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BOUNDARY REGULARITY TO
THE NAVIER-STOKES EQUATIONS

HyEONG-OHK BAE AND DO WAN KIM

ABSTRACT. Under the critical assumption that Vu € L5,  + z<
2 with a > g, a boundary L™ estimate for the solution is derived
if the pressure on the boundary is bounded. Here, our estimate is

local.

1. Introduction and statement of the result

In this paper we study the boundary regularity of the weak solutions
of the incompressible Navier-Stokes equations

(1.1) v— A+ (u- V)i +Vip=f, Y-u=0

in D = Q x (0,00) with initial data u(z,0) = uy(z) € L*(Q) for z €
and boundary data u(z,t) = 0 for (z,t) € 3Q x (0, 00), where Q C R3 is
an open bounded domain with smooth boundary. We let the initial data
up satisfy V-ug = 01in Q and ug-n = 0 on 82 in a weak sense, where
n is the outward normal vector. We assume that any weak solution
u € L0, 00; H'(2)) N L®(0, 0o; L2()) satisfies

]u-qﬁg—Vroqb—(u-V)u-¢+pV-q5dz:0

for all ¢ € C§°(D). The existence of weak solutions was proved by
Leray [8] and Hopf [7], and the existence of suitably weak solutions was
proved by Caffarelli, Kohn and Nirenberg [3]. Here, our definition of
weak solution coincides with the definition of the suitably weak solution
of [3]. For the simplicity we assume that f is a smooth function in D.
It is well known that if the solution is bounded, then it lies in L(0, o0 :
HY()) N L*(0,00 : H*(2)). We know that boundedness of u implies
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higher regularity of « in the interior and hence we can bound var-
ious higher norms in terms of L™-norm of u. From Sobolev's em-
bedding theorem we know that the solution space of weak solution

L2(0, 00; H'(2)) N L=(0, 00; L2(1)) lies in L2 (D). But we do not know
yet how to bound L®-norm of u in terms of L¥-norm of u. On the other

hand, as far as interior is concerned, it was proved by Serrin [9] that any
weak solution u of (1.1} on a cylinder B X (a,b) satisfying

b 8
" 2
/(f|u|“d:x:) dt < oo with §+—<1,az3
a B
B

Qa

is necessarily L* function on any compact subsets of the cylinder. Ob-
serve that when @ = 8 = 5 | then u is in L® and 5 is the criti-
cal number for the homogeneous Lebesgue spaces. The limiting case
3/o +2/8 = 1, > 3 for the initial value problem was proved by
Fabes-Jones-Riviere [5] and their method seems not applicable to lo-
cal problems. Also Struwe [10] improved Serrin’s method and proved
the boundedness of weak solutions in interior for the critical case, that
is, 2+12 5 = 1,a > 3. Takahashi (11] found some criterion for L regula.r—

ity near boundary for the weak solution satisfying v € L®# 3 + <1

He imposed some integrability conditions on the velocity gradlent and
pressure in the domain D, that is,
3 2
Vu,pe L forall 1<ea,B<oo with =+ 7= 3.
(83
Choe [4] proved the L™ regularity of u up to boundary for the limiting
case that u € L»(D), 2+ £ < 1 with a > 3, or u € L** with ||ul| e <
go for some small gy under the assumption that the boundary data of
the pressure is bounded.
Beirdo da Veiga [1] showed that a weak solution u is regular if
Vu € LP(0,T; L*(R™))
for some 3,1 < <2, and
n 2
Z+i=2
a + Jo)
He [6] obtained similar results on bounded domains. We also showed the
regularity under the assumption that any two components of u satisfy

the Serrin condition in [2).
Here, we obtain the L® regularity of u up to boundary for the case

that Vu € L4(D),3 + 2 < 2withe > 3 or Vu € L1 with
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||Vl §= < €0 for some small &y under the assumption that the bound-
ary data of the pressure is bounded. For our proof, we follow the ways
in [4].

