p = s/s′ and C is a constant depending only on s, s′ and n.

We begin by studying the regularity of compositions of the form
v(ϕ(x′), x′) with v and ϕ assumed to have limited Sobolev regularity.
Even if ϕ(x′) is smooth, functions of the form v(ϕ(x′), x′) will in general
have Sobolev regularity of order 1/2 lower than that of v(t, x′). When
ϕ(x′) is nonsmooth, the regularity of v(ϕ(x′), x′) will not in general be
greater than that of ϕ(x′). In order to obtain norm estimates on the
regularity of v(ϕ(x′), x′) that are linear in the norm of ϕ(x′), we will as-
sume that the Sobolev regularity of v(t, x′) is at least one order greater
than that of ϕ(x′).

Lemma 2.2. Let v(t, x
1
, x′) ∈ Hs+1

loc (R×Rn
+) for s > n

2 +1. Suppose

that ϕ(x
1
, x′) ∈ Hs′

loc(R
n
+), 1 ≤ s′ ≤ s, and that Dϕ(x

1
, x′) ∈ L∞(Rn

+).
Then

v(ϕ(x
1
, x′), x

1
, x′) ∈ Hs′

loc(R
n
+).

If v and ϕ have compact support, then ‖v(ϕ(x
1
, x′), x

1
, x′)‖

Hs′ ≤ C‖ϕ‖
Hs′

with C depending only on s, s′, n, the size of the supports, ‖v(t, x
1
, x′)‖

Hs+1

and ‖ϕ‖
L∞ .

Proof. We may assume without loss of generality that v and ϕ have
compact support. Let w represent the vector consisting of all derivatives
of ∂tv, i.e. w = (∂x1

(∂tv), · · · , ∂xn
(∂tv)). Then w ∈ Hs−1(R ×Rn

+) ∩
L∞(R × Rn

+) since s − 1 > n
2 , and therefore, by Lemma 2.1, Dαw ∈

L
2(s−1)
|α| (R×Rn

+) for 0 ≤ |α| ≤ s− 1 and

‖Dαw‖L2p ≤ C(‖w‖L∞)1−
1
p (‖w‖Hs−1)

1
p ,

where p = 2(s−1)
|α| and C is a constant depending only on s and n. Thus

Dβ∂tv ∈ L
2(s−1)
|β|−1 (R×Rn

+) for 1 ≤ |β| ≤ s. Since

(2.1)
(
Dβv

)
(ϕ(x

1
, x′), x

1
, x′) =

∫ ϕ(x
1
,x′)

−∞
Dβ∂tv(t, x

1
, x′)dt,
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we apply Minkowski’s integral inequality to get
( ∫ ∫ ∞

0

∣∣
(
Dβv

)
(ϕ(x

1
, x′), x

1
, x′)

∣∣∣
r
dx

1
dx′

)1/r

=
(∫ ∫ ∞

0

∣∣∣
∫ ϕ(x

1
,x′)

−∞
Dβ∂tv(t, x

1
, x′)dt

∣∣∣
r
dx

1
dx′

)1/r

≤
∫ ϕ(x

1
,x′)

−∞

( ∫ ∞

0

∫ ∣∣∣Dβ∂tv(t, x
1
, x′)

∣∣∣
r

dx
1
dx′

)1/r
dt,

where r = 2(s−1)
|β|−1 , and so we have

(
Dβv

)
(ϕ(x

1
, x′), x

1
, x′) ∈ Lr(Rn

+),
with norm depending only on the size of the supports, ‖v(t, x

1
, x′)‖

Hs+1

and ‖ϕ‖
L∞ .

Next, notice that Dϕ ∈ Hs′−1(Rn
+)∩L∞(Rn

+), and therefore Dβϕ ∈
L

2(s′−1)
|β|−1 (Rn

+) for 1 ≤ |β| ≤ s′, by Lemma 2.1. The chain rule and the
Leibniz formula imply that, for 1 ≤ |γ| ≤ s′, Dγ

(
v(ϕ(x

1
, x′), x

1
, x′)

)
may be written as a sum of terms of the form

(
Dβ0Dmv

)
(ϕ(x

1
, x′), x

1
, x′)

(
Dβ1ϕ(x

1
, x′)

)
· · ·

(
Dβm ϕ(x

1
, x′)

)
,

where Dm stands for a derivative of order m with respect to t with
0 ≤ m ≤ s′ and β

0
+β

1
+ · · ·+βm = γ, 1 ≤ |β

k
| ≤ s′ for k = 0, 1, · · · , m.

