BOUNDARY REGULARITY TO THE NAVIER-STOKES EQUATIONS

  • Published : 2000.11.01

Abstract

Under the critical assumption that ▽u$\in$L(sub)loc(sup)${\alpha}$,${\beta}$, 3/${\alpha}$ + 2/${\beta}$ $\leq$ 2 with ${\alpha}$ $\geq$ 3/2, a boundary L(sup)$\infty$ estimate for the solution is derived if the pressure on the boundary is bounded. Here, our estimate is local.

Keywords

References

  1. C.R. Acad. Sci. Pari v.321 Convering the regularity problem for the solutions of the Navier-Stokes equations. H. Beir ao da Veiga
  2. A regularity criterion for the navier-stokes equations H.-O. Bae;H.J. Choe
  3. Comm. Pure Appl. Math. v.35 Partial regularity for suitable weak solutions of the Navier-Stokes equations L. Caffarelli;J. Kohn;L. Nirenberg
  4. J. Differential Equations v.149 Boundary regularity of weak solutions of the navier-stokes equations H.J. Choe
  5. Arch. Ration. Mech. Anal. v.45 The initial value problem for the Navier-Stokes equations with data in Lp E.B. Fabes;B.F. Jones;N.M. Riviere
  6. J. Math. Anal. Appl. v.210 Existence and regularity of a class of weak solutions to the Navier-Stokes equations C.He
  7. Math. Nach. v.4 Uber die anfangswetaufgabe fur die hydrodynamischen grundgleichungen E. Hopf
  8. Acta Math. v.63 Sur le mouvement d'un liquide visqueux emplissan l'espace J. Leray
  9. Arch. Ration. Mech. Anal. v.9 On the interior regularity of weak solutions of the Navier-Stokes equations J. Serrin
  10. Comm. Pure Appl. Math. v.46 On partial regularity results for the Navier-Stokes equations M. Struwe
  11. Comm. Partial Differential Equations v.17 On a regularity criterion up to boundary for weak solutions of the Navier-Stokes equations S. Takahashi