We first show that u ¢ L?, if Vu € L¥*(D), g +% < 2 with e > 3, or

u € L™ with [Vull 4 < €0 for some small & (Lemma 3.1). Lemma 3.1
corresponds to Lemma 15 of [4], which is assumed the Serrin condition.
In our case we assume the Beirdo da Veiga condition.

Then, we accept that |{u|| can be bounded by ||u||, for all p > 5
(Lemma 2.3), and the bound of ||u]|s,, for some o by ||u||s (Lemma 2.4).
The above two are Lemma 16 and Lemmal7 in [4], which are obtained
by employing Moser type iteration and by the reverse Holder inequality,
respectively.

Combining these two estimates we bound |Ju||. in terms of ||u||s.
Finally, we remark that the weak solution is as regular as the boundary
data of the pressure.

Set © = (xy, To, x3) and z = (x,t). We define Br{xg) = {z: |z — =20} <
R}, Bj(zo) = {z € Br(zo) : 3 > 0}, Qrlzo, to) = Br(zo) x (to - R%, to)
and QF (o, %) = {(#,t) € Qr(zo, to) : m3 > 0}. If there is no confusion in
the local estimates, we assume zp = (0,0} and drop 2o In various expres-
sions. We denote L™(QQ),1 < m < co the space of Lebesgue measurable
functions with m-th power absolutely integrable. We define ¢ fdz =

Q

T‘%T J fdz. We denote ¢ a constant depending only on exterior data.
o

Now we state our main result. Let Xo(Q2) = sup{|[v|lzs@)/[[vllm3e)

v € HHO)} be the Sobolev constant. In the following two theorems we
are interested in the boundary regularity near boundary and hence we
assume that D = Q3.

THEOREM 1.1. Suppose (u,p) is a weak solution. There exists a
positive constant o such that if Vu € L*#(D) for some {w,3) satis-

fying £+ 3 < 2 with o > 3, or Vu € L¥®(D) with || V|| 3. < &
for some small ey depending only on the Sobolev constant Ay(S2), and

p € L™(0Dn Q%), then

BT

supjul < ¢ %|u\3 dz + e
Q; a
Q,

for some positive constant ¢ depending on g.
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THEOREM 1.2. Suppose (u,p) is a weak solution and Vu € L*8(D)
for some (o, 8) satisfying g +% < 2 with a > %, or Vu € L%’“’(D)
with || Vull 3. < € for some small & depending only on the Sobolev
constant A(€2). Let k be a fixed no:;x:_e:%ative integer. Then, if the

tangential derivatives of the pressure z7—=p € L®(0D N Q2) for each

(81, B2) with 81| + B < k, then u € C*(QT) for all A € [0,1), where
31 = (ki1, ko, 0) is multi-index.

2. Review of Known Results

In this section, we review some results shown in [4]. We assume that
p € L®(AD). Here, the meaning of the pressure on the boundary is
defined in the sense of trace.

The following lemmas are given in [4].

LEMMA 2.1. Suppose (u,p) is a weak solution. Let ¢ € C§°(Bg) with
¢ = 1 in a neighborhood of By. Then, 1 <7 <3

(2.1)
ool < cll@llce (“ulliz'"(supp((ﬁ)) + Hp“ir(supp(gb)) + HP”Lw(suppw)naD))

for all m € (1, 3%) and for some ¢ depending on r.

Note that when r =1,
126l La5y < clludlianory + ellPlliigy) + cllpllzeen) + €l fllzop

for all m < 3. Tterating (2.1) and using Hélder’s inequality we get for
all m € (1, 00)

[j\p¢2|md2} SCL/ \u¢|2md2} +ellpllig,)tellpll ooy tell fllze;)
Q 2

2

for some c.