If m = 0, then γ = β
0
, and so

(
Dβ0v

)
(ϕ(x

1
, x′), x

1
, x′) ∈ L

2(s−1)
|β0 |−1 (Rn

+)
⊂ L2(Rn

+) with ‖(Dβ0v)(ϕ(x
1
, x′), x

1
, x′))‖

L2 ≤ C, where C depends
only on the size of supports, s, s′, n, ‖v(t, x

1
, x′)‖

Hs+1 and ‖ϕ‖
L∞ .

Therefore, we may assume that m ≥ 1. The preceding estimates and
Hölder’s inequality imply that the use of the chain rule was justified,
and
(
Dβ0Dmv

)
(ϕ(x

1
, x′), x

1
, x′)

(
Dβ1ϕ(x

1
, x′)

) · · · (Dβm ϕ(x
1
, x′)

) ∈ L2(Rn
+)

since
|β

0
|+ (m− 1)
2(s− 1)

+
(|β

1
| − 1) + · · ·+ (|βm | − 1)

2(s′ − 1)
≤ |γ| − 1

2(s′ − 1)
≤ 1

2
.

Therefore Dγ(v(ϕ(x
1
, x′), x

1
, x′)) ∈ L2(Rn

+) for 1 ≤ |γ| ≤ s′. More-
over, by Lemma 2.1, ‖Dγ(v(ϕ(x

1
, x′), x

1
, x′))‖

L2 is bounded up to an
appropriate constant by

(‖Dϕ‖
Hs′−1

)
|β1 |−1
s′−1 · · · (‖Dϕ‖

Hs′−1
)
|βm |−1
s′−1 .
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Since (|β
1
| − 1) + · · · + (|βm | − 1) ≤ |γ| − m ≤ s′ − m ≤ s′ − 1, the

required estimate holds.

In the proof of conormal regularity of a solution of the equation
P2u = f(Du), where f is smooth of its arguments, we will encounter
situations in which regularity of ϕ with respect to v is greater than the
case considered above.

Corollary 2.3. Let v(t, x
1
, x′) ∈ Hs+1

loc (R×Rn
+) for s > n

2 . Suppose

that ϕ(x
1
, x′) ∈ Hs+1

loc (Rn
+) and that Dϕ(x

1
, x′) ∈ L∞(Rn

+). Then

v(ϕ(x
1
, x′), x

1
, x′) ∈ Hs

loc(R
n
+).

If v and ϕ have compact support, then ‖v(ϕ(x
1
, x′), x

1
, x′)‖

Hs′ ≤ C‖ϕ‖
Hs′

with C depending only on s, n, the size of the supports, ‖v(t, x
1
, x′)‖

Hs+1

and ‖ϕ‖
L∞ .

Proof. We may assume without loss of generality that v and ϕ have
compact support. Since s > n

2 , ∂tv ∈ Hs(R × Rn
+) ∩ L∞(R × Rn

+).

Therefore, by Lemma 2.1, Dβ∂tv ∈ L
2s
|β| (R × Rn

+) for 1 ≤ |β| ≤ s.
As we have seen in the proof of the previous lemma, it follows from
Minkowski’s integral inequality and (2.1) that

(
Dβv

)
(ϕ(x

1
, x′), x

1
, x′) ∈

L
2s
|β| (Rn

+), with norm depending only on s, n, the size of the supports,
‖v(t, x

1
, x′)‖

Hs+1 and ‖ϕ‖
L∞ .

We also notice that Dϕ ∈ Hs′−1(Rn
+)∩L∞(Rn

+), and therefore Dβϕ ∈
L

2s
|β|−1 (Rn

+) for 1 ≤ |β| ≤ s′, by Lemma 2.1. The chain rule and the
Leibniz formula imply that, for 1 ≤ |γ| ≤ s′, Dγ

(
v(ϕ(x

1
, x′), x

1
, x′)

)
may be written as a sum of terms of the form

(
Dβ0Dmv

)
(ϕ(x

1
, x′), x

1
, x′)

(
Dβ1ϕ(x

1
, x′)

) · · · (Dβm ϕ(x
1
, x′)

)
,

where Dm stands for a derivative of order m with respect to t with
0 ≤ m ≤ s and β

0
+ β

1
+ · · ·+ βm = γ, 1 ≤ |β

k
| ≤ s for k = 0, 1, · · · , m.

If m = 0, then γ = β
0
, and so

(
Dβ0v

)
(ϕ(x

1
, x′), x

1
, x′) ∈ L

2s
|β0 | (Rn

+)
⊂ L2(Rn

+) with ‖(Dβ0v)(ϕ(x
1
, x′), x

1
, x′))‖

L2 ≤ C, where C depends
only on the size of supports, s, n, ‖v(t, x

1
, x′)‖

Hs+1 and ‖ϕ‖
L∞ . There-

fore, we may assume that m ≥ 1. The preceding estimates and Hölder’s
inequality imply that the use of the chain rule was justified, and
(
Dβ0Dmv

)
(ϕ(x

1
, x′), x

1
, x′)

(
Dβ1ϕ(x

1
, x′)

) · · · (Dβm ϕ(x
1
, x′)

) ∈ L2(Rn
+)
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since
|β

0
|+ m

2s
+

(|β
1
| − 1) + · · ·+ (|βm | − 1)

2s
≤ |γ|

2s
≤ 1

2
.

Therefore Dγ(v(ϕ(x
1
, x′), x

1
, x′)) ∈ L2(Rn

+) for 1 ≤ |γ| ≤ s. More-
over, by Lemma 2.1, ‖Dγ(v(ϕ(x

1
, x′), x

1
, x′))‖

L2 is bounded up to an
appropriate constant by

(‖Dϕ‖
Hs )

|β1 |−1
s · · · (‖Dϕ‖

Hs )
|βm |−1

s .

Since (|β
1
|−1)+ · · ·+(|βm |−1) ≤ s−1, the required estimate holds.

The defining function for the characteristic hypersurface {t = ϕ(x
1
, x′)}

associated with the quasilinear equation (1.2) satisfies (1.3). There-
fore, from (1.3), ϕx1

may be expressed locally as a smooth function of
x

1
, x′, u(ϕ(x

1
, x′), x

1
, x′), Du(ϕ(x

1
, x′), x

1
, x′) and D̃ϕ(t, x′), where D̃ϕ

is the x′ gradient of ϕ. Such a function will be denoted by f(v(ϕ(x
1
,

x′), x
1
, x′), D̃ϕ(x

1
, x′)), with v representing the vector (t, x

1
, x′, u, Du).

From now on, we use D as total derivative and D̃ as x′ derivative. Then
our main theorem:

Theorem 2.4. Let v(t, x
1
, x′) ∈ Hs+1

loc (R×Rn
+)) for s > n

2 + 1, and

assume that ϕ(x
1
, x′) ∈ Hs

loc(R
n
+) and D2ϕ(x

1
, x′) ∈ L∞loc(R

n
+). Let f

be a smooth function of its arguments, and suppose that

ϕx
1
(x

1
, x′) = f(v(ϕ(x

1
, x′), x

1
, x′), D̃ϕ(x

1
, x′)).

If ϕ(0, x′) ∈ Hs
loc(R

n−1) , then ϕ(x
1
, x′) ∈ Hs

loc(R
n
+)).

Proof. It can be assumed that the functions in question all have com-
pact support in x′. Let ϕ

(s)
denote the vector of all x′ derivatives of ϕ up

to order s. Under the assumption that ϕ is smooth, we will establish an a
priori estimate on the energy E(x

1
) =

(∫ |ϕ(s)
(x

1
, x′)|2dx′

) 1
2 . Standard

arguments then allow the smoothness assumption to be dropped.
The chain rule and the Leibniz formula imply that there are smooth

functions F and fα for |α
1
|+ · · ·+ |α

k
|+ |α

k+1
|+ · · ·+ |αm | ≤ s , k ≥ 1 ,

which are then evaluated at
(
v(ϕ(x

1
, x′), x

1
, x′), D̃ϕ(x

1
, x′)

)
, such that

∂x
1
ϕ

(s)
= F (ϕ, D̃ϕ)D̃ϕ

(s)
(x

1
, x′) +

∑
α

fα(ϕ, D̃ϕ)D̃α1 (v(ϕ, x
1
, x′)) · · ·

D̃α
k (v(ϕ, x

1
, x′))D̃α

k+1 (D̃ϕ) · · · D̃αm (D̃ϕ).