LEMMA 2.2. Suppose that (u,p) is a weak solution, then for allm > 1
(2.2)

Ipd* M| Lmiry < C||u¢||izm(g);} +ellplipen + cllpllim@n) + ¢l fll 205
for some ¢ depending on m.
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LEMMA 2.3. Suppose (u, p) is a weak solution. Then, for any positive
constant o,

sup |u| < ¢ /|u|5+" dz| +c
1

¥ Q;

for some constant ¢ depending only on o.

LeMMA 2.4. Suppose (u,p) is a weak solution and [ |uPdz < .
Qr
Then there exists a constant ¢ such that

= 1
2

%lul“"dz <ec %lu{f'dz +e
Q; Qy

for some o € (0,1).

3. L™ estimate of velocity.

Since we are interested in boundary regularity locally, we assume that
D=gQj.
Since inhomogeneous Lebesgue spaces are hard to handle, we show u

lies in the homogeneous Lebesgue space L°. This will greatly simplify
our iterations.

LEMMA 3.1. Suppose that p is bounded on 95). Assume that Vu €
LPQN), 2 +2 < 2,0 > &, or Vu € LE®(Q]) with ||Vul|

g.w - S. £y
LIZQT)
for some small £y, then u € L"’(Q%‘).

Proof. Let 1 < p < s <1 and 5 a standard cut-off function such that

0<n<l, n =0 on 9,Qs, n=1inQ,,
c

(s — p)?

C
Vnl < — <
I "?f_s_p: Intl_
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for some positive constant ¢, where 8,Q; is the usual parabolic boundary
of @,. We take |ulu'n® as a test function to (1.1) and get

Jdéf%sgp/lu{?'ns(x, t)d&'r-l-f'u, IV“F’?Sd»’«’*‘%/,”l_llvlumzﬁsdz

By < o
=3 [ 1Prinde = [ V- i dz =4 [ fuln"VIulf - Vs
Q o
(3.1)
+8/pn7|u|(u-V)ndz+%/pn8|u|"1(u-V)|u|2dz+ff-u|u[n8dz.
Q& aQy Q7

Notice that

3 [Pl e Dz

a=1

Qr
< [ (f1oueas)” ([t a) ™ a
<[ (el ] [ (foermm )

Hence, we have from (3.1) that

J< c/ jul®dz + ‘/(u-V)uvlumnsdz! +8/pn7|u|(u-V)ndz+c
Q

&
(3.2)
1 o e o % éa_
t37+ VUl zeagr f (/ |plaT -t lula dﬂf) de| .
Consider

/(u Vu - ufun® dz
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of (3.2), which is estimated as follows:
l/(uV)u |ufun® dz| < /lulSIV‘ul’I]S dz
< f ([qu|ad$);([|u]anlnr% dr) " dt
{re—1 3 151
{/ fqur’dm dt] [f /M" 1nn s d w(@-1) d]
=1

v Ber f:ﬁ})lﬂ) B
= 1Vulory | [ ([ 10 az) et

By Holder’s and Sobolev's inequalities, we have that for @ > 3/2,

dt]

Bre ((a 1)
nn lluln H d"L'
{n=1)# i?l
o fr= i
3{2n—3)—24 3H20—3)-9 n(3-1]
— n 2(o—1) |u[ Ho-1) o dt

s e 17
< f(/n |u)? das) (/n24|u| da:) dt

a-1
mu-

<eo ([ nSIude) ' U (/196 idm)”"”’ tr

(‘2” 3)

< esup (fnS\HIde) U |V (| dZ} '

< csup/n8|u|3d:c-f—c/|u| [Vu|2n8dz+cfn6|an2 lul* dz
t

A-1

<cl+e | Jufdz<e+ec
Qv
Here, the fact
38
¥ <
20(8~1)
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that is,
3 2
-+ =<2
o T 87
is used. Hence, we have that
d-1
Bur gi';_i)l‘; y
(3.3) ] (/ na=1 |ula=1 = dm) dt <eod +e,
and that
(3.4) ]/(u V- jujun® dz| < |V poaggnyd + ¢

Consider the term 8 [ pn”|u((u - V)ndz of (3.2). Observe that
[t 9 < ( [Pt 9 de)* ([ latt9maz)’