By differentiating E(x
1
)2 with respect to x

1
, the energy satisfies
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E(x
1
)∂x

1
E(x

1
) =

∫
ϕ

(s)
(x

1
, x′)∂x

1
ϕ

(s)
(x

1
, x′)dx′,

and by integration by parts,∫
ϕ

(s)
F (v, D̃ϕ)

(
D̃ϕ

(s))
dx′ =

1
2

∫
F (v, D̃ϕ)D̃

(
(ϕ

(s)
)2

)
dx′

= −1
2

∫
D̃F (v, D̃ϕ)

(
ϕ

(s))2
dx′.

We note, by the chain rule, that D̃F (v, D̃ϕ) =
∑

σ Fσ (D̃v) + Gσ (D̃2ϕ),
where Fσ and Gσ are smooth functions of their arguments v, D̃ϕ.

Since v(t, x
1
, x′) ∈ Hs+1(R × Rn

+)) and s > n
2 + 1, the Sobolev

imbedding theorem and Lemma 2.2 imply that v(ϕ, x
1
, x′) ∈ L∞loc(R

n
+),

D
(
v(ϕ, x

1
, x′)

) ∈ L∞loc(R
n
+), and since D2ϕ(x

1
, x′) ∈ L∞loc(R

n
+), D̃(F (v(t,

ϕ, x′), D̃ϕ(t, x′))) ∈ L∞loc(R
n
+) and fα(v(t, ϕ, x′), D̃ϕ(t, x′)) ∈ L∞loc(R

n
+) .

By Lemma 2.2, v(ϕ(x
1
, x′), x

1
, x′) ∈ Hs(Rn

+)) with ‖v(ϕ(x
1
, x′), x

1
,

x′)‖
Hs ≤ C(x

1
)E(x

1
). Therefore

D̃(v(ϕ(x
1
, x′), x

1
, x′)) ∈ Hs−1(Rn

+)) ∩ L∞loc(R
n
+)

with similar bounds on the Hs−1(Rn
+) norm. Hence from Lemma 2.1 ,

D̃αj
(
v(t, ϕ(t, x′), x′)

) ∈ L2pj (Rn
+), where p

j
=

s− 1
|α

j
| − 1

and ∥∥∥D̃αj

(
v(ϕ(x

1
, x′), x

1
, x′)

)∥∥∥
L

2pj

(2.2)

≤ C‖D̃v‖
1− 1

pj

L∞ ‖D̃v‖
1

pj

Hs−1 ≤ C(x
1
)
(
E(x

1
)
) 1

pj ,

for 1 ≤ |α
j
| ≤ s , j = 1, · · · , k. Similarly,

(Dϕ) ∈ Hs−1(Rn
+)) ∩ L∞loc(R

n
+),

with ‖Dϕ‖
Hs−1 ≤ E(x

1
) and ‖Dϕ‖

L∞ ≤ C(x
1
). Thus, again from

Lemma 2.1,

D̃αj

(
D̃ϕ(x

1
, x′)

)
∈ L2qj (Rn

+), where q
j

=
s− 1
|α

j
| ,

and

(2.3) ‖D̃αj (D̃ϕ)‖
L

2qj
≤ C‖Dϕ‖

1− 1
qj

L∞ ‖Dϕ‖
1

qj

Hs−1 ≤ C(x
1
)
(
E(x

1
)
) 1

qj ,
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for 0 ≤ |α
j
| ≤ s−1 , j = k+1, · · · ,m. Therefore, by Hölder’s inequality,

D̃α1
(
v(t, ϕ(t, x′), x′)

) · · · D̃α
k

(
v(t, ϕ(t, x′), x′)

)
D̃α

k+1 (D̃ϕ)

· · · D̃αm (D̃ϕ) ∈ L2(Rn
+),

since ((|α
1
| − 1) + · · · + (|α

k
| − 1) + |α

k+1
| + · · · + |αm |)/2(s − 1) ≤

(s− k)/2(s− 1) ≤ 1/2. From (2.3) and (2.3),
∥∥∥(D̃α1v) · · · (D̃α

k v)D̃α
k+1 (D̃ϕ) · · · D̃αm (D̃ϕ)

∥∥∥
L2

(2.4)

≤ C(x
1
)
(
E(x

1
)
) s−k

s−1 ≤ C(x
1
)E(x

1
).