< c] lul*n” dz +

due to the estimates on p in Section 2. Consider [ |u|*n” dz;

[tz = | xuw*%*% Ry

gf[ /;uF dm f1u|3n8d:c (/|u|9n24d:c)%} dt

< coup / ([ 1uprbaz)® # / ( f |y dz)%dt

< csup f[uisngdm) 2/(]|V(|ui%ﬁ4)|2dx)%dt

esup (/Iul%sdﬂr) 2 fiV(IUI%n“)IQdZ)%

< csup ([ s i) ¥ ( [l (9u20P + luténfinf yaz)
ds)

pic}
< csup(flul
4

£ pic
T / ) (Vafnf dz )
28 1
<eJu + e < ZJ—*—c.



Navier-Stokes equations 1067
Hence, we have
1
(3.5) [t Vinds < 17+

We now consider the last term of (3.2)

=1
It

cr=1)3 -
i ' o a1
[ [ ([t a1 o) dt}

g-1
30 B g‘:}‘:{; 8er 3 3:(:‘1‘?) 7
<\ [([rormntnae) ™ ([oitan) ™ a

Bor e % 7
< f (nT—"T ula-T d:n) dt| +ec

By (3.3), we have

i1

e 15
a e 0 eig-1)
(3.6) [/ (/ |p|75T 7t w7 dz) dt] <ed+ec

Therefore, combining (3.4)—(3.6), we have from (3.2) that

1
J S C”vu“LnJ(Q;}J +c4 '2—J.

Choosing the domain of integration so small that C”VU||2Lo,a(Q—) < i, we
get J < oo. Since

/ku]f’n’_f*'s dz < f (f]u|3n8dm)%(f}u|gn24 d:c)%dt
<sup( [ruprras)’ [ viutta)fas
<sup ([ tuaedz)? [ (1l IVuP + 16feP )

we have
1] 3
/|u|5n4T dz < J3 + ¢ < oo,

which completes the proof. For the case @ = 2 and 8 = oo, we can do
in a stmilar way: a
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Proof of Theorem 1.1. We define a sequence {R;}2; by

Ri={1-2"") Ry, i=0,1,2,---.
As in Lemma 2.4, we obtain

1

i
H a 3

2 : :
/[u[5dz < ecgf / ui’dz | +¢ f [ul*dz | +c.

@, S, Q%

2
We set ¢y = c£f°. Hence defining

1 !
o, = /|u|5dz and ;= f|u|5dz ,
7 97,

we obtain a recurrence relation
(3.7) ®; < cp®iq + W, + ¢

Iterating (3.7) we obtain

k
O < f e +2°) ! (Uypy +1).

7=0
Consequently, if we choose Ry so that cye < 1, then we

1
2
a

L
3

(3.8) / JufPdz | <e f luffdz | +e.

t %,

1
2R
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Therefore, we obtain

1

sup Juj <e f w|*dz } +ec [by Lemma 2.3]

Q1 Y
dig Qf} "

<c f lu|®dz +c [by Lemma 2.4]

Q; ity

Sty

37

<e / ul*dz +c [by (3.8)].
N

The proof is completed. |

We now consider the higher regularity in Theorem 1.2. We can also
obtain that the velocity is as regular as the boundary data of the pres-

sure if Vu € L*P(D) with 2 +% <2r>3 orVue L%"X’(D) with

||VuHLg_w < g for some small 5. The proof is similar to that in Choe
|4]. Choe [4] first showed that if the velocity is bounded near bound-
ary, then it is Holder continuous. The boundedness of the pressure at
the boundary is necessary in the proof to show that the pressure p lies
in higher L™ space for sufficiently large m. He employed a perturba-
tion method with isomorphism theorem between Campanato space and
Holder space. The Navier-Stokes solutions are simply compared with
the solutions of heat equations. Then from a bootstrap argument, the
higher regularity theorem is obtained.
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