By Minkowski’s inequality, Schwarz’s inequality and (2.4),

|E(x
1
)∂x

1
E(x

1
)|

≤ C‖D̃F‖
L∞

∫ (
ϕ

(s)
)2

dx′ + C

(∫ (
ϕ

(s)
)2

dx′
) 1

2

·
∑
α

‖fα(D̃α1v(t, ϕ, x′)) · · · (D̃α
k v(t, ϕ, x′))D̃α

k+1 (D̃ϕ)

· · · D̃αm (D̃ϕ)‖
L2

≤ CE(x
1
)
(
‖D̃F‖

L∞E(x
1
) + ‖fα‖L∞C(x

1
)E(x

1
)
)

,

and so |∂x
1
E(x

1
)| ≤ C(x

1
)E(x

1
) + C(x

1
) . Therefore, by Gronwall’s

inequality, E(x
1
) is finite for all time since by assumption it is finite at

x
1

= 0.

We will also encounter first order equation like those in Corollary 2.5
which are linear, but with coefficients of finite regularity.

Corollary 2.5. Let ψ(x
1
, x′) satisfy the equation

(2.5) ψx
1

= F
1
(x

1
, x′)D̃ψ + F

2
(x

1
, x′)ψ + F

3
(x

1
, x′),

where F
1
(x

1
, x′) ∈ Hs−1

loc (Rn
+) and F

2
(x

1
, x′), F

3
(x

1
, x′) ∈ Hs−2

loc (Rn
+),

s > n
2 + 2. If ψ(0, x′) ∈ Hs−2

loc (Rn), then ψ(x
1
, x′) ∈ Hs−2

loc (Rn
+).

Proof. It can be assumed that the functions in question all have sup-
port in x′. Let ψ

(s−2)
denote the vector of all x′ derivatives of ψ up to

order s − 2. As we see in the proof of Theorem 2.4, we will establish a

priori estimates on the energy E(x
1
) =

(∫ |ψ(s−2)
(x

1
, x′)|2dx′

) 1
2 .
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The chain rule and the Leibniz formula imply that for |α
1
| + |α

2
| ≤

s− 1, 1 ≤ |α
2
| ≤ s− 2 and |β

1
|+ |β

2
| ≤ s− 2,

∂x
1
ψ

(s−2)

= F
1
(x

1
, x′) D̃ψ

(s−2)
(x

1
, x′) +

∑
α

(
D̃α1F

1
(x

1
, x′)

) (
D̃α2ψ(x

1
, x′)

)

+
∑

β

(
D̃β1F

2
(x

1
, x′)

)(
D̃β2ψ(x

1
, x′)

)
+ D̃s−2F

3
(x

1
, x′).

The energy satisfies E(x
1
)∂x

1
E(x

1
) =

∫
ψ

(s−2)
(x

1
, x′)∂x

1
ψ

(s−2)
(x

1
,

x′)dx′, and by integration by parts,∫
ψ

(s−2)
F

1
(x

1
, x′)

(
D̃ψ

(s−2))
dx′ = −1

2

∫
D̃F

1
(x

1
, x′)

(
ψ

(s−2))2
dx′.

Since s > n
2 +2, the Sobolev imbedding theorem implies that D̃F

1
(x

1
, x′)

∈ L∞loc(R×Rn
+).

Since D̃F
1
(x

1
, x′) ∈ Hs−2(Rn

+) ∩ L∞loc(R
n
+), by Lemma 2.1 ,

D̃α1F
1
(x

1
, x′) ∈ L2p1 (Rn−1), where p

1
=

s− 2
|α

1
| − 1

and

(2.6)
∥∥∥D̃α1F

1
(t, x′)

∥∥∥
L2p1

≤ C‖D̃F
1
‖
1− 1

p1
L∞ ‖D̃F

1
‖

1
p1

Hs−2 ≤ C(x
1
).

for 1 ≤ |α
1
| ≤ s− 1. Similarly,

ψ ∈ Hs−2(Rn
+) ∩ L∞loc(R

n
+),

with ‖ψ‖
Hs−2 ≤ E(t) and ‖ψ‖

L∞ ≤ C(t). Thus, again from Lemma 2.1,

D̃α2ψ(x
1
, x′) ∈ L2p2 (Rn−1), where p

2
=

s− 2
|α

2
| ,

and

(2.7) ‖D̃α2 (ψ)‖
L2p2

≤ C‖ψ‖
1− 1

p2
L∞ ‖ψ‖

1
p2

Hs−2 ≤ C(x
1
)
(
E(x

1
)
) 1

p2 ,

for 1 ≤ |α
2
| ≤ s− 2 . Therefore, by Hölder’s inequality,

(
D̃α1F

1
(x

1
, x′)

)(
D̃α2ψ

)
∈ L2(Rn

+)),

since ((|α
1
|−1)+|α

2
|)/2(s−2) ≤ 1/2. For |α

1
| = 0, ‖F

1
(x

1
, x′)D̃ψ(x

1
, x′)‖

L2 ≤
C‖F

1
‖

L∞E(x
1
). Therefore, from (2.6) and (2.7),
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(2.8)
∥∥∥
(
D̃α1F

1
(t, x′)

)(
D̃α2ψ(t, x′)

)∥∥∥
L2

≤ C(x
1
)E(x

1
).

Since F
2
(x

1
, x′) ∈ Hs−2(Rn

+) ∩ L∞loc(R
n
+), from Lemma 2.1,

D̃β1
(
F

2
(x

1
, x′)

) ∈ L2q1 (Rn−1), where q
1

=
s− 2
|β

1
|

and

(2.9)
∥∥∥D̃β1

(
F

2
(x

1
, x′)

)∥∥∥
L2q1

≤ C‖F
2
‖
1− 1

pj

L∞ ‖F
2
‖

1
q1

Hs−2 ≤ C(x
1
),

for 0 ≤ |β
1
| ≤ s− 2 . Also, again from Lemma 2.1,

D̃β2ψ(x
1
, x′)) ∈ L2q2 (Rn−1), where q

2
=

s− 2
|β

2
| ,

and

(2.10) ‖D̃β2ψ‖
L2q2

≤ C‖ψ‖
1− 1

q2
L∞ ‖ψ‖

1
q2

Hs−2 ≤ C(x
1
)
(
E(x

1
)
) 1

q2 ,

for 0 ≤ |β
2
| ≤ s− 2. Therefore, by Hölder’s inequality,

D̃β1
(
F

2
(x

1
, x′)

)
D̃β2ψ ∈ L2(Rn−1),

since (|β
1
|+ |β

2
|)/2(s− 2) ≤ 1/2 . From (2.9) and (2.10),

(2.11)
∥∥∥D̃β1

(
F

2
(t, x′)

)
D̃β2ψ(t, x′)

∥∥∥
L2

≤ C(t)E(t).

Therefore, by Minkowski’s inequality, Schwarz’s inequality, (2.9) and
(2.11),

|E(x
1
)∂x

1
E(x

1
)|

≤ C‖D̃F
1
‖

L∞

∫ (
ϕ

(s−2)
)2

dx′ + C
(∫ (

ϕ
(s−2)

)2

dx′
) 1

2 +
{∑

α

‖(D̃α1F
1
)(D̃α2ψ)‖

L2 +
∑

β

‖(D̃β1F
2
)(D̃β2ψ)‖

L2

+‖D̃s−2F
3
‖

L2

}

≤ CE(x
1
)
(
‖D̃F

1
‖

L∞E(x
1
) + C(x

1
)E(x

1
) + C(x

1
)
)

,

and so |∂x
1
E(x

1
)| ≤ C(x

1
)E(x

1
) + C(x

1
) . Therefore, by Gronwall’s

inequality, E(t) is finite for all time since by assumption it is finite at
x

1
= 0.
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